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Abstract 

It is shown in this paper how complex economie dynamics can be char­
acterized using the statistical or distributionai theory of dynamical systems. 
The basic concepts of the lat ter are summarized. Then applications to supply 
and demand adjustments in competitive markets, aggregate business fluctu­
ations and economic growth in the very long run are briefly reviewed. 

1. Chaos, Measure and Escape 

2. Competitive Market Adjustments 

3. Irregular Business Cycles 

4. Economie Growth in the Very Long Run 
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STATISTICAL DYNAMICS AND ECONOMICS 

Richard H. Day and Giulio Pianigiani 

Complex dynamic behavior involves unstable, nonperiodic (chaotic) fluc­
tuations in contrast to stationary states, periodic cycles or paths that con­
verge to such orbits. It arises in economic processes as ageneric consequence 
of inherent nonlinearity. This fact is by now well known. Its relevance has 
been explored in models of consumer behavior, business fluctuations, stock 
market behavior, population dynamics, growth cycles, competitive market 
mechanisms and optimal intertemporal equilibrium theory.l 

Simple dynamics can readily be characterized (at least in the long run or 
in the limit) by stationary states or stable, periodic orbits; chaotic trajectories 
cannot. A similar problem arose in physics more than a century ago when it 
was realized that an ensemble of interacting particles could move in such a 
complicated way that there was no chance to represent the behavior of any 
of its individual components. Rather, the distribution of particles and the 
proportions of time given events occur might behave in a coherent way and 
in the long run according to stable probabilistic laws. Clausius, Boltzman 
and Maxwell, the founders of thermodynarnics, are generally credited with 
originating this point of view. It was given an early systematic development 
by Gibbs. It is interesting to note that these early contributors used the 
term "chaotic" to describe the seemingly random behavior of deterministic 
systems.2 

The modern mathematical theory of nonlinear dynamical systems was 
also originated in the 19th Century. Poincare, its founder, recognized that 
even relatively simple ensembles, such as those of classical, celestial mechan­
ics, could display complex behavior. Eventually, Ullam showed that a discrete 
time system, one represented by a single variable "tent map," could exhibit 
the statistical properties of the ergodic theory of deterministic dynamical 
systems that had been developed after Poincare by Birkhoff and others. The 
upshot of all this is that it is not complexity of structure that gives ris e to 
complex behavior but nonlinearity. 
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The discovery that deterministic dynamie economic models could gener­
ate erratic paths raised the possibility of statistical behavior in that context 
also. Although an immediate answer was not obvious, constructive methods 
that had already appeared facilitated the investigation.3 By now it is clear 
that quite standard economie models not only can generat e chaotic time­
paths, but these time-paths, when viewed in the limit, can indeed obey 
certain properties of stochastic processes and the frequencies of their values 
can converge to stable density functions.4 The purpose of these notes is to 
survey the basic concepts involved and to introduce their application to the 
study of dynamie economie processes. 

One must be careful in interpreting what is accomplished in any analysis 
based on limiting or "long run" arguments as is the case here. Real world 
economic systems do not hold still in the long run; the system generating 
economic data during one time frame is different from the one generating 
it at an earlier or later time. Nonetheiess, if the relative frequencies of the 
values generated by a given model converge to adensity function, that fact 
explains erratic short run behavior, even though it would not completely 
explain real world behavior in the long run (because the model itself would 
have to change). 

Exogenous changes can sometimes be conveniently treated as random 
perturbations to a given economie model. It is important in such a case to 
consider the dynamics of the deterministic part of the system on its own 
terms to see if at least part of the irregular nature of the generated data 
could be due to the intrinsic interaction of the endogenous variables. It may 
also be useful to think of ch anges in structure as the result of deterministic 
dynamics using multiple phase dynamical systems that possess more than 
one structural regime. In this case the distribution theory may be used to 
explain how a system's behavior can escape its domain of viability. Such an 
escape could be interpreted as the demise of a system or more generally as 
a description of how a given regime might switch to a different one governed 
by a different dynamie law. In this way the statistical dynamics can provide 
an intrinsic explanation of economie evolution. In this paper we show how 
these ideas arise naturally in the study of economie processes. 

Section 1 contains a brief survey of some basic concepts used in the sta­
tistical theory of dynamical systems. Section 2 uses a model of competitive 
price adjustment to illustrate how questions of distribution theory arise in 
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a standard economic setting. In Section 3 similar results are obtained for 
the familiar real/monetary business cycle theory. Section 4 briefly considers 
economic growth in the very long run using the theory of statistical dynamics 
to suggest how the varied patterns of economic evolution that have occurred 
in the historical record could have arisen. 

1 Chaos, Measure and Escape5 

1.1 Dynamical Systems 

Consider the dass of all recursive economies whose structure on adornain 
X C R can be represented by a continuous map f) : X ~ R. The state of 
the economy in a given period t is given by a value Xt E X. The succeeding 
state is generated by the difference equation 

(1.1) 

where 1(' is a vector of parameters for the function (). Define the iterated map 
()n : X ~ X by ()O(x) = x and ()n(x) = (). ()n-l(x),n = 1,2,3, .... Then 
the sequence r(x) = (f)n(x)) > is called the trajectory from the initial 

n = O 
condition x. The orbit from x is the set ,(x) = {f)n(x) I n ~ O}. The 
asymptotic behavior of a trajectory is described by the limit set w( x) of the 
trajectory r(x)jw(x) is defined to be the set of all limit points of r(x), i.e., 
by 

00 

w(x) := n cf,(f)n(x)) 
n=l 

where cf(S) means the closure of the set S. Note that w(x) is closed and 
()(w(x)) = w(x). 

An attractor for e is a closed set F C X such that w(x) = F for x in 
a set of positive Lebesgue measure which we shall define below. Attractors 
represent the asymptotic behavior of solutions for a nontrivial set of initial 
conditions. 

A point y E X is a periodic point of period n if en (y) = y and f)i (y) =/: y 
for O < j < n. A periodic point y and the corresponding periodic orbit 
,(y) are called asymptotically stable if there is a nondegenerate interval V 
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containing y such that w( x) = i(Y) for all x EV. It is not unusual for a 
map to have many, perhaps an infinite number of periodic points. It is also 
possible that none of the periodic points is asymptotically stable. It is in this 
situation that the theory of statistical dynarnics can be used to describe the 
asyrnptotic behavior of trajectories. 

1.2 Invariant Measure 

A a-algebra is a collection of subsets 2: of a set X 

(i) that contains X, 

(ii) that contains the complement of any set in 2: and 

(iii) that contains the union of any countable collection of subsets in 2:. 

Let {Xn}~=l be a countable collection of disjoint sets in a a-algebra 2:. A 
measure is a map with images in the nonnegative real nurnbers and arguments 
in 2: such that 

(i) /1(0) = O 

00 00 

(ii) /1( U Xn) = L: p,(Xn). 
n=l n=l 

An example is the Lebesgue measure on the real line, denoted m(·), which 
associates with an interval its length. Thus, if I := [a, b] is an interval, then 
m(I) =1 b - a I. Obviously, the Lebesgue measure of points is zero. The 
Lebesgue measure of an open, or serni-open interval is, therefore, the same as 
its closure. In general if a measure p, is zero on points, it is called continuous 
or nonatomic. 

A probability space is a triple (X, 2:, p,) where X is a set, 2: a a-algebra 
of sub set s of X and p, is arneasure such that p,(X) = L 

A mapping () from X into itself is said to be measure preserving and p, is 
said to be in variant under () if 

for all E E 2:. 

As an example, consider the tent map, 
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T () {2MX , x E [O,~) 
M x:= 2M(1 _ X) ,x E a,l] (1.2) 

U sing the definition it is easy to check that TI ( .) preserves Lebesgue measure, 
i.e., Lebesgue measure is invariant under TIO. This is not true when M =f:. 1 
as you can readily see. (We use T(·) to denote a map defined on the unit 
interval.) See Figure 1.1 

- Figure 1.1 about here-

For measure preserving transformations Poincare established a famous 
recurrence theorem. It is not difficult to prove and it affords a simple ex­
ample of how the concept of measure can be used to determine properties of 
dynamical systems. 

The Poincare Recurrence Theorem. Let (X, 1::, J-L) be a pro ba bili ty space 
and let J-L be mvariant under O. Let E be any set of positive measure. Tben 
almost all points of E return to E innnitely of ten. 

