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Abstract—We analyze a model of R&D alliance networks where firms are
engaged in R&D collaborations that lower their production costs while
competing on the product market. We provide a complete characterization
of the Nash equilibrium and determine the optimal R&D subsidy program
that maximizes total welfare. We then structurally estimate this model using
a unique panel of R&D collaborations and annual company reports. We
use our estimates to study the impact of targeted versus nondiscriminatory
R&D subsidy policies and empirically rank firms according to the welfare-
maximizing subsidies they should receive.

I. Introduction

R&D collaborations have become a widespread phe-
nomenon, especially in industries with a rapid techno-

logical development such as the pharmaceutical, chemical,
and computer industries (Hagedoorn, 2002). Through such
collaborations, firms generate R&D spillovers not only to
their direct collaboration partners but also indirectly to other
firms that are connected to them within a complex network of
R&D collaborations. At the same time, an increasing num-
ber of countries have resorted to various financial policies to
stimulate R&D investments by private firms (cf. Czarnitzki,
Ebersberger, & Fier, 2007). In particular, OECD countries
spend more than 50 billion per year on such R&D poli-
cies (Takalo, Tanayama, & Toivanen, 2017), including direct
R&D subsidies and R&D tax credits. The aim of this paper is
to develop and structurally estimate an R&D network model
and to empirically evaluate different R&D subsidy policies
that take spillovers in R&D networks into account.

In particular, we consider a general model of competition
à la Cournot where firms choose both their R&D expendi-
tures and output levels. Firms can reduce their costs of pro-
duction by exerting R&D efforts. We characterize the Nash
equilibrium of this game for any type of R&D collaboration
network as well as for any type of competition structure be-
tween firms (proposition 1). We show that there exists a key
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trade-off faced by firms between the technology (or knowl-
edge) spillover effect of R&D collaborations and the product
rivalry effect of competition. The former effect captures the
positive impact of R&D collaborations on output and profit
while the latter captures the negative impact of competition
and market stealing effects.

Due to the existence of externalities through technology
spillovers and competition effects that are not internalized in
the R&D decisions of firms, the social benefits of R&D differ
from the private returns of R&D. This creates an environment
where government funding programs that aim at fostering
firms’ R&D activities can be welfare improving. We analyze
the optimal design of such R&D subsidy programs (where
a planner can subsidize a firm’s R&D effort) that take into
account the network externalities in our model. We derive
an exact formula for any type of network and competition
structure that determines the optimal number of subsidies
per unit of R&D effort that should be given to each firm. We
discriminate between homogeneous subsidies (proposition
2), where each firm obtains the same amount of subsidy per
unit of R&D effort, and targeted subsidies (proposition 3),
where subsidies can be firm specific.

We then bring the model to the data by using a unique panel
of R&D collaborations and annual company reports over dif-
ferent sectors, regions, and years. We adopt an instrumental
variable (IV) strategy to estimate the best-response function
implied by the theoretical model to identify the technology
(or knowledge) spillover effect of R&D collaborations and
the product rivalry effect of competition in a panel data model
with both firm and time fixed effects. In particular, follow-
ing Bloom, Schankerman, and Van Reenen (2013), we use
changes in the firm-specific tax price of R&D to construct IVs
for R&D expenditures. Furthermore, to address the potential
endogeneity of R&D networks, we use predicted R&D net-
works based on predetermined dyadic characteristics to con-
struct IVs to identify the casual effect of R&D spillovers. As
predicted by the theoretical model, we find that the spillover
effect has a positive and significant impact on output and
profit, while the competition effect has a negative and signif-
icant impact.

Using our estimates and following our theoretical results,
we then empirically determine the optimal subsidy policy for
both the homogeneous case, where all firms receive the same
subsidy per unit of R&D effort, and for the targeted case,
where the subsidy per unit of R&D effort may vary across
firms. The targeted subsidy program turns out to have a much
higher impact on total welfare as it can improve welfare by
up to 80%, while the homogeneous subsidies can improve
total welfare only by up to 4%. We then empirically rank
firms according to the welfare-maximizing subsidies that they
receive by the planner. We find that the firms that should be
subsidized the most are not necessarily the ones that have
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R&D NETWORKS 477

the highest market share, the largest number of patents, or
the most central position in the R&D network. Indeed, these
measures can only partially explain the ranking of firms that
we find, as the market share is more related to the product
market rivalry effect, while the R&D network and the patent
stocks are more related to the technology spillover effect,
and both effects are incorporated in the design of the optimal
subsidy program.

The rest of the paper is organized as follows. In section
II, we compare our contribution to the existing literature. In
section III, we develop our theoretical model; characterize
the Nash equilibrium of this game, and define the total wel-
fare. Section IV discusses optimal R&D subsidies. Section
V describes the data. Section VI is divided into four parts.
In section VIA, we define the econometric specification of
our model, and in section VIB, we highlight our identifica-
tion strategy. The estimation results are given in section VIC.
Section VID provides a robustness check. The policy results
of our empirical analysis are given in section VII. We discuss
our main assumptions in section VIII. Finally, section IX con-
cludes. In the online appendix, we provide the proofs of the
propositions (appendix A), introduce the network definitions
and characterizations used throughout the paper (appendix
B), highlight the contribution of our model with respect to
the literature on games on networks (appendix C), discuss
the Herfindahl concentration index (appendix D), perform an
analysis in terms of Bertrand competition instead of Cournot
competition (appendix E), provide a theoretical model of di-
rect and indirect technology spillovers (appendix F), deter-
mine market failures due to technological externalities that
are not internalized by the firms and investigate the optimal
network structure of R&D collaborations (appendix G), give
a detailed description of how we construct and combine our
different data sets for the empirical analysis (appendix H),
provide a numerical algorithm for computing optimal sub-
sidies (appendix I) and, finally, provide some additional ro-
bustness checks for the empirical analysis (appendix J).

II. Related Literature

Our theoretical model analyzes a game with strategic com-
plementarities where firms decide about production and R&D
effort by treating the network as exogenously given. Thus, it
belongs to a particular class of games known as games on
networks (Jackson & Zenou, 2015).1 Compared to this lit-
erature, we develop an R&D network model where compe-
tition between firms is explicitly modeled, not only within
the same product market but also across different product
markets (see proposition 1). We also provide an explicit wel-
fare characterization and perform a policy analysis of R&D
subsidies.

The industrial organization literature has a long tradition of
models that analyze product and price competition with R&D

1The economics of networks is a growing field. For recent surveys of the
literature, see Jackson (2008) and Jackson, Rogers, and Zenou (2017).

collaborations (D’Aspremont & Jacquemin, 1988). The first
paper that provides an explicit analysis of R&D networks
is that by Goyal and Moraga-Gonzalez (2001). The authors
introduce a strategic Cournot oligopoly game in the presence
of externalities induced by a network of R&D collaborations.
Although we do not study network formation as in Goyal and
Moraga-Gonzalez (2001), we are able to provide results for
all possible networks with an arbitrary number of firms and
a complete characterization of equilibrium output and R&D
effort choices in multiple interdependent markets.

From an econometric perspective, recently there has been
significant progress in the literature on identification and es-
timation of social network models (see Chandrasekhar, 2016,
for a recent survey). In applied research, the linear social net-
work model is among the most popular models. Bramoullé,
Kranton, and D’Amours (2009) provide identification con-
ditions for this model based on the intransitivities in the net-
work structure and propose an IV-based estimation strategy
exploiting exogenous characteristics of indirect connections.
Yet the validity of the IVs relies on the assumption that the
network structure captured by the adjacency matrix is exoge-
nous. If the adjacency matrix depends on some unobserved
variables that are correlated with the error term of the so-
cial interaction regression, then the adjacency matrix is en-
dogenous and this IV-based estimator would be inconsistent.
In this paper, taking advantage of the panel data structure
in the empirical analysis, we introduce both firm and time
fixed effects into the linear social network model to attenuate
the potential asymptotic bias caused by the endogenous adja-
cency matrix. To further reduce this potential bias, we use the
predicted adjacency matrix based on predetermined dyadic
characteristics (instead of the observed adjacency matrix) to
construct IVs for this model. This allows us to estimate the
causal impact of R&D spillovers.

There is a large empirical literature on technology
spillovers (see Bloom et al., 2013) and R&D collaborations
(see Hanaki, Nakajima, & Ogura, 2010). There is also an ex-
tensive literature that estimates the effect of R&D subsidies
on private R&D investments and other measures of innovative
performance (see Bloom, Griffith, & Van Reenen, 2002, and,
for a survey, see Klette, Møen, & Griliches, 2000). However,
to the best of our knowledge, our paper is the first that pro-
vides a ranking of firms according to the welfare maximizing
subsidies that they should receive.

