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Abstract 

We study how sourcing of applied and basic knowledge is related to the likelihood and speed at which 

inventions become innovations as well as their profitability. By using a patent database with unique 

commercialization information, we reveal that inventions strongly based on applied knowledge lead to 

innovations more quickly, while inventions embedding basic knowledge lead to more profitable innovations. 

Sourcing both applied and basic knowledge (i.e., their combination effect) is negatively related to innovation 

speed. Explanations include the notion that inventions based on applied knowledge follow more established 

technological trajectories. Hence, such inventions relatively easily turn into innovations, but due to hard 

competitive pressure, profits are modest. Conversely, inventions embedding basic knowledge likely depart 

from conventional technological trajectories and market logic and are more difficult and/or riskier to 

transform into innovations. However, if such innovations are launched, the gains could be significant 

because of their improved performance and distinctiveness. Finally, recombining applied and basic 

knowledge may become too complex to handle, thus hampering innovation speed. From a managerial 

perspective, managers who seek to innovate quickly should exploit inventions embodying applied 

knowledge; however, those who seek increased profitability should exploit inventions embodying basic 

knowledge even if this may be more difficult and riskier. From a policy perspective, actions aiming to lessen 

the risks associated with commercializing inventions based on basic knowledge should be implemented. 
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1. Introduction 

This paper contends that the conversion of inventions into innovations can be explained by the 

types of knowledge sourced for developing the inventions. Indeed, such knowledge characterizes 

them by shaping inventions’ knowledge base (Fleming, 2001). 

A key distinction in the inventions’ knowledge base refers to its representation in terms of 

applied or basic knowledge (Martin & Scott, 2000)
1
, reflecting how innovation may follow diverse 

cumulative paths (Dosi, 1982; Dosi & Nelson, 2010). Sourcing applied knowledge entails 

developing technologies by creatively combining existing technologies, each with a given purpose, 

to meet novel market needs (e.g., Adner & Snow, 2010; Arthur, 2007). Sourcing basic knowledge 

entails developing new technologies embedding knowledge that is unconstrained by immediate, 

market and practical interests (Leyden & Menter, 2018) since it provides a general understanding of 

the (natural) phenomena underlying a given technological problem (e.g., Cassiman, Veugelers & 

Arts, 2018; Lim, 2004).
2
 

Some previous studies sought to examine the innovative implications derived from the 

extent of adoption of applied and basic knowledge during technology development, such as by 

examining the (macro) processes of creative destruction, accumulation (Malerba & Orsenigo, 1995; 

Breschi et al., 2000), and knowledge flows across actors and countries (Leyden & Menter, 2018). 

We aim to extend this line of inquiry by narrowing the unit of analysis to the single technology 

(invention level). Notably, research has proven that intrinsic technology characteristics, such as the 

type of inventions’ knowledge base, contribute to explaining when inventions turn into products 

(Nerkar and Shane, 2007; Chen et al., 2011; Ardito et al., 2020). Therefore, technology 

                                                           
1
 This distinction occupied a key position since the report by Bush (1945), who laid the foundations of the American 

postwar science policy. Neither applied nor basic knowledge should necessarily be associated with incremental/radical 

knowledge. The distinction wants to reflect the fact that knowledge adopted during technology development may refer 

to something already existing and working to solve a given technological problem (i.e., applied knowledge), regardless 

of its radicalness, or to more general theories and understanding of phenomena that do not/cannot have a given purpose 

and application (i.e., basic knowledge), still regardless of their radicalness. 
2
 For instance, in the semiconductor industry, basic knowledge refers to the comprehension of solid-state physics, 

quantum mechanics and basic chemistry, while applied knowledge targets the development/improvement of product, as 

well as manufacturing techniques and processes, starting from existing chemical products and processes. In the 

pharmaceutical industry, basic knowledge refers to the comprehension of the mechanisms and processes of disease, 

while applied research includes clinical trials, dosage testing and information regarding product labeling. 



characteristics cannot be undervalued when compared to other relevant factors pertaining to the 

firm (e.g., strategy, business model, organization), network (e.g., alliance formation and type), and 

environmental level (e.g., market turbulence and competitiveness). 

However, studies focusing on technology characteristics to explain innovation performance 

are scarce, and so are studies dealing with inventions’ knowledge base. Only a few papers (Su & 

Lin, 2018; Wagner & Wakeman, 2016) have provided inspiring clues regarding the innovative 

potential of inventions embedding applied and/or basic knowledge by linking inventions to 

respective products on the market. On the other hand, some contrasting results can be recognized 

despite focusing on the same sector (i.e., pharmaceutical).
3
 For instance, Su & Lin (2018) revealed 

that applied knowledge is associated with a higher likelihood and speed at which inventions become 

innovations; moreover, they found basic knowledge associated with a reduced time-to-market. 

Conversely, Wagner & Wakeman (2016) found a negative effect of applied knowledge on the 

likelihood of innovating and that time-to-market is not affected by applied and basic knowledge. 

Moreover, relevant gaps leading to additional avenues to extend the extant literature can be 

recognized. The first is the need to examine sectors other than the pharmaceutical sector.
4
 The 

second relates to the analysis of the complementarity between applied and basic knowledge (i.e., 

their combination effect), as only their separate effects have been considered in previous studies. 

The third is about expanding previous studies’ analysis to the profitability of innovations 

originating from a technology (if any), since such information is often missing. Finally, there is a 

need to provide a stronger theoretical framing of the influence of knowledge sources on 

commercialization outcomes. Previous studies are more exploratory and more interested in 

assessing the influence of various patent-based measures (including reference-based measures as a 

proxy for knowledge sources) on commercialization outcomes, without in-depth theoretical 

reasoning and implications. 

                                                           
3
 However, the dependent variables were not always consistent among the studies as well as the data sources used. 

4
 The pharmaceutical sector is the most studied domain since it is easier to link inventions to related products. Indeed, 

governmental organizations (e.g., the Food and Drug Administration through the Orange Book) provide this 

information. 