00 

Proof. For any k ~ O consider the set Ek = U o-n (E) where OO(E) := E. 
n=k 

Ek is just the set of points that map into E af ter at least k periods, that 
is, for all X E Ek there is an n ~ k such that on(x) E E. It follows that 

00 

Ek+! = O-l (Ek) and that Eo :) El :) ... :) En'" so E* = nEk c Eo. 
k=O 

Of course, E c Eo. By assumption J-L is invariant with respect to () so 
J-L(Ek+!) = /-l(Ek) for all k which implies that J-L(E*) = J-L(Eo). Consequently, 

This implies that 

00 

Now consider an x E E n n Ek. For such a point for all k there exists an 
k=O 

n ?: k such that (}n(x) E E. But x E E also. Therefore, for J-L-almost all 
x E E, x "returns" to E infinitely of ten. O 
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1.3 Ergodie Measure 

Suppose that there exists E E ~ such that e-l (E) = E (and hence e-I(X \ 
E) = X \ E) then the dynamics is split into two separate parts; in fact, if 
x E E, then x E e-1(E) which implies e(x) E E and the trajectory of x 
will stay in E forever. Likewise for X \ E. This motivates the concept of 
ergodicity. 

A map e is ergodie if E E ~ and e-l (E) = E imply that either fl(E) = O 
or fl(E) = 1. 

Ergodicity means that you cannot split the system into nontrivial parts. 
This propert y is sometimes also called metric transitivity. As an example 
of a nonergodic system, we mention the rationai rotation on the circle with 
the usual Lebesgue measure. On the contrary, if a is irrational, it is possible 
to show that the system is ergodic with respect to the Lebesgue measure. 
Also, the tent map introduced in equation (1.2) is ergodic with respect to 
Lebesgue measure for M = 1. 

A major result in ergodic theory due to Birkoff and von Neuman is 

The Mean Ergodie Theorem.6 Let (X,~, fl) be a probability space and 
let e be measure preservmg and ergodie. Let g(.) be an integrable function. 
Then 

1 n-l . 

Ji.~:;;: t; g(e'(x)) = ix gdfl for almost all x E X. (1.3) 

o 

To underst and the implications of this theorem, note that the left side of 
(1.3) is the average value of g(.) evaluated along the trajectory T(X). The 
right side is the mean value or expected value of g(.) evaluated on the space 
X. Thus, it is said that "the time average equals the space average." 

Let E E ~ be any set with fl(E) > O and consider ageneric trajectory. 
We ask how much time does this trajectory spend in E? The characteristic 
function of point s in the trajectory given a set E is 
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( t()) {l, f)t (x) E E 
XE f) x = O, f)t(x) tf. E. 

summed over point s in the trajectory we get the number of times the tra­
jectory "enters" the set E. According to Poincare's Recurrence Theorem, we 
expect this to be infinite if Jt(E) > O. However, the average time spent can 
be finite. Indeed, the Birkoff ergodie theorem says that the time average, 

(1.4) 

for almost x in X. To see this we let g(x) := XE(X). This gives the left side 
of (1.3). Then Ix g(x)dJt = Ix XE(x)dJt = IE dl' = Jt(E). This implies that a 
typical trajectory will visit every measurable set proportionally to its measure. 

1.4 The Existence of Continuous Measures 

As a typical trajectory visits every set of positive measure, the system behaves 
in a "chaotic" way if the measure I' is supported on a "large" set. H, for a 
contrary example, the measure I' is concentrated on a fixed point Xo, then I' 
is certainly invariant and ergodic. The Birkoff mean ergodic theorem applies, 
but "almost everywhere" here means just for x = Xo, and a typical trajectory 
is the stationary point xo. The same is true for cycles of any period n except 
the measure is concentrated equally on the periodic points. 

A result which guarantees the existence of an invariant measure supported 
on a "large set" is the following: 

Theorem 1 (Lasota and Pianigiani, 1977). Let X be a topological space 
and let f) : X --+- X be continuous. Let f) satisfy the following "exp ansi vit y" 
condition: there are two compact disjoint set s A and B sum that 

f)(A) n f)(B) :::> A u B. (1.5) 

Then there exists an ergodie invariant measure I' that is continuous, z.e., 
Jt{ x} = O for all single tons {x}. O 
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Remark. As J.L{ x} = O for all {x} it follows that the support of sueh a 
measure is an uneountable set. (The support of a measure J.L is the set of 
point s for whieh J.L(x) > O, x E S.) 

We now present a weIl known set of eonditions for whieh eontinuous 
ergo die, invariant measures exist. 

Theorem 2 (Li-Yorke, 1975). Let () : X -+ X be continuous and suppose 
there exists a point such that either 

Then 

(i) there exist periodie cycles of every period. 

(ii) There exists an uncountable set E containing no periodie points such 
that for all x, y E E, x =f. y we have 

(iii) If y is a periodie point, then for all x E E 

D 

Remark. A mapping (J for which (ii) is satisfied is of ten called chaotic in 
the sense of Li-Yorke.7 

Corollary 1. Given the hypothesis of the Li-Yorke Theorem, there exists a 
continuous, invariant ergodie measure J.L such that J.L(E) > O. 
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Pro of. It is easily checked that the existence of a point satisfying either of 
the two sets of inequalities (1.6) implies the existence of two disjoint intervals 
I, J for which fJ3(I) n e3 (J) :) I U J. Theorem 1 implies, therefore, the 
existence of a measure J1, invariant for e3 • The measure 1/ defined by 

is invariant under e. As J1,{ x} = o for all {x}, clearly 1/{ x} = O also. O 

1.5 Absolutely Continuous Invariant Measures for Ex­
pansive Maps 

The previous theorems guarantee the existence of an ergo die invariant mea­
sure supported on an uncountable set. This set, however, can still be rather 
small in comparison to the space on which the given dynamical system is 
defined. 

Consider the quadratic mapping ex = Ax(l - x) defined on the interval 
[0,1]. For a value of A near 3.83, it can be shown8 that e3(t) = t. As this 
is a point of period 3, by the Li-Yorke Theorem there exists an uncountable 
set in which we have chaotic dynamics and there exists a continuous measure 
J1, such that J.L(E) > O. On the other hand, the orbit of t is asymptotically 
stable (the derivative of e3 in the orbit is equal to zero) and it is possible to 
show that it attracts m-almost all points of [0,1]. Hence, we have chaos but 
only in a set of Lebesgue measure zero. Suppose we work with a computer 
and begin with an initial conditionj we will never be able to see the chaotic 
set E. The smallest round off error, will drive the trajectory out of this 
set and make it converge rapidly toward the attracting periodie orbit. This 
raises the question as to how important the idea of chaos is. Does it occur 
almost surely under some conditions, or almost surely not 79 

Such a paradoxical situation cannot occur if the invariant measure J1, is 
"more regular." This leads to the concept of absolute continuity. 

A measure J1, is said to be absolutely continuous (with respect to the 
Lebesgue measure m) if there exists an integrable function JO such that 
J1,(E) = JE Jdm for all measurable sets E. The function J is called the 
density of J1,. This means that J1, is differentiable and dJ1, = Jdm = J(x)dx. 
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Remark. If p is absolutely continuous with respect to m, then the support 
of p cannot be a set of Lebesgue measure zero; in fact, m(supp p) = ° would 
imply p(supp p) = O. 

An early result establishing the existence of an absolutely continuous 
invariant measure is the weIl known theorem of Lasota-Yorke. It applies to 
the dass of piecewise C2 mappings. A mapping () is piecewise C2 if there 
exists a partition ° = Xo < Xl < X2 < .,. < Xn = 1 such that () restricted to 
each (Xi, Xi+!) is a C2 function which is extendable as a C2 function to the 
dosed interval [Xi, Xi+!)' 

Theorem 3 (Lasota-Y orke, 1973). Let () : X -+- X be piecewise C2 and 
assume that X is an interval. H 

1()'(x)1 ~ A > 1, m-almost everywhere (1.7) 

then there exists an absolutely continuous invariant measure. O 

Remark. Inequalities (1.8) imply that all periodic orbits are repellant. 
Such a map is called expansive. 

As an example consider the "check" map shown in Figure 1.2, 

()(X) = { ()1(X) := n(l - x), 
()2(X) := x-l, 

X E [0,1) 
X E [1, (0). 