III. Theoretical Framework

A. Network Game

We consider a general Cournot oligopoly game where a
set of firms N = {1, . . . , n} is partitioned in M ≥ 1 hetero-
geneous product markets Mm, m = 1, . . . , M. Let |Mm| de-
note the size of marketMm. We allow for consumption goods
to be imperfect substitutes (and thus differentiated products)
by adopting the consumer utility maximization approach of
Singh and Vives (1984). We first consider qi, the demand for
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478 THE REVIEW OF ECONOMICS AND STATISTICS

the good produced by firm i in market Mm. A representative
consumer in market Mm obtains the following gross utility
from consumption of the goods {qi}i∈Mm

:

Ūm({qi}i∈Mm
) = αm

∑
i∈Mm

qi − 1

2

∑
i∈Mm

q2
i

− ρ

2

∑
i∈Mm

∑
j∈Mm, j �=i

qiq j .

In this formulation, the parameterαm captures the heterogene-
ity in market sizes, whereas ρ ∈ [0, 1) measures the degree
of substitutability between products. In particular, ρ → 1 de-
picts a market of perfectly substitutable goods, while ρ = 0
represents the case of local monopolies. The consumer max-
imizes net utility Um = Ūm − ∑

i∈Mm
piqi, where pi is the

price of good i. This gives the inverse demand function for
firm i,

pi = ᾱi − qi − ρ
∑

j∈Mm, j �=i

q j, (1)

where ᾱi = ∑M
m=1 αm1{i∈Mm}. In the model, we will study

both the general case where ρ > 0 but also the special case
where ρ = 0. The latter case is when firms are local monop-
olists so that the price of the good produced by each firm i
is determined only by its own quantity qi (and the size of the
market), not the quantities of other firms—i.e., pi = ᾱi − qi.

Firms can reduce their production costs by investing in
R&D as well as by benefiting from an R&D collaboration
with another firm. The amount of this cost reduction depends
on the R&D effort ei of firm i and the R&D efforts of the
R&D collaboration partners of firm i. Given the effort level
ei, the marginal cost ci of firm i is given by2

ci = c̄i − ei − ϕ

n∑
j=1

ai je j . (2)

The network of R&D collaborations, G, can be represented
by a symmetric n × n adjacency matrix A. Its elements
ai j ∈ {0, 1} indicate whether there exists a link between nodes
i and j.3 In the context of our model, ai j = 1 if firms i and
j have an R&D collaboration and ai j = 0 otherwise. As a
normalization, we set aii = 0. In equation (2), the total cost
reduction for firm i stems from its own research effort ei and
the research effort of all other collaborating firms (via knowl-
edge spillovers), which is captured by the term

∑n
j=1 ai je j ,

where ϕ ≥ 0 is the marginal cost reduction due to a collabo-
rator’s R&D effort. We assume that R&D effort is costly. In
particular, the cost of R&D effort is given by 1

2 e2
i , which is

2We assume that the R&D effort independent marginal cost c̄i is large
enough such that marginal costs, ci, are always positive for all firms i ∈ N .

3See online appendix B.1 for definitions and characterizations of
networks.

increasing in effort and exhibits decreasing returns. Firm i’s
profit is then given by

πi = (pi − ci)qi − 1

2
e2

i . (3)

Inserting the inverse demand from equation (1) and the
marginal cost from equation (2) into equation (3) gives the
following strictly quasi-concave profit function for firm i:

πi = (ᾱi − c̄i)qi − q2
i − ρ

n∑
j=1

bi jqiq j + qiei

+ ϕqi

n∑
j=1

ai je j − 1

2
e2

i , (4)

where bi j = 1 if firms i and j operate in the same market and
bi j = 0 otherwise. Consequently, the market structure can be
represented by an n × n competition matrix B = [bi j]. If we
arrange firms by the markets they operate in, the competition
matrix B will be a block diagonal matrix with a zero diagonal
and blocks of sizes |Mm|, m = 1, . . . , M.

B. Nash Equilibrium

We consider quantity competition among firms à la
Cournot.4 The following proposition establishes the Nash
equilibrium where each firm i simultaneously chooses both
its output qi and R&D effort ei in an arbitrary network of
R&D collaborations represented by the adjacency matrix A
and an arbitrary market structure represented by the com-
petition matrix B. Throughout the paper, we denote by I
the n × n identity matrix, ι the n × 1 vector of ones, and
λmax(A) the largest eigenvalue of A. Denote by μi ≡ ᾱi − c̄i

for all i ∈ N , and μ the corresponding n × 1 vector with
components μi. Denote also by μ = mini {μi | i ∈ N } and
μ = maxi {μi | i ∈ N }, with 0 < μ ≤ μ. Finally, denote by
bμ(G, φ) ≡ (I − φA)−1μ the vector of μ-weighted Katz-
Bonacich centralities, and bι(G, φ) ≡ (I − φA)−1ι the vec-
tor of unweighted Katz-Bonacich centralities, where φ =
ϕ/(1 − ρ). 5

Proposition 1. Consider the n-player simultaneous-move
game with the payoff given by equation (4), where ϕ ≥ 0,
0 ≤ ρ < 1 and 0 < μ ≤ μi ≡ ᾱi − c̄i ≤ μ.

i. If ϕ = 0 or

ϕλmax(A) + ρ max
m=1,...,M

{|Mm| − 1} < 1, (5)

4In online appendix E, we show that the same functional forms for best
response quantities and efforts can be obtained for price-setting firms under
Bertrand competition as we find them in the case of Cournot competition.

5The proof of proposition 1 is given in online appendix A. See online
appendix B.3 for a precise definition of the Bonacich centrality used in the
proposition.
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R&D NETWORKS 479

then there exists a unique Nash equilibrium with the
equilibrium R&D efforts e∗ and outputs q∗ given by

e∗ = q∗ = (I − ϕA + ρB)−1μ. (6)

and the equilibrium profits π∗
i given by

π∗
i = 1

2
(q∗

i )2, ∀i ∈ N . (7)

ii. If φ ≡ ϕ/(1 − ρ) < λmax(A)−1, then there exists a
unique Nash equilibrium in the case that all firms op-
erate in a single market (i.e., M = 1), with the equilib-
rium R&D efforts e∗ and outputs q∗ given by

e∗ = q∗ = 1

1 − ρ

(
bμ(G, φ)

− ρ
∥∥bμ(G, φ)

∥∥
1

(1 − ρ) + ρ ‖bι(G, φ)‖1
bι(G, φ)

)
. (8)

In addition, if

φλmax (A) + nρ

1 − ρ

(
μ

μ
− 1

)
< 1, (9)

then e∗ = q∗ > 0.
iii. If ϕ < λmax(A)−1, then there exists a unique Nash

equilibrium in the case when goods are nonsubsti-
tutable (i.e., ρ = 0), with the equilibrium R&D ef-
forts e∗ and outputs q∗ given by e∗ = q∗ = bμ(G, ϕ) =
(I − ϕA)−1μ > 0.

iv. If the conditions stated in i–iii hold, then q∗ ≥ q∗ ≥
q∗ > 0, where q∗ is the vector of equilibrium outputs
in the general case given by equation (6).

Proposition 1i characterizes the Nash equilibrium for the
most general case with a general R&D network and product
market structure, while 1ii and 1iii characterize the equilibria
of two special cases: the case where all firms operate in the
same market and the case where goods are nonsubstitutable,
which provide the lower and upper bounds for the equilibrium
in the general case as shown in 1iv.

The first-order condition of profit maximization with re-
spect to the R&D effort leads to ei = qi, while the first-order
condition with respect to the output leads to

qi = μi + ϕ

n∑
j=1

ai jq j − ρ

n∑
j=1

bi jq j, (10)

or, in matrix form, q = μ + ϕAq − ρBq. If ϕ = 0 and 0 ≤
ρ < 1, or if the condition given by equation (5) holds, the

matrix I − ϕA + ρB is positive definite, and thus there ex-
ists a unique Nash equilibrium characterized by equation (6).
This result generalizes those of Ballester, Calvó-Armengol,
and Zenou (2006), Calvó-Armengol, Patacchini, and Zenou
(2009), and Bramoullé, Kranton, and D’Amours (2014) to
allow agents to make multivariate choices on R&D effort
and output levels in the presence of both network effects and
competition effects.6

The key insight of proposition 1 is the interaction between
the network effect, through the adjacency matrix A, and the
market effect, through the competition matrix B, and this
is why the first-order condition with respect to qi given by
equation (10) takes both of them into account.

C. Welfare

We next turn to analyzing welfare in the economy. Inserting
the inverse demand from equation (1) into net utility Um of
the consumer in market Mm shows that

Um = 1

2

∑
i∈Mm

q2
i + ρ

2

∑
i∈Mm

∑
j∈Mm, j �=i

qiq j .

The total consumer surplus is then given by U = ∑M
m=1 Um.