The present paper addresses these gaps. Accordingly, following the recombinant search 

(Fleming, 2001; Fleming & Sorenson, 2004) and technological opportunities (Shane, 2001; Nerkar 

& Shane, 2007) perspectives, we propose hypotheses about the direct roles of having applied or 

basic knowledge as strongly characterizing inventions’ knowledge base, as well as their 

complementarity,
5
 in predicting three key performance measures. Two are related to innovation: (i) 

likelihood to innovate, i.e., to turn inventions into products/processes, and (ii) innovation speed in 

terms of time-to-market. The third is related to commercialization success or the profitability of 

innovation. Jointly considering these measures provides a novel and more comprehensive 

understanding of how various types of knowledge constituting inventions affect the invention-to-

commercialization journey. 

In particular, we do not restrict our analysis to the pharmaceutical sector and focus it on the 

SME context. Notably, SMEs engage in more innovative activities than large firms (Acs & 

Audretsch, 1988), although the former suffers the liability of smallness that places them at a higher 

risk of failure, especially if commercialization success is not achieved (Aldrich & Auster, 1986; 

Lefebvre, 2020). Moreover, SMEs are more likely to develop inventions for actual 

commercialization purposes rather than for defense or fencing.
6
 That is, they have smaller 

technology portfolios mainly comprising core technologies and no dead-end and/or leftover 

solutions (de Rassenfosse, 2012). Hence, an analysis at the invention level is more reliable. Finally, 

while the individual contribution of each SME to the economy is negligible, SMEs are the most 

common type of firm in the economy. Thus, when taken together, their contribution to the gross 

domestic product and job creation, for instance, is undeniable (EC, 2020; Tewari et al., 2013). 

                                                           
5
 It has been suggested that future research should investigate the impact of both basic and applied knowledge and their 

interaction (Tödtling & Grillitsch, 2015) because the empirical literature has shown more complex knowledge processes 

such that applied and basic knowledge cannot simply be associated with analytic sectors (e.g., manufacturing sector) 

and synthetic sectors (e.g., biotech), and complementary effects may exist. 
6
Indeed, it has been argued that “incentives for and performance with preemptive patenting by the incumbents are 

expected to increase as market power increases [that is not usually the case of SMEs], because the ex-ante profits to 

preserve increase and the drop in profits due to entry if preemption does not occur is larger” (Ceccagnoli, 2009:90). We 

also acknowledge that some small firms have the incentive to be infringed and, hence, own patent trolls; however, most 

of these firms are nonproducing firms (Reitzig et al., 2007) and are beyond the scope of our investigation. 

 



A unique dataset of Swedish patents owned by SMEs and individual inventors is used in the 

empirical analysis. Detailed information on the likelihood and timing of innovation, 

commercialization success and prior knowledge (measured by the patents’ references to the 

nonpatent literature and previous patents) makes it possible to test the hypotheses. The results of our 

analysis reveal that inventions embedding applied knowledge are positively related to the likelihood 

of innovation and innovation speed to market. Inventions embedding basic knowledge positively 

have higher commercialization success, with negative returns occurring only at very high levels of 

basicness. Finally, the combination effect of sourcing both basic and applied knowledge during 

technology development is related to a slower speed to the market. These results are in line with the 

view that inventions based on applied knowledge follow more established technological trajectories. 

Hence, they should be relatively easy to convert into innovations (Adner & Snow, 2010; Nerkar, 

2003), but due to strong competitive pressure, profits are modest. Conversely, inventions 

embedding basic knowledge are more difficult and/or riskier to transform into innovations 

(Gittelman & Kogut, 2003; van Beers, Berghäll & Poot, 2008). However, if such innovations are 

launched, the gains could be significant due to improved performance and distinctiveness (Ke, 

2020; Sternitzke, 2010). Finally, recombining applied and basic knowledge concurrently may turn 

too complex to handle (Lopez-Vega, Tell & Vanhaverbeke, 2016; Rosenkopf & Nerkar, 2001), 

especially hampering innovation speed. 

Overall, our contributions are threefold. First, we add to the literature concerning the 

conversion of inventions into innovations at the technology level by considering the knowledge 

base and three different performance measures, thereby adopting a more holistic approach. Second, 

we contribute to a better understanding of the commercialization success of inventions developed 

by SMEs. Third, we provide novel insights into whether and how basic and applied knowledge are 

complementary or substitutive. 

 

 



2. Theory and hypotheses 

The long and risky journey from a new technological idea to commercial profitability involves 

several steps. First, inventors/organizations spend resources on technology development, hence 

producing an invention. Second, the invention must lead to a product/process on the market 

(innovation). Third, innovation should be accepted by customers and yield profits 

(commercialization success) (Artz et al., 2010; Dutta & Hora, 2017; Khilji, Mroczkowski & 

Bernstein, 2006; Vinokurova & Kapoor, 2020). This is in line with the Schumpeterian view that 

invention and innovation do not overlap (Schumpeter, 1911, 1934). To date, extant research has 

provided a thorough understanding of technology development and what favors the impact of an 

invention on subsequent ones (Arthur, 2007; Arthur, 2009; Lanjouw & Schankerman, 2004; 

Messeni Petruzzelli et al., 2015; Trajtenberg, 1990). Relatedly, firms have become quite proficient 

at translating ideas into inventions – as demonstrated, for example, by the growing number of 

patents worldwide in almost all sectors (WIPO, 2019). In contrast, “companies often struggle with 

commercializing new technologies via the product development route” (Nasirov, Li, & Kor, 

2021:522) and gaining profits. Notably, firms’ inventions reaching the market as new 

products/processes still constitute a small share of all the developed technologies – a phenomenon 

called the valley of death – and even fewer are ultimately profitable (Datta et al., 2015; Kirchberger 

& Pohl, 2016; Markham et al., 2010; McKinsey & Co., 2010). This matter challenges firms, which 

may not survive if their inventions do not overcome the valley of death. SMEs particularly face this 

problem since they are characterized by a lack of resource slack for recovery and limited options for 

spreading risk across various economic activities (Fackler et al., 2013; Daniel et al., 2015), as also 

evidenced by the increasing efforts dedicated to understanding how to improve the innovation 

performance of these companies in light of the liability of smallness (e.g., De Massis et al., 2018; 

Dutta & Hora, 2017). As such, factors favoring the conversion of inventions into innovations still 

require managerial and academic attention, especially in the SME context. 