- Figure 1.2 about here -

(1.8) 

Observe that ()(l) = 0, ()(O) = n and ()(x) < X all X > 1. Consequently, 
all trajectories are trapped by the set V := [0, n]. What happens in this set 
determines the long run dynamics of the process (1.1). The previous theorem 
can 't be exploited directly because ()2 (.) is not expansive. Indeed, if n = 1, 
()1(') is not expansive either. Then any point in [0,1] is a neutrally stable 
2-cyde. 

Note that the points {O, 1, ... , n} are n + l-cyclic. When n = 2 the point 
X = 2 satisfies the right set of inequalities in (1.6), so the Li-Yorke Theorem 
applies and there are cycles of all orders. Even though (1.8) does not hold, 
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these must all be unstable. This can be seen by considering the sequence 
of eyelic points p, {)(p), ... , ()m(p) = p where p is m-cyclic. Of the m point s 
mI ~ 1 lie in the interval (0,1] and m2 > 1 in the interval (1, n]. The 
derivative of ()m(x) evaluated at any cydic point is therefore nm1 ~ n ~ 2. 
In particular, suppose n = 2. Then 1 is 3-cyclic because ()3(1) = 1. But 
(P' (1) = 2 so 1 is unstable. 

In general, for n ~ 2 the iterated map ()n(p) for () given by (1.9) is 
expansive because dOn(p)jdp ~ n. This is because on(p) must enter the set 
[0, 1] at least once for any p. Consequently, by the Lasota-Yorke Theorem 
an absolutely eontinuous measure exists that is invariant for {)n. 

1.6 Measures and Attractors 

The theorem does not say how many measures exist or if they are ergo die. 
We should als o like to know how measures are related to the limit sets and 
whether or not the latter are attractors. These questions were answered for 
a dass of expansive, pieeewise strictly monotonic C2 funetions in 

Theorem 4 (Li-Yorke, 1978). Let 0(.) be defined on an interval l := 
[a, b] --jo l. Suppose tbere is a finite set of points A := {yi}7~~ witb a = yO < 
yl ... < yk < yk+l = b sucb tbat {)(.) restricted to (yi, yi+l) is 

(i) strictly monotonic 

(ii) twice continuously difIerentiable 

(iii) expansive 

eacb i = 1, ... , k. Tben tbere exists a finite collection of sets L11 ••• , Lm and 
a set of absolutely continuous ergodic measures p!, ... ,Pm invariant under O 
sucb tbat 

(l) m < k; 

(2) eacb L i , i = 1, ... ,m is a finite union of closed intervals; 

(3) supp Pi = Li , i = 1, ... , m; 
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(4) for C i := U~=oT-n(Li), one has U::lCi = I almost everywhere; (this 
means that almost every point in I will eventually enter one of the sets 
Li); moreover, 

(5) if y E I, then m-almost surely w(x) = Li for some i E {I, ... , m}; 

(6) J-ti(Li ) = 1, i = 1, ... , m, i.e., each J-ti is ergodic; 

(7) every measure invariant under () can be written as a linear combina­
tion of the J-ti. (That is, the J-ti form a basis in the space of invariant 
measures.) 

Corollary 2. For k = 1 there exists a unique, ergodic absolutely continuous 
invariant measure whose support is the unique attractor for almost all x E I. 
O 

The fact, which was illustrated in our analysis of the check map 1.9, 
reflects a more general propert y 

Corollary 3. If a map ()(.) does not satisfy the assumptions of Theorem 
4 but there exists an integer, say p, such that the map ()P(.) satisfies them, 
then the theorem holds. O 

Pro of. It is easy to verify that if J-tp is an ergodic measure invariant for ()P, 
p-l 

then J-t := ~"2:J-tp()-i is an ergodic measure invariant for (). O 
i=O 

1. 7 Chaotic CycleslO 

Consider a special situation when one of the sets Li can be decomposed 
into a finite number of intervals, say I?, ... , Ir l such that ()t mod q(Ii) = 
I( i+t) mod q. Then ()q (Ii) = Ii and (). 

The sets Li in the theorem are composed of a finite number, say qi, of 
closed intervals. Denote these by I?, Il, ... , If, ... , Ir 1 and suppose 

()tmodq(I!) - I~t+j)modq . - O 1 - 1 , - , ,J - " ... ,q . 
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Then ()q(Il) = II, j = O, ... , q-L The measure /1i is ergodic on Li but not 
on the Ii. Define a measure /11 by 

Then each /11 is invariant for ()q and ergodic. 
The collection {/1i}]=1 is calle d an ergodie decomposition of /1i and L i = 

UJ:6I1 is called a cyclic attractor. In such a situation a trajectory r( x) for 
x E .ei will enter the sets II in periodic order so the turning points will occur 
in a fixe d pattern, but the amplitude within these sets will vary chaotically, 
appearing to posses both a deterministic component and arandom one. 

1.8 The Frobenius Perron Operator 

The proof of the theorem of Lasota-Yorke relies on the properties of the 
Frobenius Perron operator which is defined as follows. Let () be piecewise C2 

and let f be any integrable function and define 

Pf(x) = dd f fdm. 
x JO-l(x) 

(1.9) 

The main properties of P are 

(i) P: L1 -+ L l is linear (where L1 is the space of integrable functions) 

(ii) p f ?:. ° if f ?:. O 

(iii) J P fdm = J fdm 

(iv) Pf = f if and only if the measure /1 defined by /1(E) = JE fdm for all 
E is invariant under (). 

The explicit form of the Frobenius Perron operator is the following 

n-l 

p f( x) = L I<p~( x )If( <Pi ( x) )X[O(a,), O(a,+l]( x) (1.10) 
i=O 

where <Pi : [()(ai), ()(ai+1)] -+ [0,1] are the inverses of () and XA(X) is the 
characteristic function of the set A. 
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As a first example consider the tent map 1.2 for M = 1. U sing the 
definition you can show that J( x) = 1. 

As asecond example, return to the check map given in (1.9). Even though 
the lat ter is not expansive, we used the Lasota-Yorke Theorem to show that 
an absolutely continuous invariant probability measure exists. What's more, 
we can actually construct it. 

To do this we obtain the inverse map O-lO of (1.9). It is 

O-l (x) = { (f>t(x) := 1 - ~x , x E \Rn 
<P2(x):=1+x , xERn 

where Rl = [0,1], ~ = (i -l,i], i = 2, ... ,n. See Figure 1.2b. The set 
e-I [0, xl given by 

{

[l - lx 1 + xl , x E \Rn 

0-
1
[0, xl = [1 - !x: nl , x E Rn 

is the interval in the shaded area ab ove x. We want to solve the functional 
equation 

J(x) = PJ(x) = dd r J(u)du 
x JO-I[O,x] 

for J(x). Expanding the right side of this expression we get 

PJ(x) = 
d~[Jl1~;xJ(u)du] ~(X,Rl U··· U Rn-d 

+d~[J~~xJ(u)du] ~(x,Rn)' 

Carrying through the differentiation and setting J(x) = PJ(x) we get 

J(x) = { [/(1+ x) + ~~J(1- ~x)l ~(x,R;) 
+~J(l - ~x) ~(x,Rn) 

(1.11) 

Supposing that JO is constant on each zone ~; and let ai := J(X)XR;(X), 
set an = a and multiply both sides of 1.12 by n. Then 
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al = na 
a2 =(n-l)a 

(1.12) 

As the a/s must add up to one, we get 1 = I:i ai = a(n + l)n/2. So 

2 
a= . 

n(n + 1) 

Consequently, 

2(n + 1 - i) . 
ai = n(n+ 1) ,~= 1, ... ,n. (1.13) 

The density function that characterizes the long run statistical behavior 
of trajectories is therefore the step function illustrated in Figure 1.3. 

- Figure 1.3 about here-

1.9 Absolutely Continuous Invariant Measures for Non­
expansive Maps 

Consider the smooth quadratic map 

TA (x) = Ax(1 - x), x E [0,1]. (1.14) 

As this map is not expansive, the Lasota-Yorke Theorem does not apply. 
However, let us consider it from the point of view of the Frobenius Perron 
operator. For A = 4 we have T4-

1(0, x) = (O,!- !Jf=X)U(!+!Jf=X, 1), 
the Frobenius Perron operator is 

Pf(x) = f(- - -Jf=X) + f(- + -Jf=X) . 1 [11 11] 
4Jf=X 2 2 2 2 

We have P(I) = 2J~-x so that the Lebesgue measure is not invariant. How­
ever, it is possible to prove that pn(l) converges to f(x) = V 1 and it is 

?I' x(1-x) 

easily seen that P(J) = f so that f is the density of the invariant measure.ll 
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For A < 4 we have 

1 [( 1 1 / A - 4X) ( 1 1 / A - 4X) l 
p f(x) = 4)1 -1

x 
f 2" - 2" A + f 2" + 2" A X[o.tl(x). 