The producer surplus is given by aggregate profits � =∑n
i=1 πi. As a result, the total welfare is equal toW = U + �.

Inserting profits as a function of equilibrium outputs from
equation (7) leads to the total welfare in the Nash equilib-
rium given by

W =
n∑

i=1

(q∗
i )2 + ρ

2

n∑
i=1

n∑
j=1

bi jq
∗
i q∗

j = q∗�q∗ + ρ

2
q∗�Bq∗.

(11)

As welfare in equation (11) is increasing in the output levels
of the firms, it is clear that the higher the production levels
of the firms, the higher is welfare.7

IV. R&D Subsidy Policies

Because of the externalities generated by R&D activities,
market resource allocation will typically not be socially op-
timal. In online appendix G.1, we show that, indeed, there is
a generic problem of underinvestment in R&D, as the private
returns from R&D are lower than the social returns from
R&D. A policy intervention can correct this market fail-
ure through R&D subsidy or tax programs. We extend our

6In online appendix C, we highlight the contribution of our model with
respect to the literature on games on networks by first shutting the network
effects, then the competition effects, and, finally, comparing our model to
that of Ballester et al. (2006) and Bramoullé et al. (2014).

7A discussion of how welfare is affected by the network structure can be
found in online appendix G.2. In particular, we investigate which network
structure maximizes welfare.
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framework by considering an optimal R&D subsidy program
that reduces the firms’ R&D costs. For our analysis, we first
assume that all firms obtain a homogeneous subsidy per unit
of R&D effort spent. Then we proceed by allowing the social
planner to differentiate between firms and implement firm-
specific R&D subsidies.8

A. Homogeneous R&D Subsidies

Following Spencer and Brander (1983) a government (or
planner) is introduced that can provide a subsidy, s ∈ [0, s̄]
per unit of R&D effort for some s̄ > 0. It is assumed that
each firm receives the same per unit R&D subsidy. With a
homogeneous R&D subsidy, the profit of firm i given by
equation (4) becomes

πi = (ᾱi − c̄i)qi − q2
i − ρqi

n∑
j=1

bi jq j + qiei

+ ϕqi

n∑
j=1

ai je j − 1

2
e2

i + sei. (12)

The game consists of two stages. In the first stage, the planner
sets a subsidy rate on R&D effort, and in the second stage,
the firms choose outputs and R&D efforts given the subsidy
rate set in the first stage. The optimal R&D subsidy s∗ deter-
mined by the planner is found by maximizing the total welfare
W (G, s) less the cost of the subsidy s

∑n
i=1 ei, taking into ac-

count the fact that firms choose outputs and R&D efforts for a
given subsidy rate by maximizing profits in equation (12). If
we define the net welfare as W (G, s) ≡ W (G, s) − s

∑n
i=1 ei,

the social planner’s problem is then given by

s∗ = arg maxs∈[0,s̄]W (G, s).

Proposition 2. Consider the n-player simultaneous-move
game with the payoff given by equation (12), where
ϕ ≥ 0, 0 ≤ ρ < 1 and 0 < μ ≤ μi ≡ ᾱi − c̄i ≤ μ. Let
R = (I − ϕA + ρB)−1(I + ϕA) and H = I + R + R� −
2R�R − ρR�BR.

i. If ϕ = 0 or the condition given by equation (5) holds,
then there exists a unique Nash equilibrium with the
equilibrium outputs given by

q∗ = (I − ϕA + ρB)−1μ + sRι, (13)

the equilibrium R&D efforts given by

e∗
i = q∗

i + s, ∀i ∈ N , (14)

8We emphasize that as we have normalized the cost of R&D to 1 in the
profit function of equation (3), the absolute values of R&D subsidies are
not meaningful in the subsequent analysis, but rather relative comparisons
across firms are.

and the equilibrium profits given by

π∗
i = (q∗

i )2 + s2

2
, ∀i ∈ N . (15)

ii. If ι�Hι > 0, the optimal subsidy level is given by

s∗ = ι�(2R + ρBR − I)�(I − ϕA + ρB)−1μ

ι�Hι
,

(16)

provided that 0 < s∗ < s̄.

In part i of proposition 2, we solve the second stage of the
game where firms decide their outputs and R&D efforts given
the homogeneous subsidy s. In part ii of the proposition, we
solve the first stage of the game where the planner optimally
determines the subsidy rate.

B. Targeted R&D Subsidies

We now consider the case where the planner can offer
different subsidy rates to different firms, so that firm i, for all
i = 1, . . . , n, receives a subsidy si ∈ [0, s̄] per unit of R&D
effort. Let s be an n × 1 vector with components si. With
target R&D subsidies, the profit of firm i given by equation
(4) becomes:

πi = (ᾱi − c̄i)qi − q2
i − ρqi

n∑
j=1

bi jq j + qiei

+ ϕqi

n∑
j=1

ai je j − 1

2
e2

i + siei. (17)

If we define the net welfare as W (G, s) ≡ W (G, s) −∑n
i=1 eisi, then the solution to the social planner’s problem is

given by

s∗ = arg maxs∈[0,s̄]nW (G, s).

Proposition 3. Consider the n-player simultaneous-move
game with the payoff given by equation (17), where
ϕ ≥ 0, 0 ≤ ρ < 1 and 0 < μ ≤ μi ≡ ᾱi − c̄i ≤ μ. Let
R = (I − ϕA + ρB)−1(I + ϕA) and H = I + R + R� −
2R�R − ρR�BR.

i. If ϕ = 0 or the condition given by equation (5) holds,
then there exists a unique Nash equilibrium with the
equilibrium outputs given by

q∗ = (I − ϕA + ρB)−1μ + Rs, (18)

the equilibrium R&D efforts given by

e∗ = q∗ + s, (19)
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and the equilibrium profits given by

π∗
i = (q∗

i )2 + s2
i

2
, ∀i ∈ N . (20)

ii. If the matrix H is positive definite, the optimal subsidy
levels are given by

s∗ = H−1(2R + ρBR − I)�(I − ϕA + ρB)−1μ,

(21)

provided that 0 < s∗
i < s̄ for all i = 1, . . . , n.

This proposition provides us with an exact value of the
targeted subsidy that needs to be given to each firm in order
to maximize total (net) welfare.

V. Data

To obtain a comprehensive picture of R&D alliances, we
use data on interfirm R&D collaborations stemming from
two sources that have been widely used in the literature
(Schilling, 2009). The first one is the Cooperative Agree-
ments and Technology Indicators (CATI) database (Hage-
doorn, 2002). This database records only agreements for
which a combined innovative activity or an exchange of tech-
nology is at least part of the agreement. The second source
is the Thomson Securities Data Company (SDC) alliance
database. SDC collects data from the U.S. Securities and
Exchange Commission (SEC) filings (and their international
counterparts), trade publications, wires, and news sources.
We include only alliances from SDC that are classified
explicitly as R&D collaborations. (Online appendix H.1 pro-
vides more information about the different R&D collabora-
tion databases used for this study.)

We then merged the CATI database with the Thomson SDC
alliance database. For the matching of firms across data sets,
we used the name-matching algorithm developed as part of
the NBER patent data project (Atalay et al., 2011; Trajten-
berg, Shiff, & Melamed, 2009).9 The merged data sets allow
us to study patterns in R&D partnerships in several industries
over an extended period of several decades. Observe that be-
cause of our IV strategy (see section VIB) which is based on
R&D tax credits in the United States, we consider only U.S.
firms, as in Bloom et al. (2013).

The systematic collection of interfirm alliances started in
1987 and ended in 2006 for the CATI database. However,
information about alliances prior to 1987 is available in both
databases, and we use all information available starting from
the year 1963 and ending in 2006. We construct the R&D
alliance network by assuming that an alliance lasts five years.
In the Online appendix (section J.1), we conduct robustness
checks with different specifications of alliance durations.

9See https://sites.google.com/site/patentdataproject.

Some firms might be acquired by other firms due to merg-
ers and acquisitions (M&A) over time, and this will affect the
R&D collaboration network (Hanaki et al., 2010). We account
for M&A activities by assuming that an acquiring firm inher-
its all the R&D collaborations of the target firm. We use two
complementary data sources to obtain comprehensive infor-
mation about M&As. The first is the Thomson Reuters’ SDC
M&A database, which has historically been the reference
database for empirical research in the field of M&As. The
second database is Bureau van Dijk’s Zephyr database, which
is an alternative to the SDC M&As database. (A comparison
and more detailed discussion of the two M&As databases is
in online appendix H.2.)

The combined CATI-SDC database provides the names for
each firm in an alliance but does not contain balance sheet
information. We thus matched the firms’ names in the CATI-
SDC database with the firms’ names in Standard & Poor’s
Compustat U.S. annual fundamentals database, as well as Bu-
reau van Dijk’s Osiris database, to obtain information about
their balance sheets and income statements. Compustat and
Osiris contain only firms listed on the stock market, so they
typically exclude smaller firms. However, they should capture
the most R&D-intensive firms, as R&D is typically concen-
trated in publicly listed firms (Bloom et al., 2013). Online
appendix H.3 provides additional details about the account-
ing databases used in this study.