To address this issue, we recall the notion that inventions differently contribute to 

innovation and commercialization success, if commercialized at all. In particular, heterogeneity in 

the conversion of inventions into (profitable) innovations can be explained at the invention level by 

looking at intrinsic technology attributes (Dosi, 1988; Granstrand, 1998; Wang et al., 2015). We 

draw on this broader view and focus on the characteristics of the knowledge embodied in inventions 

by following the recombinant search and technological opportunities perspectives. The recombinant 

search perspective recalls the notion that innovation is cumulative in nature (Breschi et al., 2000; 

van de Poel, 2003), so it is often a matter of reconfiguring what exists (Schumpeter, 1934). In detail, 

search agents (e.g., inventors) shape inventions’ knowledge base and subsequent innovation 

performance on the basis of the knowledge components adopted in recombinant search processes 

(Fleming, 2001; Savino, Messeni Petruzzelli & Albino, 2017; Yayavaram & Ahuja, 2008). 

Knowledge components may be broadly categorized under applied and basic knowledge (Adner & 

Snow, 2010; Cassiman et al., 2018; Lim, 2004), as “[m]arkets differ in terms of the mixture of basic 

and applied knowledge that contributes to their knowledge base [and] in the degree of 

appropriability of technology” (Martin & Scott, 2000:440). In turn, we may have technologies 

originating from a search process that primarily relies on applied knowledge, basic knowledge, or a 

combination thereof. 

The technological opportunities perspective further argues that innovation patterns are 

shaped by opportunities for value creation and value capture derived from the technology attributes 

of inventions (e.g., Shane, 2001; Nerkar and Shane, 2007). Therefore, the extent of applied and/or 

basic knowledge adopted during technology development, as characterizing inventions’ knowledge 

base, may open (different) value creation and value appropriation opportunities that can explain 

whether and how firms’ inventions proceed with the commercialization route (Chen, Chang & 

Hung, 2011; Wagner & Wakeman, 2016; Ardito et al., 2020). Following these lenses, we argue that 



attributes of inventions’ knowledge base resulting from recombinant search processes may 

influence the likelihood, speed, and profitability of related innovations
7
. 

2.1. Inventions embedding applied knowledge 

Pioneering technologies are usually considered the source of new successful products/processes, 

often by creating new markets (Ahuja & Morris Lampert, 2001; O'Connor & Rice, 2013). A 

different view, instead, highlights that new inventions extending an existing technology trajectory 

by combining existing technological solutions, i.e., applied knowledge, may still be a source of 

innovation (e.g., Ardito et al., 2016). Indeed, innovation can originate from ordinary rather than 

unusual creative processes based on previous learning and uses of applied knowledge (Adner & 

Snow, 2010; Lettl, Rost & von Wartburg, 2009). 

Specifically, technologies originating from a search process highly relying on applied 

knowledge follow a more established technological trajectory, and there is more information 

concerning how they are built and can be adopted (Zander & Kogut, 1995). This facilitates the 

retention, transferability, and safer adoption of inventions embodying such knowledge by people 

and organizations involved in the innovation process (García-Muiña, Pelechano-Barahona & 

Navas-López, 2009; Teece, 1981), thus increasing the likelihood and speed at which innovation 

may occur. 

Relatedly, a higher reliance on applied knowledge makes technology development path-

dependent and avoids changes in organizational routines (Nelson, 2009). This, together with the 

more established nature of applied knowledge, also reduces the level of causal ambiguity (Reed & 

                                                           
7
 We acknowledge the existence of prior studies seeking to identify factors favoring better innovation and 

commercialization success. However, most of these studies do not consider innovation and commercialization success 

concurrently. Moreover, most studies consider antecedents and innovation performance at the firm level (Ardito et al., 

2015; Artz et al., 2010; Chandy et al., 2006), i.e., what firms do/possess to launch technology-based products/processes. 

This approach overlooks a finer-grained analysis at the invention level, which may provide additional relevant 

information regarding the phenomenon under investigation (Wagner & Wakeman, 2016). Other studies focus on the 

technology level and even consider the characteristics of the knowledge base. Nevertheless, these scholars examine the 

commercialization of university patents and/or commercialization in terms of spinoff creation or licensing/selling events 

(Nerkar & Shane, 2007; Shane, 2001; Wang et al., 2015), which are different innovation paths from the phenomenon 

under investigation. Other scholars adopt imperfect proxies for innovation/commercialization success that are distant 

from actual downstream activities, such as the case of the number of patents and patent forward citations. Indeed, 

patents reflect inventions but not innovations, and patent citations do not capture market entry (Dziallas & Blind, 2019). 



DeFillippi, 1990). Therefore, focusing on applied knowledge allows the maintenance of 

organizational continuity and the development of new products/processes with fewer problems 

(Nerkar, 2003). Stated differently, the (relevant) costs and time-consuming activities of creating and 

applying less established knowledge are substituted by the (less prominent) costs of identifying and 

applying knowledge that already exists and functions, with benefits in terms of likelihood to 

innovate and innovation speed. Thus, innovating firms are more likely willing and able to leverage 

inventions embedding applied knowledge. This may be especially true for SMEs since they cannot 

afford high R&D costs and long product development cycles due to financial constraints and the 

need to cope with high technological turbulence with scant resources (Moreno‐Moya & Munuera‐

Aleman, 2016). That is, investing in inventions embodying applied knowledge would represent a 

way for SMEs to save resources and speed up the innovation process. 

In addition, applied knowledge has already passed through some of the trial-and-error 

processes required for its successful application and acceptance by customers (Adner & Snow, 

2010). Inventions based on such knowledge are hence considered more reliable and targeted to 

market needs, and more complementary assets and standards increasing their potential market value 

may have already been generated (Story et al., 2014). Thus, unlike pioneering technologies, a 

technology embodying applied knowledge tends to be more easily legitimated by a sector’s user 

community and stakeholders (Katila, 2002; Turner, Mitchell & Bettis, 2012), further incentivizing 

firms to turn such inventions into innovations. The same can be said for SME inventions, since it is 

more important for SMEs than larger firms to avoid mistakes and meet customers’ needs due to a 

higher risk of failure (Damanpour, 2010). Following this reasoning, we hypothesize the following: 

Hypothesis 1a (H1a). SME inventions embedding applied knowledge are positively related 

to the likelihood of innovating and innovation speed. 