The behavior of the system, as A varies, is extremely complicated and is not 
yet completely understood. It is known that there exists a set of the pa­
rameter values of A for which there exists an absolutely continuous invariant 
measure, and this set has the power of the continuum Misiurewicz. Recently, 
Carleson proved that this set of parameter values has positive Lebesgue mea­
sure. In the picture shown in Figure 1.4 is plotted the limit set for values of 
the parameter A between 2.8 and 4. 

- Figure 1.4 about here-

A companion to Theorem 4 for nonexpansive maps was established for a 
dass of nonconstant, piecewise functions that are strictly monotonic and C3 

on pieces and whichsatisfy certain properties that replace the expansivity 
condition. This dass indudes the quadratic map (1.15) as a special case. 

Theorem 5 (Misiurewicz, 1981). Let () be defined on an interval I := 
[a, b] and suppose there is a finite set of points A := {yi}7:J with a = yO < 
yl < ... < yk+l = b such that for each i, B(·) restricted to (yi,yi+1) is 

(i) strictly monotonicj 

(ii) three times differentiablej 

(iii) IB'(x)I-! is a convex function on each set (yi,yi+1), i = 1, ... ,kj 

(iv) any cyclic point in I is unstablej 

(v) let B', 0" and O'" have one sided derivatives at each critical point j then 
O'(yi) . O"(yi) . BIII(yi) =1= O for all i E {l, ... , k}j 

(vi) there is a neighborhood U of A such that 

,(yi) C A U (I \ U). 

(Recall that ,(yi) is the orbit through yi. This means that every iterate 
either belongs to the set of critical points or remains a finite distance from 
it.) Then the results of Theorem 4 hold. O 
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1.10 The Central Limit Theorem12 

A dynamical system that generates a chaotic trajectory is not thereby a 
stochastic process. Indeed, for any given value Xt, Xt+1 is exactly deter­
mined by (1.1), and, likewise, for any given initial condition x E X the entire 
trajectory 1'( x) is exactly determined. Nonetheiess, trajectories do have cer­
tain properties like a stochastic process. From the point of view of these 
properties, a trajectory appears to be like the realization of a stochastic pro­
cess yielding a series of independent, identically distributed random variables 
even though the values in a trajectory are not drawn at random and are not 
independent. In particular the trajectories satisfy certain standard laws of 
large numbers and a central limit theorem. 

Consider our familiar check map (1.9). If Xo E R2 we could say that 
Xl E R3 , •• . , X n -2 E Rn , Xn-l E RI but we could not say for sure where X n 

lies unless we knew in which of the sets RI n e-I(R), i = 1, ... , n the point 
Xn-l lies. As t gets large, however, we know that 

Think now of a finite sequence {Xt}~ -1 generated by (1.1) from an initial 
condition Xo = x as a "sample" of the trajectory. From the mean ergodic 
theorem (letting g(y) = y we get 

1 N-l 
x(N):= lim N I: en(x) = f uf(u)du = m 

N-oo n=O ix (1.15) 

so the "sample mean" x( N) converges to the mean of the distribution. Like­
wise, the sample variance 

converges to the variance of the distribution which is seen by setting g(y) = 
(y - m)2 and using the mean ergodie theorem to get 

(1.16) 
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In addition to these laws of large numbers, a still more remarkable prop­
ert y holds. Consider the "sample means" obtained by averaging values in 
the trajectory, then the subsequent values and so on. Denote these by 

1 (p+1)N-l 

xP(N) = N L ot(x), p=O,I,2,3, ... ,P. 
t=pN 

(1.17) 

Then we have the following central limit theorem. 

Theorem 6 (Hoffauer and Keller (1982), Ziemien (1985)). Let O sat­
isfy the assumptions of Theorem 4 or 5. Let fLi be the absolutely continuous 
invariant ergodie measure with corresponding support Li , i = 1, ... , k. Then 
for any x in ej the time averages (1.18) converge in distribution to a normal 
distribution N( mi, on as with mean mi and variance ur or, alternatively, the 
noralized averages 

(1.18) 

converge ID distribution to the standard normal N(O, 1) for some i when 
p -+ 00 and N -+ 00. O 

1.11 Escape: Conditionai Invariance 

Suppose we have a transformation defined on an interval and we eut a hole 
in the interval. If the point falls into the hole, we say it eseapes. Suppose 
a point is started somewhere in the interval. If an iterate of the point falls 
into the hole, we don't eonsider it any more. If we know that at the time n 
it has not yet fallen in the hole, what can be said of its distribution? Does it 
tend to a limit distribution as n goes to infinit y? And if it does, whieh are 
its properties? This problem is studied extensively in Pianigiani and Yorke 
(1979). There is introdueed the notion of eonditionally invariant measure.13 

Let O : X -+ R; we say that fL is conditionally invariant with respect to 
O if there exists a constant a,1 > a > ° sueh that fL(O-lS) = afL(S) for all 
measurable S. Of course, if a = 1 the measure fL is invariant. 

Consider the family of piecewise monotonic maps defined in Theorem 
5 and assume the following addition al condition. Let U = X \ A when 
A - {O 1 k+l} - y,y , ... ,y 
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(i) 8(U) ::>::> U. This means that 8 maps at least some points in U outside 
of U. 

(ii) 8(yi) fl. U so the point s in A map outside U. 

(iii) 8(y) is expansive. 

(iv) 8 is transitive on components. That is, for all Ui = (yi, yi+1
) and for 

all Uj there exists an integer n which depends on (i, j) such that 

that is, there exist trajectories that visit every set so the system is inde­
composable. Piecewise monotonic maps that satisfy (i)-(iv) will be called 
strongly expansive. 

Theorern 7 (Pianigiani and Yorke (1979). Let 8 be a piecewise C2 

transformation as defined in Theorem 5. H 8 is strongly expansive, then 
there exists an absolutely continuous measure conditionally invariant with 
respect to the Lebesgue measure. D 

Define the kickout time function no by 

no(x) = max{n: ei(x) E (0,1) i = 1, ... n}. 

It is easily seen that if fL is the conditionally invariant measure, then 

which means that the system decays in an exponential way. 
Return to the tent map of equation 1.2, and let M > 1. Then TM is no 

longer into nor onto. Indeed, TM(x) > 1 for all x E E:= [2Å1' 1 - 2Å1]' The 
00 

set f = ~T;/(E) is the set of all points in [0,1] that eventually enter E and 
i=O escape. 

This map is strongly expansive so by the theorem the probabilities of 
escape in periods k = 1, ... are just 
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Consider the Lebesgue measure m(.). It is easily seen that E = [2~' 1- 2~] 

so m(E) = 1 - k. Moreover, T-l(E) = [(21-)2, 21- - (21-)2]. As the 

right inverse is symmetric, m(T-1(E)) = k(1- k) = iIm(E) so m(.) is 
conditionally invariant for TM with a = iI. Thus, the chance for escape 
af ter k = 0,1, ... , periods given an initial condition drawn at random are 
the values 1 - k, k(1- k), (k )2(1 - k),··· (k )k(1 - k) which sum to 
uni ty. Therefore, f.L( &) = 1 and escape occurs almost surely. 

1.12 Multiple-Phase Dynamics 

It is of ten the case in economics, as in other fields, that quite different forces 
or relationships govern behavior in differing situations of state. Or it can 
be that behavior in one situation is so different from that in another that 
we want to distinguish it. Multiple-phase dynamical systems and switching 
regimes formalize these ideas. 

Consider a single-valued mapping Bp: x -Jo Bp(x), p E 'P = {O, ... ,n} 
calle d a phase structure. Each map Bp(') is defined on a set DP C R calle d 
the pth phase domain. A regime is a pair R p := (Bp, DP). The dynamics 
within any phase domain is given by the phase equation 

Xt+l = Bp(xt), Xt E D'P 

where it is assumed that DP n Dq = 0 all p =1= q E 'P. 
Defining the map 

B(x) := Bp(x), x E DP 

(1.19) 

(1.20) 

with domain D := UpDP we have the usual dynamical system (B, D) with 
dynamics 

Let Xs(x) be the indicator function. Then another way to write (1.20) is 
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Xt+1 = O(Xt) = L XDp(X)ep(Xt). (1.21) 
pEP 

The collection {( Op, DP), p E P} we shall caU a multiple phase or multiple 
regime dynamical system. The null domain DO means that for all x E DO 
the system is inviable and no consistent structure capable of perpetuating 
behavior exists. The null phase structure is the identity map Oo( x). The 
check map again provides an example. Let Dl = (0,1], D2 = (1,00) and 
DO = \(D' U D2). Then (1.22) gives a three regime system including the null 
reglme. 