For the purpose of matching firms across databases, we
again use the name-matching algorithm. We could match
roughly 26% of the firms in the alliance data (considering
only firms with accounting information available). From our
match between the firms’ names in the alliance database and
the firms’ names in the Compustat and Osiris databases, we
obtained a firm’s sales and R&D expenditures. Individual
firms’ output levels are computed from deflated sales using
2-SIC digit industry-year specific price deflators from the
OECD-STAN database (Gal, 2013). Furthermore, we use in-
formation on R&D expenditures to compute R&D capital
stocks using a perpetual inventory method with a 15% de-
preciation rate (following Bloom et al., 2013). Considering
only firms with nonmissing observations on sales, output, and
R&D expenditures, we end up with a sample of 1,186 firms
and a total of 1,010 collaborations over the years 1967 to
2006.10 Basic summary statistics are in table 1.

VI. Econometric Analysis

A. Econometric Specification

In this section, we introduce the econometric equivalent
to the equilibrium quantity produced by each firm given in
equation (10). Our empirical counterpart of the marginal cost

10See online appendix H for a discussion about the representativeness of
our data sample and online appendix J.5 for a discussion about the impact
of missing data on our estimation results.
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TABLE 1.—SUMMARY STATISTICS COMPUTED ACROSS THE YEARS 1967 TO 2006

Variable Observations Mean SD Minimum Maximum Compustat Mean

Sales [106] 21,067 2,101.56 7,733.29 9.98 × 10−8 168,055.80 1,085.05
Empl. 19,709 16,694.82 51,299.36 1 876,800.00 4,322.08
Capital [106] 20,873 1,629.29 7,388.32 3.82 × 10−8 170,437.40 663.44
R&D Exp. [106] 18,629 70.75 287.42 5.56 × 10−4 6,621.19 14.71
R&D Exp./Empl. 17,203 20,207.79 55,887.27 3.37 2,568,507.00 4,060.12
R&D Stock [106] 17,584 406.87 1,520.97 5.58 × 10−3 22,292.97 33.13
Num. patents 12,177 2,588.31 7,814.59 1 76,644.00 14.39

Values for sales, capital, and R&D expenses are in U.S. dollars with 1983 as the base year. Compustat means are computed across all firms in the Compustat U.S. fundamentals annual database over all nonmissing
observations over the years 1967 to 2006.

cit of firm i from equation (2) at period t has a fixed cost equal
to c̄it = η∗

i − εit − xitβ, and thus we get

cit = η∗
i − εit − βxit − eit − ϕ

n∑
j=1

ai j,t e jt , (22)

where xit is a measure for the productivity of firm i, η∗
i cap-

tures the unobserved (to the econometrician) time-invariant
characteristics of the firm, and εit captures the remaining un-
observed (to the econometrician) characteristics of the firm.

Following equation (1), the inverse demand function for
firm i is given by

pit = ᾱm + ᾱt − qit − ρ

n∑
j=1

bi jq jt , (23)

where bi j = 1 if i and j are in the same market and zero
otherwise. In this equation, ᾱm indicates the market-specific
fixed effect and ᾱt captures the time fixed effect due to exoge-
nous demand shifters that affect consumer income, number
of consumers, consumer taste and preferences, and expecta-
tions over future prices of complements and substitutes and
future income.

Denote by κt ≡ ᾱt and ηi ≡ ᾱm − η∗
i . Observe that κt cap-

tures the time fixed effect, while ηi, which includes both ᾱm

and η∗
i , captures the firm fixed effect. Adding subscript t

for time and using equations (22) and (23), the econometric
equivalent to the best-response quantity in equation (10) is
given by

qit = ϕ

n∑
j=1

ai j,t q jt − ρ

n∑
j=1

bi jq jt + βxit + ηi + κt + εit .

(24)

Observe that the econometric specification in equation
(24) has a similar specification as the product competition
and technology spillover production function estimation in
Bloom et al. (2013), where the estimation of ϕ will give the
intensity of the technology (or knowledge) spillover effect
of R&D, while the estimation of ρ will give the intensity of
the product rivalry effect. However, as opposed to that paper,
we explicitly model the technology spillovers stemming from
R&D collaborations using a network approach.

In vector-matrix form, we can write equation (24) as

qt = ϕAt qt − ρBqt + xtβ + η + κtιn + εt , (25)

where qt = (q1t , . . . , qnt )�, At = [ai j,t ], B = [bi j], xt =
(x1t , . . . , xnt )�, η = (η1, . . . , ηn)�, εt = (ε1t , . . . , εnt )�, and
ιn is an n-dimensional vector of ones.

For the T periods, equation (25) can be written as

q = ϕdiag{At }q − ρ(IT ⊗ B)q + xβ + ιT ⊗ η

+ κ ⊗ ιn + ε, (26)

where q = (q�
1 , . . . , q�

T )�, x = (x�
1 , . . . , x�

T )�, κ = (κ1,

. . . , κT )�, and ε = (ε�
1 , . . . , ε�

T )�. The vectors q, x, and ε

are of dimension (nT × 1), where T is the number of years
available in the data.

In terms of data, our main variables will be measured as fol-
lows. Output qit is calculated using sales divided by the year-
industry price deflators from the OECD-STAN database. The
network data stems from the combined CATI-SDC databases,
and we set ai j,t = 1 if there exists an R&D collaboration be-
tween firms i and j in the last s years before time t , where s
is the duration of an alliance. The exogenous variable xit is
the firm’s time-lagged R&D stock at the time t − 1. Finally,
we measure bi j as in the theoretical model so that bi j = 1 if
firms i and j are the same industry (measured by the industry
SIC codes at the four-digit level) and bi j = 0 otherwise.

B. Identification Issues

We adopt a structural approach in the sense that we esti-
mate the first-order condition of the firms’ profit maximiza-
tion problem in terms of output and R&D effort, which leads
to equation (24) or (25). The best-response quantity in equa-
tion (25) then corresponds to a higher-order spatial autore-
gressive (SAR) model with two spatial lags, At qt and Bqt

(Lee & Liu, 2010).
There are several potential identification problems in the

estimation of equations (24) or (25). We face, actually,
four sources of potential bias arising from (a) correlated or
common-shock effects, (b) simultaneity of qit and q jt , (c) en-
dogeneity of the R&D stock, and (d) endogeneity of the R&D
alliance matrix.
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Correlated or common-shock effects. Correlated or
common-shock effects arise in network models due to
the fact that there may be common environmental factors
that cause the firms in the same network to behave in a
similar manner. They may be confounded with the network
effects (ϕ and ρ) we are trying to identify. To alleviate this
problem, we incorporate both firm and time fixed effects (ηi

and κt ) to equation (24).

Simultaneity of product outputs. We use instrumental vari-
ables when estimating our outcome equation (24) to deal
with the issue of simultaneity between qit and q jt . Indeed,
the output of firm i at time t , qit , is a function of the total
output of all firms collaborating in R&D with firm i at time
t , q̄a,it ≡ ∑n

j=1 ai j,t q jt , and the total output of all firms that
operate in the same market as firm i, q̄b,it ≡ ∑n

j=1 bi jq jt . Due
the feedback effect, q jt also depends on qit , and thus q̄a,it and
q̄b,it are endogenous.

Recall that xit denotes the time-lagged R&D stock of firm
i at the time t − 1. To deal with this issue, we instrument q̄a,it

by the time-lagged total R&D stock of all firms with an R&D
collaboration with firm i,

∑n
j=1 ai j,t x jt , and instrument q̄b,it

by the time-lagged total R&D stock of all firms that operate
in the same industry as firm i,

∑n
j=1 bi jx jt . The rationale for

this IV strategy is that the time-lagged total R&D stock of
R&D collaborators and product competitors of firm i directly
affects the total output of these firms but only indirectly af-
fects the output of firm i through the total output of these
same firms.

More formally, to estimate equation (26), first we trans-
form it with the projection matrix J = (IT − 1

T ιT ι�
T ) ⊗ (I −

1
nιnι

�
n ). The transformed equation (26) is

Jq = ϕJdiag{At }q − ρJ(IT ⊗ B)q + Jxβ + Jε, (27)

where the firm and time fixed effects η and κ have
been eliminated by the projection matrix.11 Let Q1 =
J[diag{At }x, (IT ⊗ B)x, x] denote the IV matrix and Z =
J[diag{At }q, (IT ⊗ B)q, x] denote the matrix of regressors
in equation (27). As there is a single exogenous variable in
equation (27), the model is just identified. The IV estimator
of parameters (ϕ, −ρ, β)� is given by (Q�

1 Z)−1Q�
1 q. With

the estimated (ϕ, −ρ, β)�, one can recover η and κ by the
least squares dummy variables method.