 

On the other hand, the greater the applied knowledge embodied in a technology is, the lower 

the likelihood of developing distinctive technologies and, in turn, distinctive products/processes 



compared to current offerings. Indeed, the recombinant space to innovate is likely to be constrained 

in the presence of high levels of cumulativeness (Fleming, 2001; Nerkar, 2003). This also lowers 

the difference in value creation opportunities across companies (Ardito, Messeni Petruzzelli & 

Panniello, 2016), thereby increasing competitive pressure while decreasing potential profits from 

launched innovations. Additionally, since a technology based on applied knowledge may be more 

similar to other existing technologies, it will be more difficult to protect and/or avoid infringement 

risks, reducing opportunities to capture value and, hence, to obtain relevant profits (James et al., 

2013). In other words, inventions embedding applied knowledge infrequently represent rare or 

strategic resources for their owners, leading to profitable innovations (Barney, 1991; Teece, Pisano 

& Shuen, 1997). 

These issues are exacerbated for SMEs because they usually lack brand reputation, so their 

innovations, even if similar to others on the market, may be passed over in favor of those of larger 

and more reputable companies (UN, 2005). Moreover, even if SMEs protect their inventions, they 

do not usually have the resources for patent enforcement if others develop similar solutions based 

on the same available applied knowledge (Weatherall & Webster, 2014), especially if the infringing 

firm is larger. Therefore, we offer the following hypothesis: 

Hypothesis 1b (H1b). SME inventions embedding applied knowledge are negatively related 

to commercial success. 

 

2.2. Inventions embedding basic knowledge 

Basic knowledge is usually not available as a ready-made input (Gittelman & Kogut, 2003; van 

Beers et al., 2008). Actually, an increased amount of basic knowledge requires increased effort to 

be effectively identified and integrated into innovation processes since departures from 

conventional technological trajectories become more relevant (Lim, 2004). For instance, Martin & 

Scott (2000) underline that the acquisition and internalization of advances in basic knowledge by 

search agents in the private sector often require intermediaries. Due to these difficulties, the 



likelihood of converting inventions embedding basic knowledge into innovations may decrease 

while increasing the innovation speed. In addition, reliance on basic knowledge during technology 

development is often conditional on the adoption of new organizational practices, whose 

implementation costs grow with the extent of basic knowledge adopted (Cassiman, Veugelers & 

Zuniga, 2008; Cockburn, Henderson & Stern, 1999). Thus, search agents risk slowing down or even 

hampering the conversion of inventions into innovations when exploiting inventions embedding 

basic knowledge. 

These concerns are worsened by the fact that basic knowledge adheres to a logic that 

contradicts the economic logic (Gittelman & Kogut, 2003). Indeed, it aims to provide a general 

understanding of phenomena without targeting specific applications to solve technological problems 

and/or meet customers’ needs (Belenzon & Schankerman, 2013; Roach & Cohen, 2012; Lim, 

2004). Thus, the value associated with inventions mainly embodying basic knowledge is not 

univocal, and firms may struggle to identify valuable applications for those inventions (Arora, 

Belenzon & Patacconi, 2018; Cassiman, Di Guardo & Valentini, 2009). As such, the innovation 

process may slow down, or inventions based on basic knowledge may be discarded, ultimately 

reducing the likelihood of innovating. SMEs especially suffer in this regard, as they avoid risky 

innovation projects and face more difficulties, for instance, in identifying/acquiring skilled people 

who can manage basic knowledge for innovation purposes (Healy, Mavromaras & Sloane, 2015; 

Lefebvre, 2020). Thus, we hypothesize the following: 

 

Hypothesis 2a (H2a). SME inventions embedding basic knowledge are negatively related to 

the likelihood of innovating and innovation speed. 

 

Nevertheless, evidence reveals that many successful innovations are linked to the 

contribution of basic knowledge (Mansfield, 1991; Shibata, Kajikawa & Sakata, 2010). Thus, using 

basic knowledge makes it more difficult to convert inventions into innovations; however, economic 



return may be more relevant if the conversion process occurs. Indeed, basic knowledge is said to 

transform the search for technological innovations from trial-and-error learning to a more directed 

form of problem solving (Fleming & Sorenson, 2004; Nelson, 1982). Therefore, search processes 

involving basic knowledge allow search agents to deconstruct a product/process into its functional 

components and better anticipate how each component will work and interact with the other 

components (Arora, Belenzon & Suh, 2021). Consequently, they can identify the best innovation 

paths, especially when the search process is complex (Fleming and Sorenson, 2004), thus leading to 

more valuable innovations. 

Moreover, since basic knowledge provides search agents with novel cognitive schemas by 

departing from more established technical knowledge, its adoption reduces the risk of becoming 

cognitively constrained and trapped in local optima (Cassiman et al., 2018). This improves 

opportunities for value creation. Indeed, search agents may more easily engage in new innovation 

trajectories that eventually lead to technologies conducive to products/processes with higher 

performance and distinctiveness (Sternitzke, 2010; Ke, 2020), which will likely constitute a source 

of differentiation, competitive (first-mover) advantage, and, hence, increased profitability. In 

particular, SMEs appear to be better endowed to profit from basic knowledge since they allow for 

the unexpected and are better able to adapt to changes in the market than incumbent firms (Arora et 

al. 2015; Mowery, 2009). In turn, the opportunity to launch products/processes different from the 

current offerings reduces imitation and infringement risks, hence improving opportunities for value 

capture and increased profit. These are relevant aspects for SMEs, as reliance on basic knowledge 

offers a means to surpass competition and better secure profits (Gopalakrishnan & Bierly, 2006; 

Zona, Zattoni & Minichilli, 2013). 

However, it must be acknowledged that as the level of basicness grows, the benefits of 

having inventions embedding basic knowledge may be outweighed by the fact that resulting 

innovations can be perceived as too alien by customers. That is, innovations highly dependent on 

less known and available solutions may be perceived as too distant from customers’ conventional 



understanding (Arora, Belenzon & Patacconi, 2018; Cassiman, Di Guardo & Valentini, 2009), 

hence undermining their perceived value and, in turn, the profits originating from the underlying 

inventions. This problem may be particularly relevant in the SME context since compared to larger, 

R&D-oriented firms, SMEs may not be considered reliable when launching such novel innovations 

(Salavou & Avlonitis, 2008). Stated more formally: 

Hypothesis 2b (H2b). SME inventions embedding basic knowledge have a curvilinear 

(inverted U-shaped) relation to commercialization success. 