A trajectory of a system can be characterized by the sequence of regimes 
through which it passes. Define the regime index of a given state by I(x) := 

pXDp(X). The sequence 

I(Ot(x),t = 0,1,2,3, ... (1.22) 

gives the dynamics of the system as a sequence of regimes. A given trajectory 
can now be decomposed into a denumerable sequence of epochs, each one of 
which represents a sojourn within a given regime. Let 

0= SI(X) ~ t < S2(X) 
S2(X) ~ t < S3(X) 
S3(X) ~ t < S4(X) 

The quadruple 

I ( ot ( x ) ) - PIl 
I(Ot(x)) - P2, 
I(Ot(x)) - P3, (1.23) 

(1.24) 

is i th epoch; the state Os, (x) is called the kickin state; the period Si (x) is called 
the ith kickin time; the period Si+l (x) is the kickout time of epoch i (and the 
kickin time of epoch i+ 1); the duration ofthe ith epoch is Si+1(X )-Si(X). The 
sequence of epochs (1.25) associated with a given trajectory or equivalently 
(1.26) is an epochal evolution. 

Suppose in (1.24) the sequence is finite. Then Sn+1 (x) = 00 and the tra­
jectory is trapp ed in the phase domain DPn. The associated epochal evolution 
converges to phase DPn. This does not mean that the trajectory converges 
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to a stationary, steady or periodic state, however, but only that the phase 
structure governing change converges. If PI < P2 < P3 < '" the epochs 
form a progression. If Pi+k = Pi, i = 1, 2, 3, ... the evolution is phase cyclic. 
If the sequence (1.23) is not finite and nonperiodic, then we will call it a 
nonperiodic (chaotic) evolution. 

Note that a periodic sequence of regimes (phase cyclicity) does not imply 
that trajectories are periodic. For example, (1.9) gives a 2 cyclic phase cycle 
with the probability of phase one being 2/ (n + 1) and that of phase two being 
(n - 1)/(n + 1). Almost all trajectories are chaotic. 

2 Competitive Markets 

2.1 Tatonnement 

To see how the concepts of statistical dynamics arise naturally in the study 
of economic processes, consider the dassical concept of a competitive market 
in which firms and households supply and demand commodities in response 
to prices according to their individual best interests. If supply and demand 
is out of balance, competition forces price adjustments until a balance is 
established and markets clear. A century later Walras described this process 
as market groping or tatonnement, a process in which an "auctioneer" adjusts 
prices in proportion to excess demand. Samuelson gave the model a specific 
mathematical form and provided a formal stability analysis. Most of the 
important mathematical economists at mid 20th Century confributed to this 
theory but none seems to have guessed that tatonnement could generate 
chaotic price sequences, a possibility that is now well understood.15 

Let S(p), D(p) be supply and demand functions for a given commodity 
with price p. Excess demand is e(p) = D(p) - S(p). Tatonnement is then 
represented by the difference equation 

(2.1) 

where). is a positive constant. 
A competitive equilibrium occurs at a stationary state p such that e(p) = 

O. It is asymptotically stable if 
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- 2/ A < D'(p) - S'(p) < O. (2.2) 

For any demand and supply function such that D'(p) < S'(p). This will be 
true if A is small enough but untrue if A is big enough. 

2.2 Walras' Graph 

Walras did not actually carry the analysis of tatonnement very far. Re did, 
however, illustrate supply and demand functions as shown in Figure 2.1a. 
The corresponding excess demand function (obtained graphically) is shown 
in Figure 2.1b. The graphical analog of equation (2.1) for A = 1 is shown in 
Figure 2.1c. Evidently, the Li-Yorke inequality (1.6) is satisfied so Theorem 
2 holds: price cycles of all orders are present and an uncountable, scrambled 
set of chaotic trajectories exists. Moreover , according to Theorem 1 the 
scrambled set has positive measure for some continuous (nonatomic) measure. 
No doubt Walras would be surprised at this finding. 

- Figure 2.1 ab out here -

2.3 A Mathematical Analog 

A formula that gives a downward bending supply function like Walras' is 

S( ) = { O , O < P < pi 
P B(p - p')e-OP ,p' 2: p. (2.3) 

(Note that a downward bending Walrasian supply function is equivalent 
to a Marshallian backward bending supply function.) A demand function 
like Walras' is 

{
...:L- b 

D(p) = Ö+P 

where po := A/b - a. See Figure 2.2. 

, O < P ~ po 
, po <p 

- Figure 2.2 about here -
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To illustrate the possibilities, some numerical experiments have been con­
ducted. Parametered A, a, b, B, p' and 8 have been chosen and trajectories 
computed for various values of ). which represents an increase in the mag­
nitude of price adjustment. The resulting bifurcation diagram is shown in 
Figure 2.3. You can see that it is similar to that for the quadratic map shown 
above in Figure 1.4. 

For ). less than about .43, prices converge asymptotically to a competi­
tive equilibrium. Above this value asymptotically stable two period cycles 
emerge (the competitive equilibrium is now unstable). Above about .52 these 
become unstable and asymptotically stable four period cycles emerge. As ). 
is increased farther , the familiar picture appears with ranges of apparently 
chaotic or very high period cycles interspersed with stable periodic cycles. 
Note the range where the asymptotically stable three period cycle occurs near 
.77. Here is an example of parameter values for which a scrambled set and 
a continuous measure exist according to Theorems 1 and 2. The attractor is 
just the three cyclic points so the measure is not an absolutely continuous 
one. 

- Figure 2.3 about here -

Fixing ). = .4 (where the process is convergent for the given parameter 
values) asecond bifurcation diagram was computed by varying A, which has 
the effect of shifting demand outward as A increases. See Figure 2.2. When 
A is small enough there is a single, asymptotically stable stationary state 
which occurs at a point where supply is rising. When A is increased enough, 
three equilibria appear; at least two occur where supply is decreasing. As A 
increases still more, the equilibrium is again unique. The intricate pattern 
indicates how striking changes in the qualitative behavior of prices can come 
about from very small changes in demand. The bifurcation diagram of Figure 
2.4 shows how the orbits shift in the range 5 < A ~ 12. 

- Figure 2.4 ab out here -

Could the long run attractor be the support of an absolutely continuous 
invariant measure for some parameter values? An affirmative answer is sug­
gested by the histograms for two values of A given in Figure 2.5. But, of 
course, this is just a conjecture based on the numerical experiments. The 
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map given by (2.1) is continuous and smooth almost everywhere. If the 
other conditions of Theorem 5 hold for a "large" number of parameters (and 
it seems quite possible that they do), then this conjecture will be true for all 
those parameter values. 

- Figure 2.5 about here-

2.4 Pure Exchange 

The results obtained for the Walrasian type of market does not depend on 
the downward sloping supply curvej they also arise for upward sloping supply 
functions. Consider the simplest example of a pure exchange economy, one 
with two individuals (or two types of individuals), Mr. Alpha, say, and Ms. 
Beta. There are two goods to be chosen in amounts x and y, respectively. 
Suppose the utility functions of the two individuals are the same, 

u(x,y) = AX"Yy1
-"Y (2.5) 

where, = a for Mr. Alpha and, = j3 for Ms. Beta. Let p, q be the prices 
of the two goods. Suppose Mr. Alpha's endowment is (x, O) and Ms. Beta's 
is (O, y). The income constraint for the former is 

while that for the lat ter is 

px + qy ~ px 

+ <­px qy = qy. 

(2.6) 

(2.7) 

Carrying out the required calculations (i.e., maximizing (2.4) subject to 
(2.5) or (2.6) with corresponding values for ,), one finds that Mr. Alpha 
consumes ax and supplies (1 - a)x of x while demanding (1 - a)pxjq of 
good y. Ms. Beta consumes (1- j3)y and supplies j3y of good y and demands 
j3qy j p of good x. 

Let good y be the numeraire so that q = 1. Then the excess demand for 
x IS 

e(p) = j3y - (1 - a)x. 
p 
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That for y is its mirror image. The tatonnement process is obtained by 
substituting Pt for p in (2.8) and using (2.1). 