Obviously, the IV-based identification strategy is valid only
if the time-lagged R&D stock, xi,t−1, and the R&D alliance
matrix, At = [ai j,t ], are exogenous. We next address the po-
tential endogeneity of the time-lagged R&D stock, while the
endogeneity of the R&D alliance matrix is discussed after
that section.

Endogeneity of the R&D stock. The R&D stock depends
on past R&D efforts, which could be correlated with the er-

11For unbalanced panels, the firm and time fixed effects can be eliminated
by a projection matrix given in Wansbeek and Kapteyn (1989).

ror term of equation (24). However, as the R&D stock is
time-lagged and fixed effects are included, the existing litera-
ture has argued that the correlation between the (time-lagged)
R&D stock and the error term of equation (24) is likely to
be weak. To further alleviate the potential endogeneity issue
of the time-lagged R&D stock, we use supply-side shocks
from tax-induced changes to the user cost of R&D to con-
struct IVs as in Bloom et al. (2013). To be more specific, we
use changes in the firm-specific tax price of R&D to con-
struct instrumental variables for R&D expenditures. Let wit

denote the time-lagged R&D tax credit firm i received at time
t − 1.12 We instrument q̄a,it by the time-lagged total R&D tax
credits of all firms having R&D collaborations with firm i,∑n

j=1 ai j,tw jt , instrument q̄b,it by the time-lagged total R&D
tax credits of all firms that operate in the same industry as firm
i,

∑n
j=1 bi jw jt , and instrument the time-lagged R&D stock

xit by the time-lagged R&D tax credit wit . The rationale for
this IV strategy is that the time-lagged total R&D credits of
R&D collaborators and product competitors of firm i directly
affect the total output of these firms but only indirectly affect
the output of firm i through the total output of these same
firms.

More formally, let Q2 = J[diag{At }w, (IT ⊗ B)w, w],
where w = (w�

1 , . . . , w�
T )� and wt = (w1t , . . . , wnt )� de-

note the IV matrix and Z = J[diag{At }q, (IT ⊗ B)q, x] de-
note the matrix of regressors in equation (27). The IV esti-
mator of parameters (ϕ, −ρ, β)� is given by (Q�

2 Z)−1Q�
2 q.

Endogeneity of the R&D alliance matrix. The R&D al-
liance matrix At = [ai j,t ] is endogenous if there exists an
unobservable factor that affects both the outputs, qit and q jt ,
and the R&D alliance, indicated by ai j,t . If the unobservable
factor is firm specific, then it is captured by the firm fixed-
effect ηi. If the unobservable factor is time specific, then it
is captured by the time fixed-effect κt . Therefore, the fixed
effects in the panel data model are helpful for attenuating the
potential endogeneity of At .

However, it may still be that there are some unobservable
firm-specific time-varying factors that affect the formation of
R&D collaborations and thus make the R&D alliance matrix
At endogenous. To deal with this issue, we run a two-stage
IV estimation as in Kelejian and Piras (2014), where, in the
first stage, we obtain a predicted R&D alliance matrix based
on predetermined dyadic characteristics, and in the second
stage, we employ the IV strategy explained above using IVs
constructed with the predicted adjacency matrix from the first
stage.

Let us now explain how to obtain a predicted R&D alliance
matrix in the first stage. We estimate a logistic regression
model with the corresponding log-odds ratio as a function of

12See appendix B.3 in the supplementary material of Bloom et al. (2013)
for details on the specification of wit .
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predetermined dyadic characteristics:

log

(
P

(
ai j,t = 1 | (Aτ)t−s−1

τ=1 , fi j,t−s−1, cityi j, marketi j
)

1 − P
(
ai j,t = 1 | (Aτ)t−s−1

τ=1 , fi j,t−s−1, cityi j, marketi j
))

= γ0 + γ1 max
τ=1,...,t−s−1

ai j,τ + γ2 max
τ=1,...,t−s−1

k=1,...,n

aik,τak j,τ

+ γ3 fi j,t−s−1 + γ4 f 2
i j,t−s−1 + γ5cityi j + γ6marketi j . (28)

In this model, maxτ=1,...,t−s−1 ai j,τ is a dummy variable equal
to 1 if firms i and j had an R&D collaboration before time
t − s (s is the duration of an alliance) and 0 otherwise;
maxτ=1,...,t−s−1;k=1,...,n aik,τak j,τ is a dummy variable equal
to 1 if firms i and j had a common R&D collaborator before
time t − s and 0 otherwise; fi j,t−s−1 is the time-lagged tech-
nological proximities between firms i and j, measured here
by either the Jaffe or the Mahalanobis patent similarity in-
dices at time t − s − 1;13 cityi j is a dummy variable equal to
1 if firms i and j are located in the same city and 0 otherwise;
and marketi j is a dummy variable equal to 1 if firms i and j
are in the same market and 0 otherwise.

The rationale for this IV solution is as follows. Consider,
for example, the dummy variable, which is equal to 1 if firms i
and j had a common R&D collaborator before time t − s, and
0 otherwise. This means that if firms i and j had a common
collaborator in the past (before time t − s), they are more
likely to have an R&D collaboration in period t , ai j,t = 1,
but, conditional on the firm and time fixed effects, having a
common collaborator in the past should not directly affect
the outputs of firms i and j in period t (i.e., the exclusion
restriction is satisfied). A similar argument can be made for
the other variables in equation (28). As a result, using IVs
based on the predicted adjacency matrix Ât should allevi-
ate the concern of invalid IVs due to the endogeneity of the
adjacency matrix At .

Formally, let Q3 = J[diag{Ât }x, (IT ⊗ B)x, x] denote the
IV matrix based on the predicted R&D alliance matrix and
Z = [diag{At }q, (IT ⊗ B)q, x] denote the matrix of regres-
sors in equation (27). Then the estimator of the parameters
(ϕ, −ρ, β)� with IVs based on the predicted adjacency matrix
is given by (Q�

2 Z)−1Q�
3 q.

13We matched the firms in our alliance data with the owners of patents
recorded in the Worldwide Patent Statistical Database (PATSTAT). This
allowed us to obtain the number of patents and the patent portfolio held
for about 36% of the firms in the alliance data. From the firms’ patents,
we then computed their technological proximity following Jaffe (1986) as

f J
i j = P�

i P j√
P�

i Pi

√
P�

j P j

, where Pi represents the patent portfolio of firm i and

is a vector whose kth component Pik counts the number of patents firm i
has in technology category k divided by the total number of technologies
attributed to the firm. As an alternative measure for technological similarity
we also use the Mahalanobis proximity index f M

i j introduced in Bloom
et al. (2013). Online appendix H.5 provides further details about the match
of firms to their patent portfolios and the construction of the technology
proximity measures f k

i j , k ∈ {J, M}.

TABLE 2.—PARAMETER ESTIMATES FROM A PANEL REGRESSION OF

EQUATION (25)

Model A Model B

ϕ −0.0118 (0.0075) 0.0106** (0.0051)
ρ 0.0114*** (0.0015) 0.0189*** (0.0028)
β 0.0053*** (0.0002) 0.0027*** (0.0002)
Number of firms 1,186 1,186
Number of observations 16,924 16,924
Cragg-Donald Wald 6,454.185 7,078.856

F -statistic
Firm fixed effects No Yes
Time fixed effects Yes Yes

Statistically significant at ∗∗∗1%, ∗∗5%, ∗10%.

TABLE 3.—PARAMETER ESTIMATES FROM A PANEL REGRESSION OF EQUATION

(25) WITH IVS BASED ON TIME-LAGGED TAX CREDITS

Model C Model D

ϕ −0.0133 (0.0114) 0.0128* (0.0069)
ρ 0.0182*** (0.0018) 0.0156** (0.0076)
β 0.0054*** (0.0004) 0.0023*** (0.0006)
Number of firms 1,186 1,186
Number of observations 16,924 16,924
Cragg-Donald Wald 138.311 78.791

F -statistic
Firm fixed effects No Yes
Time fixed effects Yes Yes

Statistically significant at ∗∗∗1%, ∗∗5%, ∗10%.

C. Estimation Results

Main results. Table 2 reports the parameter estimates of
equation (25) with time fixed effects (model A) and with both
firm and time fixed effects (model B). We see that with both
firm and time fixed effects, there is a significant and positive
technology spillover effect, which indicates that the higher a
firm’s production level (or R&D effort) is, the more its R&D
collaborator produces. That is, there exist strategic comple-
mentarities between allied firms in production and R&D ef-
fort. There is also a significant and negative product rivalry
effect, which indicates that the higher a firm’s production
level (or R&D effort) is, the less its product competitors in
the same market produce. Furthermore, this table also shows
that a firm’s productivity captured by its own time-lagged
R&D stock has a positive and significant impact on its own
production level. Finally, the Cragg-Donald Wald F -statistics
for both models are well above the conventional benchmark
for weak IVs (Stock & Yogo, 2005).