 

2.3. Inventions embedding applied and basic knowledge 

Broadly speaking, applied and basic knowledge are both necessary to innovate. Several studies 

prove this notion, such as those about innovation across science, technology, and business fields 

(e.g., Xu et al., 2018; Surana, Singh & Sagar, 2020) and science-technology interactions in 

knowledge-based economies (e.g., Breschi & Catalini, 2010; Gómez, Salazar & Vargas, 2020; 

Tijssen, 2001). However, these studies look at innovation at higher levels of analysis 

(regions/nations, networks/ecosystems, firms). 

Instead, looking at a single technology, integrating applied and basic knowledge implies that 

search agents engage in more complex recombinant search processes (e.g., Lopez-Vega, Tell & 

Vanhaverbeke, 2016; Rosenkopf & Nerkar, 2001). Indeed, applied and basic knowledge follow a 

different logic and are more salient to different stages of the innovation process, such that the 

advantages of relying on applied knowledge to innovate—being closer to downstream activities—

are downsized by basic knowledge, being closer to upstream and nonmarket activities. As a result, 

the likelihood and speed at which inventions may be converted into innovation are hampered. This 

is exacerbated by the fact that a multidisciplinary competence base is usually lacking during 

technology development (e.g., having search agents able to manage both basic and applied 

knowledge over having search agents mainly able to work with applied knowledge), as in the SME 

context (Bianchi et al., 2010). Consequently, it will be more likely to terminate innovation 



processes before obtaining actual innovation outcomes or, at best, reach innovation outcomes 

slowly. Even if technology development is performed by a balanced pool of search agents, conflicts 

among them are likely to arise when they pursue a different logic, still hindering the more distant 

recombinant search processes merging applied and basic knowledge (Mohammed & Angell, 2004). 

Relatedly, a greater extent of different knowledge (e.g., upstream vs. downstream) will 

likely increase the probability that inventions take more time to reach the market since it is more 

difficult to search and recombine basic knowledge over applied knowledge. That is, applied 

knowledge is more readily available than basic knowledge, so the latter may slow down the 

innovation process when search processes also include applied knowledge. Finally, particularly 

when firms lack resources, as in the case of SMEs, the ability to allocate adequate attention to bring 

distant ideas and perspectives to fruition is reduced (Koput, 1997; Li et al., 2012), thus limiting 

creative attitudes and recombination efforts, which are of vital importance when applied knowledge 

is intended to be combined with basic knowledge. Following these lines of inquiry, we propose the 

following: 

 

Hypothesis 3a (H3a). SME inventions embedding applied and basic knowledge are 

negatively related to the likelihood of innovating and innovation speed in such a way that more 

basic knowledge makes the relevance of applied knowledge smaller. 

 

However, if basic knowledge is managed to be combined with applied knowledge, the latter 

may be renewed. That is, basic knowledge may help to uncover new functionalities of applied 

knowledge and/or expand the recombinant space associated with it (Arora et al., 2021). In turn, the 

risk of developing a technology-based product similar to those based on the (same) applied 

knowledge is reduced. At the same time, the limits to appropriability that characterize reliance on 

applied knowledge may be reduced, with positive implications for profitability. This is particularly 



important when SME inventions and related products must be protected against stronger and 

nonresource-constrained competitors. 

Furthermore, basic knowledge may not only expand the recombinant space associated with 

applied knowledge but also likely does so by providing a better understanding of how the 

knowledge component works (Fleming & Sorenson, 2004). As such, applied knowledge may be 

adopted more effectively, thus allowing the development of more valuable technology-based 

products that can be more easily accepted by customers than other product offerings. Additionally, 

if basic and applied knowledge are combined, the resulting technologies may present a better 

balance between the more common knowledge components, represented by applied knowledge, and 

the less market-related ones, represented by basic knowledge (Du et al., 2019). This may mitigate 

customers’ reluctance to buy an innovation perceptibly distant from their values, as in the case of 

innovations based on inventions mainly embedding basic knowledge. This may be particularly true 

for SME inventions since they may be disregarded if too similar or too novel with respect to other 

offerings, especially those made by larger competitors (UN, 2005). 

 

Hypothesis 3b (H3b). SME inventions embedding applied and basic knowledge are 

negatively related to the likelihood of innovating and innovation speed in such a way that more 

basic knowledge makes the relevance of applied knowledge greater. 

 

3. Data, descriptive statistics and variables 

3.1. Data 

A detailed dataset of individual patents granted in Sweden in 1998 to Swedish firms and individual 

inventors is used. The dataset is based on a survey conducted in 2003−2004. The sample consists of 



867 patents, and the survey response rate is 80 percent.
8
 Since we are only interested in studying 

patents owned by SMEs and inventors, we will only include 825 of these patents in the analysis. 

The dataset is unique because it contains information on whether, when, and how the patent 

has been commercialized as well as the profitability of the commercialization for the patentees. This 

information concerning the commercialization process of the patents was collected by sending 

questionnaires via mail and direct telephone interviews with the inventors (see Svensson 2007 for a 

more detailed description of the collection). The dataset has been complemented with information 

on patent renewal, patent family size, forward citations, and filing routes from the Espacenet (2019) 

website. Thus, the database includes information concerning several traditional patent value 

indicators. Furthermore, backward citations and references to the nonpatent literature for the patents 

were collected from the Orbit Intelligence FullPat database by Questel.
9
 Patents are the unit of 

observation in this study.
10

 Thus, no panel data analysis is possible.
11

 

In the present study, innovation is a term indicating that a product or process innovation 

based on a patent has been introduced into the market—by the inventor, the inventing firm or an 

external firm that has licensed or acquired the patent. This definition is similar to that used in 

previous survey studies (Griliches, 1990; Morgan, Kruytbosch & Kannankutty, 2001; Svensson, 

2007) and similar to the definition used in the CIS surveys, i.e., that the patent has been used 

commercially. 