It is easy to see that O(p) -+ 00 as p -+ O and that O(p) -+ p - .\(1 - a)x 
as p -+ 00. A unique competitive equilibrium therefore exists, which is 

_ f3 Y 
p=-_.-. 

l-a x 
The first derivative of 0(.) is 

O'(p) = 1 - .\f3y . ~, 
p 

(2.9) 

(2.10) 

which changes from -00 to + 1 as p increases from zero, so 0(.) has a fishhook 
form. Substituting (2.9) into (2.10) we find that tatonnement is unstable if 

(2.11) 

This happens for .\ or x large enough or for f3 or Y small enough. Then locally 
expanding cycles must occur near jj. 

It is possible that price becomes zero (if excess supply is great enough for 
some p> jj). Since 0(0) = 00, the model would be globally unstable. Let p* 
minimize p + .\e(p). At such a value 1 + .\e'(p*) = O. Af ter a little calculation 
we find that p* = (.\f3y)1/2. The condition for global st ab ili t y is therefore 
p* + .\e(p*) > O. Substituting for p*, rearranging terms and combining with 
(2.11) we find that for any combination of parameters such that 

(1- a)2x2 

2 < .\ f3y . < 4 (2.12) 

tatonnement is globally stable but that fluctuations are perpetuated almost 
surely. Call the expression in the middle, K. When K is less than 2, com­
petitive equilibrium is asymptotically stable. When K is elose to 4, O(p*) 
becomes arbitrarily large. The right inverse O;l(p*) is bounded so Theorems 
1 and 2 are satisfied robust ly, that is, for a continuum of parameter values a 
scrambled set exists with continuous measure. See Figure 2.6. 

- Figure 2.6 about here -
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Now consider the Schwartzian condition I B'(p) l-L It is routine to show 
that it is piecewise convex and has the appearance shown in Figure 2.7. N u­
merical calculations suggest (but don 't prove) that the remaining conditions 
of Theorem 5 for smooth functions are satisfied for a large number of pa­
rameter values. The results are roughly similar to those obtained in §2.4. 
It would appear to be a reasonable conjecture that absolutely continuous 
invariant measures exist for a large set of parameter values for this model. 

- Figure 2.7 about here -

2.5 Piecewise Linear Tatonnement 

We have seen that for special classes of expansive, piecewise linear maps 
(ones for which the critical points are cyclic (as in the check map (1.9)), 
the densities that characterize the absolutely continuous invariant measures 
can be constructed. Such special cases give more regular densities than is 
typical (i. e., when the critical points are noncyclic), but they yield concrete 
examples of what we are trying to show. In this section we shall see how this 
can be done for tatonnement. 

Consider the piecewise linear demand function and constant supply func­
tion as follows: 

D(p) = { ~ - b(p - p') 
, P E (O,p'] 
, P E (P', pli) 
, P E (pli, 00] 

S(p) = S, p ~ O. 

(2.13) 

(2.14) 

These may be thought of as approximations to more general nonlinear func­
tions as illustrated in Figure 2.8. 

- Figure 2.8 about here -

To simplify what are at best rather tedious calculations, let ;\ = ~, fl = 
2( n + 1) = b, S = 2, pli - p' = 1. Then 

{ 

2n 
e(p) = 2n - 2(n + l)(p - p') 

-2 
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and 

{ 

p+n , p E [O,p') 
O(p) = n + p' - n(p - p') ,p E [P',p") 

p-I , P E [Pli, 00). 

See Figure 2.9. There is obviously a trapping set within which all trajectories 
are eventually confined. Let x = p - p', on [P',p") and p elsewhere. Then we 
get the equivalent tatonnement process 

</>( x) = { n(1 - x) ,p E [0,1) 
x-I , p E [1, n] 

which is just equation (1.9) for the check map. 

- Figure 2.9 about here -

The stationary state is x = n~l. The expected value is 

E(x) = jXf(x)dx = tji x2(n + 1- i) dx = 2n + 1 
i=l i-l n(n + 1) 6 

where we have made use of the formulae 

ti=n(n+l) and ti2 =n(n+l)(2n+l). (2.15) 
i=l 2 i=l 6 

Note that E(x) > x all n ~ 2. Of course, e(x) = O but e(E(x)) < O which 
is seen by noting that 

e(x)={2n-2(n+l)X ,xE[O,I) 
-2 , x E [1, n] 

so 

«E(x)) = {=!: ~ ~ ~. 
Nonetheiess, using the density (1.14) and (2.15) we find that 

E[e(p)] = fon e(p)f(p)dp = fo1 [2n - 2(n + l)x]n - ~ 21~1 Ctidx = O. 
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On this ground we can think of the density J(-) as a kind of statistical 
price equilibrium. Unfortunately, there is a fundamental difficulty with this 
interpretation. If prices don't converge, then all the transactions implied 
by demand and supply can't take place. There must be a short side to the 
market. This is of ten gotten around by simply assuming away the possibility 
that demand is not equal to supply or by assuming that >. is small enough to 
guarantee rapid convergence so nonzero excess demand can be ignored. The 
first approach rules out any attempt to underst and how markets resp ond to 
disequilibria. The second fails to recognize that for any >. there exist supply 
and demand functions that can cause chaos, so rapid convergence can't be 
taken for granted. 

These difficulties in the theory of competitive markets stand af ter two 
centuries and remain to be given an adequate mathematical treatment. To 
pursue it here would carry us beyond the scope of the present introductory 
lectures, but the methods illustrated here will surely be found useful in that 
undertaking. 

3 Irregular Business Cycles15 

3.1 The Basic Model 

From the dynamics of individual markets with competitive price adjustments 
we tum to the dynamics of the aggregate economy with quantity adjustments 
and sticky prices. We consider the Keynesian real/monetary macro theory 
in essentially the form given it by Metzler, Modigliani, and Samuelson in 
the 1940's, except that here we retain the full nonlinearity of the model and 
study its global behavior. 

The model consists of monetary and real sectors. The monetary sector is 
represented by the demand for money, Dm(r, Y), where r is the interest rate 
and Y is real national incomej the supply of money, sm(r, Yj M), where M 
is a money supply parameterj and a market clearing equation, Dm(r, Y) = 
sm(r, Yj M). The latter implicitly defines the LM curve, r = L(Yj M), 
which gives the market-clearing, temporary equilibrium interest rate. 

The real sector is represented by an induced consumption function C = 
C(r, Y), and an induced investment function, I = I(r, Y). the sum of au-
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tonomous investment, govemment and consumption expenditure is the pa­
rameter "A." Substituting the LM function for interest in the consumption 
and investment functions, we obtain respectively the consumption-income 
(CY) function, G(Y; M) := C(L(Y; M), Y), and the investment-income 
(lY) function, H(Y; M) := l(L(Y; M); Y). Assuming that current con sump­
tion and investment demand depend on lagged ineome, we get the difference 
equation 

Yt+1 = O(Yt; JL, M, A) := G(yt; M) + JLH(yt; M) + A, (3.1) 

where JL > O is a parameter measuring the "strength" or "intensity" of 
induced investment. The model is relevant in the "Keynesian Regime," i.e., 
for yt E [O, yF] where yF is the highest level of ineome compatible with 
available capacity Y f, the supply of labor and the supply of money. 

Under standard assumptions the CY curve is eontinuous, monotonically 
increasing function with G(O) = O and the lY curve is a more-or-Iess bell 
shaped curve whieh eventually falls as increasing trans actions erowd the 
money market and interest rates rise whieh in tum reduees investment de­
mand. Consequently, aggregat e demand O(Y) has the cocked-hat or tilted-z 
profile shown in Figure 3.1a. Note that the nonlinearity beeomes more pro­
nouneed when indueed investment is important, i.e., when JL is "large." 