Endogeneity of R&D stocks and tax credit instruments. Ta-
ble 3 reports the parameter estimates of equation (25) with
tax credits as IVs for the time-lagged R&D stock as dis-
cussed in section 6.2.3. Similar to the benchmark results re-
ported in section 6.3.1, with both firm and time fixed effects,
the estimated parameters in model D are statistically signifi-
cant with the expected signs: the technology (or knowledge)
spillover effect is positive, while the product rivalry effect is
negative.
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TABLE 4.—LINK FORMATION REGRESSION RESULTS

Technological Similarity Jaffe Mahalanobis

Past collaboration 0.5981*** 0.5920***

(0.0150) (0.0149)
Past common collaborator 0.1162*** 0.1164***

(0.0238) (0.0236)
fi j,t−s−1 13.6977*** 6.0864***

(0.6884) (0.3323)
f 2
i j,t−s−1 −20.4083*** −3.9194***

(1.7408) (0.4632)
cityi j 1.1283*** 1.1401***

(0.1017) (0.1017)
marketi j 0.8451*** 0.8561***

(0.0424) (0.0422)
Number of observations 3,964,120 3,964,120
McFadden’s R2 0.0812 0.0813

The dependent variable ai j,t indicates if an R&D alliance exists between firms i and j at time t . Statis-
tically significant at ∗∗∗1%, ∗∗5%, ∗10%.

TABLE 5.—PARAMETER ESTIMATES FROM A PANEL REGRESSION OF EQUATION

(25) WITH ENDOGENOUS R&D ALLIANCE MATRIX

Technological Similarity Jaffe Mahalanobis

ϕ 0.0582* (0.0343) 0.0593* (0.0341)
ρ 0.0197*** (0.0031) 0.0197*** (0.0031)
β 0.0024*** (0.0002) 0.0024*** (0.0002)
Number of firms 1,186 1,186
Number of observations 16,924 16,924
Cragg-Donald Wald 48.029 49.960

F -statistic
Firm fixed effects Yes Yes
Time fixed effects Yes Yes

Statistically significant at ∗∗∗1%, ∗∗5%, ∗10%.

Endogeneity of the R&D alliance matrix. We also consider
IVs based on the predicted R&D alliance matrix, Ât xt , as
discussed previously. First, we obtain the predicted alliance-
formation probability âi j,t from the logistic regression given
by equation (28). The logistic regression result, using either
the Jaffe or Mahalanobis patent similarity measures, is re-
ported in table 4. The estimated coefficients are all statisti-
cally significant with expected signs. Interestingly, having a
past collaboration or a past common collaborator, being es-
tablished in the same city, or operating in the same industry
or market increases the probability that two firms have an
R&D collaboration in the current period. Furthermore, being
close in technology (measured by either the Jaffe or Maha-
lanobis patent similarity measure) in the past also increases
the chance of having an R&D collaboration in the current
period.

Next, we estimate equation (25) with IVs based on the pre-
dicted alliance matrix. The estimates are reported in table 5.
We find that the estimates of both the technology spillovers
and the product rivalry effect are still significant with the ex-
pected signs. Compared to table 2, the estimate of the tech-
nology spillovers (i.e., the estimation of ϕ) has, however, a
larger value and a larger standard error. Finally, the reported
Cragg-Donald Wald F -statistics suggest the IVs based on the
predicted alliance matrix are informative.

Robustness analysis. In online appendix J, we perform
some additional robustness checks. First, in online appendix
J.1, we estimate our model for alliance durations ranging
from three to seven years. Second, in online appendix J.2,
we consider a model where the spillover and competition
coefficients are not identical across markets. We perform a
robustness check using two major divisions in our data, the
manufacturing and services sectors, that cover, respectively,
76.8% and 19.3% firms in our sample. Third, in online ap-
pendix J.3, we conduct a robustness analysis by directly con-
trolling for potential input-supplier effects. Fourth, in online
appendix J.4, we consider three alternative specifications of
the competition matrix. Finally, in online appendix J.5, we
discuss the issue of possible biases due to sampled network
data. We find that the estimates are robust to all of these
extensions.

D. Direct and Indirect Technology Spillovers

In this section, we extend our empirical model of equation
(24) by allowing for both direct (between firms with an R&D
alliance) and indirect (between firms without an R&D al-
liance) technology spillovers. The generalized model is given
by14

qit = ϕ

n∑
j=1

ai j,t q jt + χ

n∑
j=1

fi j,t q jt − ρ

n∑
j=1

bi jq jt

+ βxit + ηi + κt + εit , (29)

where fi j,t are weights characterizing alternative channels for
technology spillovers (measured by the technological prox-
imity between firms using either the Jaffe or the Mahalanobis
patent similarity measures; see Bloom, 2013, and online ap-
pendix H.5) other than R&D collaborations, and the coeffi-
cients ϕ and χ capture the direct and the indirect technology
spillover effects, respectively. In vector-matrix form, we then
have

qt = ϕAt qt + χFt qt − ρBqt + xtβ + η + κtιn + εt . (30)

The results of a fixed-effect panel regression of equation (30)
are shown in table 6. Both technology spillover coefficients,
ϕ and χ, are positive, while only the direct spillover effect
is significant. This suggests that R&D network alliances are
the main channel for technology spillovers.

VII. Empirical Implications for the R&D Subsidy Policy

With our estimates from the previous sections—using
model B in table 2 as our baseline specification—we are now
able to empirically determine the optimal subsidy policy for
both the homogeneous case, where all firms receive the same

14The theoretical foundation of equation (29) is in the online appendix F.
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486 THE REVIEW OF ECONOMICS AND STATISTICS

TABLE 6.—PARAMETER ESTIMATES FROM A PANEL REGRESSION OF

EQUATION (30)

Technological Similarity Jaffe Mahalanobis

ϕ 0.0102** (0.0049) 0.0102** (0.0049)
χ 0.0063 (0.0052) 0.0043 (0.0030)
ρ 0.0189*** (0.0028) 0.0192** (0.0028)
β 0.0027*** (0.0002) 0.0027*** (0.0002)
Number of firms 1,190 1,190
Number of observations 17,105 17,105
Cragg-Donald Wald 4,791.308 4,303.563

F -statistics
Firm fixed effects Yes Yes
Time fixed effects Yes Yes

Statistically significant at ∗∗∗1%, ∗∗5%, ∗10%.

subsidy per unit of R&D (see proposition 2), and the targeted
case, where the subsidy per unit of R&D may vary across
firms (see proposition 3).15

As our empirical analysis focuses on U.S. firms, the cen-
tral planner that would implement such an R&D subsidy pol-
icy could be the U.S. government or a U.S. governmental
agency. In the United States, R&D policies have been widely
used to foster firms’ R&D activities. In particular, as of 2006,
32 states in the United States provided a tax credit on gen-
eral, company-funded R&D (Wilson, 2009). Moreover, an-
other prominent example in the United States is the Advanced
Technology Program (ATP), which was administered by the
National Institute of Standards and Technology (Feldman and
Kelley, 2003).

Observe that we provide a network-contingent subsidy pro-
gram: each time an R&D subsidy policy is implemented, it
takes into account the prevalent network structure. In other
words, we determine how, for any observed network struc-
ture, the R&D policy should be specified (short-run perspec-
tive). The rationale for this approach is that in an uncertain
and highly dynamic environment such as R&D-intensive in-
dustries we consider, an optimal contingent policy is typically
preferable over a fixed policy (see Buiter, 1981). In the fol-
lowing, we calculate the optimal subsidy for each firm in
every year that the network is observed.

In figure 1, in the top panels, we calculate the optimal
homogeneous subsidy times R&D effort over time, using the
subsidies in the year 1990 as the base level (top left panel) and
the percentage increase in welfare due to the homogeneous
subsidy over time (top right panel). The total subsidized R&D
effort more than doubled between 1990 and 2005. In terms
of welfare, the highest increase (around 3.5%) is obtained
in 2001, while the increase in welfare in 1990 is smaller
(below 2.5%). The bottom panels of figure 1 perform the
same exercise for the targeted subsidy policy. The targeted
subsidy program turns out to have a much higher impact on
total welfare, as it can improve welfare by up to 80%, while
the homogeneous subsidies can improve total welfare only

15Additional details about the numerical implementation of the optimal
subsidies program are in online appendix I.

by up to 3.5%. Moreover, the optimal subsidy levels show a
strong variation over time.