Since we use data on Swedish inventors and patents, we have to say something about what 

characterizes this country. Sweden is one of the leading countries in the world with respect to R&D 

and innovative activities according to the Innovative Scoreboard Index (EC, 2022). The relative 

strengths are with respect to R&D investment as a share of GDP, public‒private copublications, 

lifelong learning, international scientific copublications, employed ICT specialists, and foreign 

                                                           
8
 For a more thorough description of the dataset, data collection, and nonrespondents, see Svensson (2007). 

9
 See https://www.questel.com/business-intelligence-software/orbit-intelligence/ 

10
 This means that we cannot bundle several patents underlying a specific product/innovation, as done by Wagner & 

Wakeman (2016) and Su & Li (2018). However, in section 3.3.3, we included an explanatory variable, COMPLEXITY, 

which takes account of whether several patents were needed to create an innovation. 
11

 Only a few firms have more than one patent in the database. 



doctorate students. However, relative weaknesses are government support for business R&D, non-

R&D innovation expenditures and medium- and high-tech goods exports. Otherwise, Sweden has a 

large sector of small innovative firms, similar to many other OECD countries. As such, the Swedish 

context can be considered suitable to conduct our study, and related results could be generalizable, 

at least partially, to comparable European countries but also non-European countries. 

 

 

 

3.2. Descriptive statistics 

The 825 patents and the patent innovation rate across firm groups are described in Table 1.
12

 As 

many as 408 patents (49 percent) were granted to individual inventors, and 117, 158, and 142 

patents were granted to medium-sized firms (51–250 employees), small firms (11–50 employees), 

and microfirms (2–10 employees), respectively. The innovation rate for the whole sample is 62 

percent. The higher innovation rate in the present study compared to that found in previous studies 

likely results from the focus solely on patents owned by small firms and individual inventors, as 

large (multinational) firms have many more defensive patents than small firms (Svensson 2002). As 

shown in Table 1, the innovation rate for firm groups is between 68 and 75 percent, whereas the rate 

for individuals is 51 percent.
13

 

[Table 1] 

In the upper part of Table 2, the number of backward citations and nonpatent literature references – 

proxies for applied and basic knowledge, as described in section 3.3 – across innovations are 

shown. Patents leading to innovation have more backward citations and nonpatent references than 
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 Regarding the filing routes, only eight of 867 patents were first filed abroad, and all of these were in the US. No 

patent was filed first with the EPO or WIPO and thereafter in Sweden. This pattern markedly contrasts with the filing 

routes of multinationals (see, for example, Guellec and van Pottelsberghe 2000). Various explanations may account for 

this result; for example, the patentees in the database used in this study are individuals and small firms, and the data 

cover patent filings in the 1990s, when it was still common to first file patents in the home country. 
13

 A contingency table test suggests that this difference in the commercialization rate between firms and individuals is 

statistically significant at the one percent level (chi-square value of 30.55 with 3 df.). 



patents without innovation. The differences are statistically significant. In the lower part of the 

table, we present the shares of patents that have at least one backward citation or nonpatent 

reference. Again, patents leading to innovation have significantly higher shares. 

[Table 2] 

Similar statistics are shown for patents with an innovation in Table 3. Profitable patents have 

significantly more backward citations than patents that have a ‘break-even’ or ‘loss’ outcome. There 

are also some differences with respect to the number of nonpatent literature references, but they are 

not significant. 

[Table 3] 

3.3. Variables 

3.3.1. Dependent variables 

In the main empirical analysis, we estimate how the characteristics of inventions’ knowledge base 

affect 1) the probability that innovation occurs; 2) how long it takes until inventions turn into 

innovations, i.e., innovation speed; and 3) commercialization success, i.e., profitability. 

Probability of innovation (INNOVi). The probability that innovation occurs is a dummy 

variable that takes the value of 1 if the patent has been introduced on the market as a new 

product/process and 0 otherwise. 

Innovation speed (SPEEDi). Innovation speed is a random variable showing how many years 

it takes until innovation occurs for patent i, measured from the time point of the patent application.
14

 

Commercialization success (SUCCESS). Commercialization success represents patent 

commercialization performance in terms of accumulated profit estimated in 2004. In this year, 

inventors were asked to estimate the overall profitability of the patent. Profitability can only take on 

three different discrete values denoted by index k: Profit, k=2; Break-even, k=1; and Loss, k=0. 

Since this variable is measured as a categorical variable and not as a continuous variable and 
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 The application year is the easiest starting time point to measure and is directly available from the Swedish National 

Patent Office (PRV). Obviously, a patent can be commercialized before the grant date, but not before the application 

date. 



owners were allowed to estimate whether commercialization would be profitable, we avoid serious 

problems with differences in accumulative profits for innovations that have various times in the 

market. 

 

3.3.2. Explanatory variables 

Applied knowledge (APPLIED). This variable is proxied by the number of backward citations to 

previous patents – excluding self-citations – from the patent and its family members (Ahuja & 

Morris Lampert, 2001; Ardito et al., 2016; Nerkar & Shane, 2007; Wong, 2013). Indeed, backward 

citations constitute the prior technological knowledge upon which a patent is based. Thus, they 

identify the link of an invention to solutions already applied to solve certain technological 

problems. 

Basic knowledge (BASIC). This variable is proxied by the number of references to the 

nonpatent literature (Basse Mama, 2018; Fleming & Sorenson, 2004; Roach & Cohen, 2012; Sung 

et al., 2015). Notably, this type of reference still represents a share of the prior knowledge upon 

which an invention is based. However, it is knowledge that originates from basic research activities 

and/or that is not necessarily applied in products or even other inventions (e.g., knowledge diffused 

in journal articles, conference proceedings, books, and technical reports). 

Overall, this recalls the view that applied knowledge is often codified in patents, while basic 

knowledge is codified in different types of documents, such as those previously mentioned (Rogers, 

2010; Crowman, 2013). 

APPLIED*BASIC is an interaction variable between the two independent variables. 

Squared values of APPLIED and BASIC are also included for hypothesis testing and/or robustness 

checks. Patent applicants often add references to other patents and the nonpatent literature when 

submitting their applications. However, it is always the examiner at the patent office who ultimately 

decides which citations and references to include. Thus, both APPLIED and BASIC can be regarded 

as exogenous variables. 



 

3.3.3. Control variables 

We implement a set of controls identified in previous research (Svensson, 2007; Maurseth & 

Svensson 2020) covering patent, inventor, firm, and financial variables.
15

 Inventor involvement in 

the commercialization process is important due to tacit knowledge (Maurseth & Svensson, 2020). 

We therefore control for the degree to which commercialization success depends on whether the 

inventor takes part in the commercialization process (ACTIVE). This variable is defined only for 

commercialized patents and can be included only in the profitability model. 