- Figure 3.1 about here -

Let fr be the largest stationary state. (There can be one, two or three 
of them). If O'(Y) < -1 it is unstable and fluctuations are perpetuated. 
Notice that there is a minimum ymin and a loeal maximum ymax sueh that 
y min < fr < ymax. Let V := [ymin, ymax]. Within this trapping set inereases 
in the aggregate demand for goods, accompanied by rising labor and money 
demand is followed by a decline in aggregate demand for goods, labor and 
money and so on, so fluctuations are perpetuated. Three distinet cases can be 
identified whieh depend on the relation of the maximum "overshoot" O(ymin) 
and o(ymax) to the boundary values ymin and ymax of V. These three cases 
are shown in Figure 3.1 b, c and d. 
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3.2 A Piecewise Smooth Example 

Suppose, for example, that the demand for money Dm(r, Y) := >"/(r, r')+kY 
so that the LM curve is r = r' + >"/(M - kY). Suppose also that investment 
demand is 

{
O O :5.. Y ~ y' 

I(r, Y):= b[(Y _ Y')/((Yf)](3(p/r)-r, Y ~ Y', (3.2) 

where b, (, p, f3 and I are parameters and where Y F is full capacity and y' 
a threshold above which the Kaldorian multiplier effect of increasing income 
on investment is positive. Let induced consumption demand be aY. Then 
the model (3.1) becomes a two phase dynamical system with 

( {
A + aYt, O :5.. Y < y' 

Yt+1 = B Y):= A + aYt + p,B(Yt - Y')~[r' + >"/(M - kYt)]--r, y' < y < M/k, 
(3.3) 

where B = bp'Y((yF t(3 is a constant. 

- Figure 3.2 about here -

In the first regime the monetary sector has no influencej in the second, 
the two sectors interact. Divide the interval [Y',M/k] into two sub inter­
vals [Y', Y**), [Y**,M/k] where B(Y**) is the maximum GNP obtained on 
[Y', M/k]. In the first, money is in relative abundancej in the second, it is in 
relatively short supply and the crowding out of investment occurs as interest 
rates rise.If f3 and I are both larger than unity then this function exhibits 
the piecewise smooth, "cocked-hat" shape shown by the solid lines in Figure 
3.la. 

N umerical experiments suggest that Theorem 5 is true for a large set 
of parameter values. In Figure 3.2a the graph of (3.3) in the trapping set 
is shown for several values of p,. Each graph has been normalized on the 
interval [0,1]. In Figure 3.2b the Schwartzian derivative condition is shown 
for one of these cases. Clearly, it is piecewise convex as required. Detailed 
numerical computations shown in Figure 3.3 produce a complex bifurcation 
picture for continuous changes in p,. An example of a computed histogram 
and measure are shown together with the distribution of sample means in 
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Figure 3.3. This evidence clearly supports the conjecture that the frequency 
distribution of model generated data converges to an absolutely continuous, 
invariant measure for a large set of parameter values and that sample means 
converge to a normal distribution. Theorems 6 and 7 would appear to hold 
on the basis of this evidence. 

- Figures 3.3 and 3.4 about here-

3.3 A Piecewise Linear Example 

Stronger analytical results can be obtained for the piecewise linear version of 
the model. First is the demand for money, Dm(r, Y) = LO - Ar + kY, where 
LO is a constant, and A and k parameters. Given M, the supply of money, 
the LM curve can be written 

{
O O ~Y ~ Y** 

r = Lm(y; M) := (k/A)(Y _ Y**), Y** < Y < M/k, (3.4) 

where Y** = (M, LO)/k. Assume induced consumption is aY where a is the 
marginal propensity to consume and let investment demand be I(r, Y) := 

max{O, (3(Y - Y') -jr}, where y' is a threshold above which the direct effect 
of income on investment is positive. With these assumptions the adjustment 
equation for GNP is 

Y,+l = 9(Y) := ! A+aY;, 
B + bY;, 
C - cY;, 
A+aY;, 

o ~ Y; ~ y' 
y' ~ Y; < Y** 
Y** ~ Y; ~ y* 
Y* ~ y. .$. yl - t - , 

(3.5) 

where A is autonomous consumption and investment expenditure, b = a + 
1-'(3, c = I-'u - a, u = jk/ A - (3, B = A - I-'(3Y', C = A + l-'uY*, and 
Y* = [(;k/j)Y** - (3Y']/u, y** = (M - LO)/k. If c > O then Y** locally 
maximizes GNP and y* locally minimizes GNP. We therefore get the tilted­
Z profile for aggregate demand that is of interest, and all of the cases shown 
by the dashed lines in Figure 3.1 can occur. 

Now there are four distinct regimes. In the first and fourth regimes there 
is no interaction between monetary and real sectors. In the second there is 
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an abundance of money and investment is stimulated by a rise in GNP. In 
the third investment is crowded out as the interest rate rises with increasing 
GNP. 

If O' > ° then for all /-L > (1 + a) lO' the parameter e = /-LO' - a > 1. Hence, if 
there is a stationary state in the third, interest sensitive regime it is unstable 
and bounded oscillations are perpetuated. In this locally unstable situation 
the trapping sets are non-degenerate so any given map will be equivalent to 
one of the following maps on the unit interval: 

Case I. ymin < Y** < Y* < ymax, y = (Y _ ymin)/(ymax _ ymin), 

{

l - by** + by, 
T(y) := 1 + ey** - ey, 

-ay** + av, 

where we not e that y** - y* = 1/(e). 

Y E [0, y**] 
Y E [y**, y*] 
Y E [y*, 1], 

(3.6) 

Case II. ymin < y** < ymax < y* , y = [Y - B(ymax)]j[Ymax -
B(ymax)], 

T( ):={ l+by**+by, yE[O,y**=l-l/e] 
y 1 + cy** - cy, Y E [y**, 1]. 

(3.7) 

Case III. y** < ymin < y* < ymax, y = [Y _ ymin]f[B(ymin) _ ymin], 

T( ):= { cy* - ey, y E [O,y* = lie] 
y -ay* + av, y E [y*, 1]. 

(3.8) 

Theorem 5 can be used to show that almost all trajectories are chaotic for 
a very large set of parameter values and representable in the long run of 
absolutely continuous invariant ergodic measures. This means that GNP 
evolves erratically through regimes where the interest rate is important and 
where it is not. 

N ote that y* and y** are the transformed turning points y* and Y** 
respectively. By setting 1 - y = x and substituting we find that Cases II and 
III are equivalent. Case II is a map with two piecewise segments and a single 
turning point. Using Theorems 5 and 7, the following has been obtained. 

Proposition (Day and Shafer, 1986) Let T be a Type II canonical 
map and let k ~ 1 be the minimum integer sum that T k -l(O) < y** and 

34 



Tk(O) of: y**. If bkc < 1 tbere exists a unique stable orbit of least period 
k + 1. Its support attracts almost every x E I. If bkc > 1 tbere exists a 
unique absolutely continuous invariant ergo die measure Il for T wbicb at­
tracts almost every x E I, i.e., supp Il is an attractor. Furtbermore, tbe laws 
of large numbers and tbe central limit Tbeorem 7 of Section 1.10 bold. O 

On the basis of this theorem a complete characterization of the model can 
be obtained for Case II. This characterization is shown in Figure 3.5. The 
shaded regions give the parameter values (in terms of b and c of (3.7)) for 
which almost all trajectories converge to stationaryor cyclic orbits. Note that 
this includes set S3, Ss, ... where odd cycles occur. Hence, chaos exists there 
with positive continuous measure (Theorem 1 and 2). However, the measure 
is not absolutely continuous. "Most" trajectories converge to cycles. The 
unshaded region gives the parameter combinations for which ergodic behavior 
representable by absolutely continuous invariant measures does exist. Here 
almost all trajectories are chaotic. 

Elsewhere the dependence of the distribution al properties of trajectories 
on policy instruments (tax rates, money supply, government expenditure) 
have been conducted. There it is shown that the statistical behavior of GNP 
over time can change drastically with changes in the policy instruments.I6 

Note that the check map of equation (1.9) can be used here. For very 
special combinations of the parameters b and c (and hence of a, {3, A, 'Y, k, Il) 
the long run statistical behavior of trajectories will appear as a step function 
like that shown in Figure 1.3. 

- Figure 3.5 about here-

4 Economic Growth in the Very Long Run17 

4.1 A Multiple Phase Model 

As a third area of application of the concepts of statistical dynamics, con­
sider economic growth in the very long run. On the basis of the evidence 
accumulated by historians, archaeologists and anthropologists the process is 
a complicated one involving distinct epochs with characteristics of produc­
tion, exchange and socio-political organization so different as to set off the 
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dynamics of one epoch from that of another, both in terms of structure and 
qualitative behavior. There are stages or phases of growth. Growth may not 
occur uniformly within a given stage; it may ebb and flow. The stages may 
be traversed in varying orders and with switching or skipping among them. 
Still, in the very long run a rough progression appears from relatively simple 
regimes with small numbers of people to successively more complex regimes 
with large numbers of people. 