We can compare the optimal subsidy level predicted from
our model with the R&D tax subsidies actually implemented
in the United States and selected other countries between
1979 and 1997 (Bloom et al., 2002). While these time series
typically show a steady increase of R&D subsidies over time,
they do not seem to incorporate the cyclicality that we obtain
for the optimal subsidy levels. Our analysis thus suggests that
policymakers should adjust R&D subsidies to these cycles.

We proceed by providing a ranking of firms in terms of tar-
geted subsidies. Such a ranking can guide planners who want
to maximize total welfare by introducing an R&D subsidy
program and identify which firms should receive the highest
subsidies. The ranking of the first 25 firms by their optimal
subsidy levels in 1990 are in table 7, and the one for 2005
is in table 8.16 We see that the ranking of firms in terms of
subsidies does not correspond to other rankings in terms of
network centrality, patent stocks, or market share.

There is also volatility in the ranking since many firms
that are ranked in the top 25 in 1990 are no longer there in
2005 (e.g., TRW, Alcoa, Schlumberger). Figure 2 shows the
change in the ranking of the 25 highest subsidized firms in
table 7 from 1990 to 2005.

A comparison of market shares, R&D stocks, the number
of patents, the degree (i.e., the number of R&D collabora-
tions), the homogeneous subsidy, and the targeted subsidy
shows a high correlation between the R&D stock and the
number of patents, with a (Spearman) correlation coefficient
of 0.65 for 2005. A high correlation can also be found for the
homogeneous subsidy and the targeted subsidy, with a cor-
relation coefficient of 0.75 for 2005. We also find that highly
subsidized firms tend to have a larger R&D stock and also
a larger number of patents, degree, and market share. How-
ever, these measures can only partially explain the subsidies
ranking of the firms, as the market share is more related to
the product market rivalry effect, while the R&D and patent
stocks are more related to the technology spillover effect,
and both enter into the computation of the optimal subsidy
program.

Observe that our subsidy rankings typically favor larger
firms as they tend to be better connected in the R&D network
than small firms. This adds to the discussion of whether large
or small firms are contributing more to the innovativeness
of an economy by adding another dimension along which
larger firms can have an advantage over small ones: by creat-
ing R&D spillover effects that contribute to the overall pro-
ductivity of the economy. While studies such as Spencer and
Brander (1983) and Acemoglu et al. (2012) find that R&D
should often be taxed rather than subsidized, we find that
R&D subsidies can have a significantly positive effect on

16The network statistics shown in these tables correspond to the full CATI-
SDC network data set, prior to dropping firms with missing accounting
information. See online appendix H.1 for more details about the data sources
and construction of the R&D alliances network.
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R&D NETWORKS 487

FIGURE 1—SUBSIDY LEVELS OVER TIME

Top left panel: The total optimal subsidy payments, s∗‖e‖1, in the homogeneous case over time, using the subsidies in the year 1990 as the base level. Top right panel: The percentage increase in welfare due to the
homogeneous subsidy, s∗ , over time. Bottom left panel: The total subsidy payments, e�s∗ , when the subsidies are targeted toward specific firms, using the subsidies in the year 1990 as the base level. Bottom right
panel: The percentage increase in welfare due to the targeted subsidies, s∗ , over time.

welfare. The reason our results differ from that of these stud-
ies is that we take into account the consumer surplus when
deriving the optimal R&D subsidy. Moreover, in contrast to
Acemoglu et al. (2012), we do not focus on entry and exit
but incorporate the network of R&D collaborating firms. This
allows us to take into account the R&D spillover effects of
incumbent firms, which are typically ignored in studies of the
innovative activity of incumbent firms versus entrants.

VIII. Discussion

In this section we discuss some assumptions of our model
and their implications for the empirical and policy analyses.

A. Inertia of R&D Networks

One of the underlying assumptions of our model is that
the R&D network exhibits inertia. That is, compared to mak-
ing adjustments to production and R&D expenditures, it is

relatively costly in terms of both money and time to form
new alliances in the R&D network. Therefore, we consider a
short-run policy analysis, where we treat the R&D network as
given and design the optimal subsidy program by taking into
account the equilibrium production and R&D investment de-
cisions of the firms. In the long run, the R&D network itself
might also respond to the subsidy program, and thus the de-
sign of a long-run subsidy program should take the evolution
of the R&D network into account. However, such a dynamic
forward-looking network formation game would be very hard
to solve. For this reason, we focus on a short-run policy anal-
ysis in this paper, leaving the long-run policy analysis for
future work.

B. Independent Markets

In our basic model, we consider independent markets:
firms compete only against firms in the same product mar-
ket, not against those in different product markets. This
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TABLE 7.—SUBSIDIES RANKING FOR THE YEAR 1990 FOR THE FIRST 25 FIRMS

Targeted
Share Number Homogeneous Subsidy

Firm (%)a Pattern d vPF Betweennessb Closenessc q (%)d Subsidy (%)e (%)f SICg Rank

General Motors Corp. 9.2732 76,644 88 0.1009 0.0007 0.0493 6.9866 0.0272 0.3027 3711 1
Exxon Corp. 7.7132 21,954 22 0.0221 0.0000 0.0365 5.4062 0.0231 0.1731 2911 2
Ford Motor Co. 7.3456 20,378 6 0.0003 0.0000 0.0153 3.7301 0.0184 0.0757 3711 3
AT&T Corp. 9.5360 5,692 8 0.0024 0.0000 0.0202 3.2272 0.0156 0.0565 4813 4
Chevron 2.8221 12,789 23 0.0226 0.0001 0.0369 2.5224 0.0098 0.0418 2911 5
Texaco 2.9896 9,134 22 0.0214 0.0000 0.0365 2.4965 0.0095 0.0415 2911 6
Lockheed 42.3696 2 51 0.0891 0.0002 0.0443 1.5639 0.0035 0.0196 3760 7
Mobil Corp. 4.2265 3 0 0.0000 0.0000 0.0000 1.9460 0.0111 0.0191 2911 8
TRW Inc. 5.3686 9,438 43 0.0583 0.0002 0.0415 1.4509 0.0027 0.0176 3714 9
Altria Group 43.6382 0 0 0.0000 0.0000 0.0000 1.4665 0.0073 0.0117 2111 10
Alcoa Inc. 11.4121 4,546 36 0.0287 0.0002 0.0372 1.2136 0.0032 0.0114 3350 11
Shell Oil Co. 14.6777 9,504 0 0.0000 0.0000 0.0000 1.4244 0.0073 0.0109 1311 12
Chrysler Corp. 2.2414 3,712 6 0.0017 0.0000 0.0218 1.3935 0.0075 0.0109 3711 13
Schlumberger Ltd. Inc. 25.9218 9 18 0.0437 0.0000 0.0370 1.1208 0.0029 0.0099 1389 14
Hewlett-Packard Co. 7.1106 6,606 64 0.1128 0.0002 0.0417 1.1958 0.0047 0.0093 3570 15
Intel Corp. 9.3900 1,132 67 0.1260 0.0003 0.0468 1.0152 0.0018 0.0089 3674 16
Hoechst Celanese Corp. 5.6401 516 38 0.0368 0.0002 0.0406 1.0047 0.0021 0.0085 2820 17
Motorola 14.1649 21,454 70 0.1186 0.0004 0.0442 1.0274 0.0028 0.0080 3663 18
PPG Industries Inc. 13.3221 24,904 20 0.0230 0.0000 0.0366 0.9588 0.0021 0.0077 2851 19
Himont Inc. 0.0000 59 28 0.0173 0.0001 0.0359 0.8827 0.0014 0.0072 2821 20
GTE Corp. 3.1301 4 0 0.0000 0.0000 0.0000 1.1696 0.0067 0.0070 4813 21
National Semiconductor 4.0752 1,642 43 0.0943 0.0001 0.0440 0.8654 0.0012 0.0068 3674 22

Corp.
Marathon Oil Corp. 7.9828 202 0 0.0000 0.0000 0.0000 1.1306 0.0060 0.0068 1311 23
Bellsouth Corp. 2.4438 3 14 0.0194 0.0000 0.0329 1.0926 0.0060 0.0064 4813 24
Nynex 2.3143 26 24 0.0272 0.0001 0.0340 0.9469 0.0049 0.0052 4813 25

aMarket share in the primary four-digit SIC sector in which the firm is operating.
bThe normalized betweenness centrality is the fraction of all shortest paths in the network that contain a given node, divided by (n − 1)(n − 2), the maximum number of such paths.
cThe closeness centrality of node i is computed as 2

n−1
∑n

j=1 2−�i j (G) , where �i j (G) is the length of the shortest path between i and j in the network G and the factor 2
n−1 is the maximal centrality attained for the

center of a star network.
dThe relative output of a firm i follows from proposition 1.
eThe homogeneous subsidy is computed as e∗

i s∗ , relative to the total homogeneous subsidies
∑n

j=1 e∗
j s∗ (proposition 2).

f The targeted subsidy for each firm i is computed as e∗
i s∗i , relative to the total targeted subsidies

∑n
j=1 e∗

j s∗j (see proposition 3).
gThe primary four-digit SIC code according to Compustat U.S. fundamentals database.