Several characteristics of the inventors and the inventing firm that might be related to the 

probability of commercialization and successful commercialization are included as control 

variables. However, since a high proportion of the patents are owned by individual inventors 

(running solo firms), we are not able to include traditional explanatory variables such as firm age 

and variables from the company’s financial statements. The size of the inventing firm is measured 

by three additive dummies: MEDIUM, SMALL and MICRO. The reference group is then that the 

patent is owned by inventors with solo firms. 

We have three variables representing the financial situation of the invention. GOVFIN 

measures the percentage of R&D costs covered by government agencies. Similarly, the variable 

PRIVFIN shows the percentage of the R&D costs covered by external private venture capital 

(PVC). OTHFIN represents the percentage of R&D costs covered by universities and research 

foundations. 

On the invention level, we have several variables. Sometimes, several patents are required to 

create a product. We consider this issue in the estimations. The dummy variable COMPLEXITY 

assumes a value of 1 if more than one patent is required to create a product and 0 otherwise. 

INVNBR measures the number of inventors of the patent. DURE measures the number of years 

between patent application and patent grant. UNIV is a dummy variable that takes the value of 1 if 
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 Since many patent-owning inventors in the database do not run any company, traditional explanatory variables such 

as age of the company and variables from the financial statement of the company cannot be included in the estimations. 



the invention behind the patent was created at a university and 0 otherwise. SEX and ETH measure 

the shares of female and non-European inventors. Definitions and descriptive statistics of the 

explanatory variables are shown in the Appendix, Table A1. 

Since patenting and innovations are known to vary considerably between industries and 

technology classes (Levin et al. 1987), we also include additive dummies for 25 different industry 

classes designated by Breschi et al. (2004).
16

 These are based on the IPC technology class system. 

A patent may belong to several different IPC classes. However, it is not possible to determine the 

main IPC class since the classes are listed in alphabetic order for each patent in Espacenet (2019). 

Therefore, a patent in our database may belong to as many as four different industry classes. 

Consequently, the 25 technology class dummies are not mutually exclusive. The distribution of 

technology classes on patents is shown in Appendix Table A2. The data are divided into six 

different kinds of regions according to NUTEK (1998): large-city regions, university regions, 

regions with important primary city centers, regions with secondary city centers, small regions with 

private employment, and small regions with government employment. Five additive dummies are 

included in the estimations for these six groups. 

 

3.3.4. Possible endogeneity problems 

Concerning endogeneity, it can occur (1) when the outcome variable is a predictor of an explanatory 

variable and not simply a response to it, called “simultaneity bias”, and (2) when important 

explanatory variables are omitted from the model, called “omitted variable bias”. 

In our case, commercialization always occurs after patent development, i.e., patent 

characteristics cannot be influenced by the likelihood and/or speed of commercialization, as well as 

by its success. Thus, simultaneity bias is unlikely. However, backward citations can be assigned by 

either the applicant or a patent examiner. In our database, nonpatent references can be divided into 

references made by applicants, BASIC-A, and examinators, BASIC-E. It is more likely that 
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 There are 30 industry classes in Breschi et al. (2004). However, we had to reduce the number of industry classes to 25 

due to the limited number of observations in some classes (see Appendix Table A2). 



simultaneity problems would occur if nonpatent references by the applicant are included. Therefore, 

we will re-estimate all models including BASIC-E instead of BASIC to check for possible 

simultaneity problems. 

Omitted variable bias may be an issue if key explanatory variables are excluded in the 

estimations. A natural objection against our model would be that traditional firm variables 

measuring age, profitability, growth, human capital, and R&D investment are not included. Since a 

high proportion of the patents in the database are owned by individual inventors who are sole 

proprietors, we are not able to include traditional explanatory variables normally available from 

incorporated companies’ financial statements. However, we do have some of them, and the most 

important is size of the inventing firm/inventor: MEDIUM, SMALL, and MICRO, where the 

reference group is inventors with solo firms. Notwithstanding, by including as many variables as 

available on inventor and invention level, we argue that omitted variable bias is minimized. This is 

consistent with the majority of invention-level studies (e.g., Nerkar & Shane, 2007; Messeni 

Petruzzelli et al., 2015; Su & Lin, 2018), which do not necessarily include firm-level variables 

because they focus on the invention level. Last but not least, the dummies for technology classes 

and regions described above will represent unobserved factors that may further reduce omitted 

variable bias. 

 

4. Statistical models 

Since the innovation analysis focuses on an “event” to occur, probit and survival (duration) analyses 

are used in the statistical estimations. The event here is that the patent turns into an innovation, and 

it is also measured when innovation occurs. First, a survival distribution function and a hazard 

function are estimated and plotted in the empirical analysis. The survival function, S(t) in equation 

(1), shows how a large share of the patents survive beyond a time point, t. The hazard function, h(t) 

in equation (2), shows the conditional probability of a patent leading to innovation in a specific time 

period t, given that it has “survived” (no innovation) until time point t. The hazard can also be 



expressed as a function of the probability density function, f(t), and the survival function (Allison, 

2010): 

𝑆(𝑡)   =   𝑃𝑟( 𝑇 > 𝑡)   =  1  −  𝐹(𝑡) ,                        (1) 

ℎ(𝑡)   =  
𝑓(𝑡)

𝑆(𝑡)
  =   𝑙𝑖𝑚

𝛥𝑡→0
 
𝑃𝑟( 𝑡 ≤ 𝑇 < 𝑡 + 𝛥𝑡|𝑇 ≥ 𝑡)

𝛥𝑡
  .            (2) 

 

4.1. Probit model 

In the analysis of probability, a probit model (Hoetker, 2007) estimates how different factors 

influence the decision to commercialize the patent: 

𝐼𝑁𝑁𝑂𝑉𝑖
∗   =   𝑿𝒊𝜽  +  𝑢𝑖 ,                   (3) 

𝐼𝑁𝑁𝑂𝑉𝑖   =  1  if 𝐼𝑁𝑁𝑂𝑉𝑖
∗   >  0  and  0  otherwise,                      

where INNOVi* is a latent index, Xi is a vector of explanatory variables that influence the 

probability that the patent is commercialized and θ is a vector of parameters to be estimated. ui is a 

vector of normally distributed residuals with a mean of zero and a variance equal to 1. 