To formalize all this in the simplest possible terms, measure the size of an 
economie uni t (band, tribe, nation, civilization) by the number of families, 
x. Each household supplies one adult equivalent of effort to society, either as 
part of the work force or as part of the managerial force; one adult equivalent 
of effort is utilized in household production, childrearing and leisure. If the 
size of a "production unit" is G, then G = M + L where M is the number 
of adult equivalents in the manageriai force and L the number in the work 
force. 

Planning, coordination and controi of economic activity becomes increas­
ingly difficult as population grows within a unit. Let the maximum number 
compatible with an effective socioeconomic order be denoted by N. The term 
N - G = S represents the social "space" or "slack." If S is large the uni t 
may increase in size without depressing productivity very much. When S is 
small, increases in size begins to lower productivity. - at first marginally, 
then absolutely. When S ~ 0, the group cannot function. 

Suppose now that the productive activity within a group can be rep re­
sent ed by a group production function continuous in the arguments L and 
S. Thus, Y = h(L, S). Substituting S = N - G and L = G - M we get 

y = h( G - M, N - G) = g( G). ( 4.1) 

In Figure 4.1a the standard power production function is illustrated. In Fig­
ure 4.1b the infrastructural management, M, has been added which has the 
effect of shifting the function to the right. In Figure 4.1c the externaiity term 
N - G has been incorporated with the result that the production function 
in terms of labor is single-peaked. 

- Figure 4.1 about here -

Allowing for the splitting of units, the total population is organized into 

36 



\ , 
\ , 

-~ .. --------'-. er, " 

~ 

F,e.tAJL.e .. If".': lit" 
~*"'C1lNU FtANCTlO~ 



nk = 2k group s of average size G = x /2k in such a way as to achieve a 
maximum output 

y = f(x):= nkg(x/nk) = max{ng(x/n)} 
n 

(4.2) 

gives the output Y of a population x that possesses a given techno-infrastructure. 
The external diseconomy that becomes increasing important when the 

absorbing capacity of the environment is increasingly stressed is expressed 
by a function 

{

=1 ,x=O 
p(x, fE) E (0,1) ,O -: x _< fE 

= O , x = x. 
(4.3) 

The social production function is then de:fined to be 

F(x) = f(x )p(x, fE). (4.4) 

It is illustrated in Figure 4.2. Whether or not it is smooth as in Figure 4.2a, 
or kinked as in Figure 4.2b, or nonoverlapping as in Figure 4.2c, depends on 
the size of M. 

- Figure 4.2 about here -

The family function that determines the average number of surviving 
children per family is assumed to depend on the average level of well being 
in the population as a whole, y = Y/x. We denote it 

b(y) = min{A, h(y)} (4.5) 

where 

h(y) { = O, O ~ Y 2: TJ 
> O, Y = TJ· 

(4.6) 

The parameter TJ is called the birth threshold. The function is assumed to 
have the classical shape shown in Figure 4.3. 

- Figure 4.3 about here -
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Now begin with an initial population Xo. Putting this into (4.1) we get 
the number of group s and into (4.4) the total output taking account of both 
the internal and external diseconomies of population size. This gives average 
welfare y which using (4.6) yields the next generation of families Xl and so 
on. This process is carried out generation af ter generation. It is described 
by the difference equation 

(4.7) 

Now suppose there are several quite different techno-infrastructures avail­
able which we may denote by a set ofindexes 7:= {1,2,3, ... ,j, ... }. The 
various components and parameters are then indexed accordingly so that a 
given system can be indicated by 

sj:= {gj(.),Mi,Ni,Xi(·)' Xi, hi(·),TJi, >J}j E 7. (4.8) 

Suppose as before that society is organized so as to maximize output for 
any given population (again, to simplify the analysis). Then 

(4.9) 

The index pair I (x) = (i, k) gives the efficient techno-infrastructure i and 
the efficient number of economic units n = 2k for each population x. Using 
the birth function (4.5) indexed to indicate the system to which it applies, 
we get a difference equation for each regime 

( 4.10) 

Let Xi,k be the set of populations for which the efficient infrastructure and 
number of units is the pair (i, k). Then 

I(x) = (i, k) for all (4.11) 

In this way we arrive at the multiple regime difference equation 

(4.12) 

When population becomes too large for a given techno-infrastructure, it 
can di vide or split to form additional more-or-less independent economic 
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units, each with a similar techno-infrastructure, or it can switch to a new 
regime. The results are alternatively 

(i) the switch to a new regime allows for renewed growth and permits a 
further expansion of population; 

(ii) a sudden decline in well being and population and a resumption of 
growth wi thin the regimej 

(iii) a disintegration to alarger number of smaller societies whose infras­
tructure requirements are smaller. 

- Figure 4.4 about here -

4.2 Possible Dynamics 

The map 0(·) defined in (4.12) has, under reasonable economie conditions, 
a continuous, piecewise strictly monotonic profile of the kind involved in 
Theorems 4 and 5. See Figure 4.4. If the conditions of one or the other 
of these theorems were satisfied, then the epochal evolution would have to 
consist of a subset of regimes repeated endlessly in a periodie or nonperiodic 
order or eventually become trapped in a given regime. The trajectories of 
the variables (GWP, per capita income, population) would show an erratic 
pattern when viewed in the very long run, although over a few generations 
or centuries, an orderly growth or Kondratiev type cycle might appear. 

If the number of regimes is unbounded, then a continuing progress could 
occur with (perhaps vast) intervals of time when collapses, growth and reswitch­
ing took place. 

To see how these sorts of possibilities can come about, various numerical 
experiments have been carried out, two of which are shown in Figures 4.5 
and 4.6. In the first a progression occurSj in the second a collapse with ph ase 
reswitching. 

- Figure 4.5 and 4.6 about here -

Evolution in the sense of eventually increasing regime index and system 
size, can occur only if there exist regime sequences, each member of which can 
be escaped. It can occur with positive probability only if each such regime 
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has a positive probability of escape. It can occur with probability one only 
if each such regime has a conditional probability of escape of one. 

How these possibilities can arise for various underlying parameters of 
technology and behavior involves the application of Theorem 8 to regions 
where the production functions of neighboring regimes overlap. The analysis 
is intricate and the interested reader is referred to the detailed exposition in 
Day and Walter's paper referred to in Note 13. 
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Notes 

*These notes are based on lectures given at the Workshop on Dynamical 
Sciences held first at the University of Southern California in May 1988 and 
in the succeeding year in Stockholm at the lndustrial Institute for Economic 
and Social Research (IUI), May 1989. 

1. For representative collections see Galeotti, Geronazzo and Gori (1978), 
Medio (1986), Grandmont (1987), and for useful reviews, see Baumol and 
Benhabib (1989) and Boldrin (1988). 

2. On the origin of statistical mechanics, see Gibbs (1901). On the 
mathematical theory, see Dunford and Schwartz, pp. 726-730. 

3. See below §1.4-1.6. 
4. See Benhabib and Day (1982), Day and Shafer (1987), Grandmont 

(1985). 
5. In addition to the references cited in the text, the reader who wants 

to explore the background and details of the topics covered should consider 
Lasota and Mackey (1985) and, for a more advanced treatment, Dunford and 
Schwartz (1988), Part I, Chapter VIII. A good text on measure theory is also 
useful such as Halmos (1950). 

6. See Dunford and Schwartz, pp. 661-684. This combines Theorem 9, 
p.667, with the Corollary 10 on p. 668. See also, Lasota and Mackey, pp. 
57-59. 

7. Related but weaker constructive conditions are described in Li, Misi­
urewicz, Pianigiani and Yorke (1982). 

8. See Senole and Williams (1976). 
9. For a discussion of this question in an economie context see Benhabib 

and Day (1982) and Melese and Transue (1986). 
10. For a discussion of this, see Day and Shafer (1987). 
11. See Pianigiani (1979). 
12. As a useful background on laws of large numbers and central limit 

theorems, see Rao (1973, Chapter 2). For a discussion see Day and Shafer 
(ibid). 

13. See also Pianigiani (1981). 
14. See Saari and Simon (1978), Saari (1985), Montrucchio (1984) and 

Bala and Majumdar (1990). 
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15. This seetion surnmarizes results in Day and Shafer (1985, 1986) from 
whieh the diagrams are taken, and Day and Lin (fortheoming) . 

16. See Day (1989). 
17. This section draws on the work of Day and Walter (1988). 
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