TABLE 8.—SUBSIDIES RANKING FOR THE YEAR 2005 FOR THE FIRST 25 FIRMS

Targeted
Share Number Homogeneous Subsidy

Firm (%)a Pattern d vPF Betweennessb Closenessc q (%)d Subsidy (%)e (%)f SICg Rank

General Motors Corp. 3.9590 90,652 19 0.0067 0.0002 0.0193 4.1128 0.0174 0.2186 3711 1
Ford Motor Co. 3.6818 27,452 7 0.0015 0.0000 0.0139 3.4842 0.0153 0.1531 3711 2
Exxon Corp. 4.0259 53,215 6 0.0007 0.0001 0.0167 2.9690 0.0132 0.1108 2911 3
Microsoft Corp. 10.9732 10,639 62 0.1814 0.0020 0.0386 1.6959 0.0057 0.0421 7372 4
Pfizer Inc. 3.6714 74,253 65 0.0298 0.0034 0.0395 1.6796 0.0069 0.0351 2834 5
AT&T Corp. 0.0000 16,284 0 0.0000 0.0000 0.0000 1.5740 0.0073 0.0311 4813 6
Motorola 6.6605 70,583 66 0.1598 0.0017 0.0356 1.3960 0.0053 0.0282 3663 7
Intel Corp. 5.0169 28,513 72 0.2410 0.0011 0.0359 1.3323 0.0050 0.0249 3674 8
Chevron 2.2683 15,049 10 0.0017 0.0001 0.0153 1.3295 0.0058 0.0243 2911 9
Hewlett-Packard Co. 14.3777 38,597 7 0.0288 0.0000 0.0233 1.1999 0.0055 0.0183 3570 10
Altria Group 20.4890 5 2 0.0000 0.0000 0.0041 1.1753 0.0054 0.0178 2111 11
Johnson & Johnson Inc. 3.6095 31,931 40 0.0130 0.0015 0.0346 1.1995 0.0051 0.0173 2834 12
Texaco 0.0000 10,729 0 0.0000 0.0000 0.0000 1.0271 0.0055 0.0124 2911 13
Shell Oil Co. 0.0000 12,436 0 0.0000 0.0000 0.0000 0.9294 0.0045 0.0108 1311 14
Chrysler Corp. 0.0000 5,112 0 0.0000 0.0000 0.0000 0.9352 0.0052 0.0101 3711 15
Bristol-Myers Squibb Co. 1.3746 16 35 0.0052 0.0009 0.0326 0.8022 0.0034 0.0077 2834 16
Merck & Co. Inc. 1.5754 52,036 36 0.0023 0.0007 0.0279 0.8252 0.0038 0.0077 2834 17
Marathon Oil Corp. 5.5960 229 0 0.0000 0.0000 0.0000 0.7817 0.0039 0.0076 1311 18
GTE Corp. 0.0000 5 0 0.0000 0.0000 0.0000 0.7751 0.0041 0.0073 4813 19
Pepsico 36.6491 991 0 0.0000 0.0000 0.0000 0.7154 0.0035 0.0066 2080 20
Bellsouth Corp. 0.9081 2,129 0 0.0000 0.0000 0.0000 0.7233 0.0039 0.0063 4813 21
Johnson Controls Inc. 22.0636 304 11 0.0027 0.0001 0.0159 0.6084 0.0021 0.0063 2531 22
Dell 18.9098 80 2 0.0190 0.0000 0.0216 0.6586 0.0028 0.0061 3571 23
Eastman Kodak Co 5.5952 10,9714 17 0.0442 0.0001 0.0262 0.6171 0.0023 0.0060 3861 24
Lockheed 48.9385 9,817 44 0.0434 0.0003 0.0223 0.6000 0.0028 0.0049 3760 25

The superscript letters have the same explanations as in table 7.
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FIGURE 2—CHANGE IN THE RANKING OF THE 25 HIGHEST SUBSIDIZED FIRMS IN TABLE 7, 1990–2005

assumption can be relaxed, however, in our theoretical frame-
work. In proposition 1, we characterize the Nash equilibrium
with a single product market (M = 1), where all firms com-
pete against each other. Furthermore, by allowing the ele-
ments of the competition matrix B to take arbitrary weights
instead of the binary values 0 or 1, the competition matrix
can be flexibly specified to represent more general market
structures.

Based on these ideas, we conduct a robustness analysis for
our empirical results with alternative specifications of the
competition matrix. First, in section J.2 of the online ap-
pendix, we reestimate equation (26) using two major sec-
tors in our data, the manufacturing and services sectors, that,
respectively, cover 76.8% and 19.3% firms in our sample.
The estimated spillover and competition parameters of these
two sectors are largely the same as those in our benchmark
specification.

Next, in section J.4 of the online appendix, we consider
a richer specification of the B matrix. This extension fol-
lows Bloom et al. (2013) by considering three alternative
specifications for the competition matrix based on the pri-
mary and secondary industry classification codes that can
be found in the Compustat Segments database, the Orbis
database (Bloom et al., 2013), or the Hoberg-Phillips product
similarity database (Hoberg & Phillips, 2016). These alter-
native competition matrices capture (in a reduced form) the
product portfolio of a firm by taking into account the differ-
ent industries a firm is operating in. We find that irrespective
of what type of competition matrix is being used, the es-
timated technology spillover effect is positively significant,
with the magnitude similar to that obtained in the benchmark
model. Moreover, the product rivalry effect with alternative
specifications of the competition matrix is also statistically
significant with the expected sign.

C. No Input-Output Linkages

Our theoretical model considers horizontally related firms,
while it does not incorporate the possible vertical relation-
ships of firms through input-output linkages. To test for
potential R&D spillovers between vertically related firms,
we conduct a robustness analysis by directly controlling for
potential input-supplier effects. We obtain information about
firms’ buyer-supplier relationships from two data sources.
The first is the Compustat Segments database (Atalay et al.,
2011). Compustat Segments provides business details, prod-
uct information, and customer data for over 70% of the
companies in the Compustat North American database, with
firms’ coverage starting in the year 1976. We also use as
a second data source the Capital IQ Business Relationships
database (Mizuno, Ohnishi, & Watanabe, 2014). The Cap-
ital IQ data include any customers or suppliers mentioned
in the firms’ annual reports, news, websites surveys, and
so on, with firms’ coverage starting in the year 1990. We
merged these two data sources to obtain a deeper picture of
the potential buyer-supplier linkages between the firms in our
R&D network. Aggregated over all years, we obtained 2,573
buyer-supplier relationships for the firms matched with our
R&D network data set. Using these data on firms’ buyer-
supplier relationships, we find that after controlling for the
input-supplier effect, the spillover and competition effects
remain statistically significant with the expected signs.

D. No Market Entry and Exit

Because we focus on a short-run policy analysis in this
paper, we consider only incumbent firms and abstract from
the complication of market entry and exit. This allows us to
use a network approach to study the R&D spillover effects,
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490 THE REVIEW OF ECONOMICS AND STATISTICS

which are typically ignored in studies of innovative activities
of incumbent firms versus entrants, such as Acemoglu et al.
(2012). Therefore, we see our analysis as complementary to
that of Acemoglu et al. (2012), and we show that R&D subsi-
dies can trigger considerable welfare gains when technology
spillovers through R&D alliances are taken into account.

E. No Foreign Firms

Another possible extension of the current model is to par-
tition the firms into domestic and foreign firms and consider
a subsidy program that subsidizes only domestic firms. This
extension would be possible under our current framework as
our targeted subsidy program is very flexible. In particular,
it is allowed to assign zero subsidies to certain firms (e.g.,
foreign firms). However, we do not pursue this extension in
this paper because we consider only U.S. firms.

IX. Conclusion

We have developed a model where firms benefit from R&D
collaborations (networks) to lower their production costs
while at the same time competing on the product market. We
have highlighted the positive role of the network in terms of
technology spillovers and the negative role of product rivalry
in terms of market competition. We have also determined the
importance of targeted subsidies on the total welfare of the
economy.

Using a panel of R&D alliance networks and annual re-
ports, we tested our theoretical results and showed that both,
the technology spillover effect and the market competition
effect, have the expected signs and are significant. We also
identified the firms in our data that should be subsidized the
most to maximize welfare in the economy. Finally, we drew
some policy conclusions about optimal R&D subsidies from
the results obtained over different sectors, as well as their
temporal variation.

We believe that the methodology developed in this pa-
per offers a fruitful way of analyzing the existence of R&D
spillovers and their policy implications in terms of firms’ sub-
sidies across and within different industries. We also believe
that putting forward the role of networks in terms of R&D
collaborations is important for understanding the different
aspects of these markets.
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