 

4.2. Survival model 

In the survival analysis, the dependent variable, Ti, is a random variable representing the number of 

years until commercialization started for patent i, measured from the time point of the patent 

application.
17

 Most patents in the database were applied between 1994 and 1997, and the end point 

of observation in the database was 2004. Patents not yet commercialized in 2004 are “right-

censored” (341 observations). Furthermore, an expired patent cannot be commercialized. If the 

patent is not yet commercialized and expires before 2004, the patent is right censored in this 

expiration year.
18

 A total of 185 patents are right censored before 2004 due to expiration and 156 at 

the end point of observation. 
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 This assertion requires some modification. An expired patent cannot be commercialized. However, the invention 

behind the patent can still be commercialized. This occurs only once in the database. This observation is considered as a 



Measurement of the starting point of commercialization in years is a rough measure. 

Therefore, SPEEDi is “interval-censored” for commercialized patents (526 observations). If the 

patent is commercialized within the first year, SPEEDi takes an interval-censored value between 0.1 

and 1, if within the second year, between 1.1 and 2, etc. Since interval-censored observations are 

included, the accelerated failure time (AFT) model is the appropriate statistical model
19

 (Allison, 

2010): 

𝑙𝑜𝑔(𝑆𝑃𝐸𝐸𝐷𝑖)   =   𝛽0  +   𝛽1𝑥𝑖1  +   𝛽2𝑥𝑖2 + . . . . . . + 𝛽𝑘𝑥𝑖𝑘  +  𝜎𝜂𝑖 ,          (4) 

where  is a random disturbance term, the ’s and  are parameters to be estimated, and x are 

explanatory variables (the same as in the probit model). η:s can have various distributions 

corresponding to different AFT models, e.g., the log-normal, log-logistic, exponential, Weibull and 

gamma models. All these models are run in the empirical part. Using likelihood-ratio tests, it is 

possible to decide which of the models best fits the data. After recalculation of the parameters, it 

can be estimated how an increase in the explanatory variables influences the survival time. 

 

4.3. Profitability model 

The dependent variable SUCCESS is an ordinal one. Since it is possible to order the three 

alternatives, an ordered probit model is applied
 
and can be described as follows (Greene, 1997): 

                                      𝑦𝑖
∗   =   𝑿𝒊𝜶  +  𝜀𝑖  ,                                (5) 

where Xi is a vector of patent characteristics and technology dummies. The vector of coefficients, 

, shows the influence of the independent variables on the profit level. The residual εi represents the 

                                                                                                                                                                                                 
noncommercialized patent and is right-censored. The fact that noncommercialized patents are right censored in the 

expiration year does not alter the results of the estimations. 
19

 We also estimated how explanatory variables influence the commercialization choice using the Cox (1972) 

proportional hazards model. The results for the main variables of the Cox estimations are similar to those of the AFT 

models. A disadvantage of the Cox model is that the dependent variable cannot be interval censored. We make two 

adjustments to minimize this problem. First, if the patent is commercialized within the first year, SPEED takes the 

midpoint value of that period, i.e., 0.5; if within the second year, the value is 1.5, etc. Second, we use an approximation 

of the Cox model, called the “exact method”, to account for the fact that two events do actually not occur at the same 

moment, even if there are tied event times in the sample (Allison, 2010). On the other hand, an advantage of the Cox 

model compared to the AFT model is that one does not need to choose between different residual distributions. Another 

advantage is that the quantitative effects can be interpreted in terms of how an increase in the explanatory variables 

affects the hazard. However, all in all, the AFT model is considered as the main model due to the interval censoring. 



combined effects of unobserved random variables and random disturbances. The residuals are 

assumed to have a normal distribution, and the mean and variance are normalized to 0 and 1, 

respectively. The latent variable, yi
*
, is unobserved. The model is based on the cumulative normal 

distribution function, F(X), and is estimated via maximum likelihood procedures. The difference 

from the two-response probit model here is that a parameter (threshold value), , is estimated by . 

The probabilities Pi(y=k) for the three outcomes are as follows: 

                              

𝑃𝑖(0)   =  𝐹(−𝑿𝜶)  ,

                             𝑃𝑖(1)   =  𝐹(𝜔 − 𝑿𝜶)   −  𝐹(−𝑿𝜶)  ,

              𝑃𝑖(2)   =  1  −  𝐹(𝜛 − 𝑿𝜶)  ,

           (6) 

𝑤ℎ𝑒𝑟𝑒  ∑ 𝑃𝑖(𝑘)   =  1

2

𝑘=0

 . 

The threshold value ω must be larger than 0 for all probabilities to be positive. 

An objection to the sample and the chosen statistical model would be that the patents, which 

are commercialized, are not a random sample of patents but have specific characteristics that led to 

them being commercialized in the first place. This could result in misleading parameter estimates. 

An appropriate statistical model is therefore an ordered probit model with sample selectivity 

(Greene 2002). In the first step, a probit model estimates how different factors influence the 

decision to commercialize the patent: 

𝑑𝑖
∗   =   𝑿𝒊𝜽  +  𝑢𝑖 ,                         (7) 

𝑑𝑖   =  1  𝑖𝑓 𝑑𝑖
∗   >  0  𝑎𝑛𝑑  0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                             

where di* is a latent index and di is the selection variable indicating whether the patent is 

commercialized. Xi is a vector of explanatory variables that influence the probability that the patent 

is commercialized, and θ is a vector of parameters to be estimated. ui is a vector of normally 

distributed residuals with a mean of zero and a variance equal to 1. 



From the probit estimates, the selection variable di is then used to estimate a full information 

maximum likelihood model of the ordered probit model (Greene 2002).
20 

In addition, the first-step 

probit model is re-estimated. The residuals [ε, u] are assumed to have a bivariate standard normal 

distribution and correlation ρ. There is selectivity if ρ is not equal to zero. 

 

5. Results of the estimations 

In Figure 1, the hazard and inverted survival functions across backward citations (APPLIED) are 

estimated by the life-table method (actuarial method).
21

 The patent application year is set to 0. The 

inverted survival functions increase steeply at the beginning, but they level off after 4–5 years. The 

hazard function (conditional probability) is highest during the first three years after the application. 

The survival functions suggest that the gap increases over time and that the hazard is higher 

primarily for patents with backward citations. Both a log-rank test and a Wilcoxon test (see Allison, 

2010) show the difference between the survival functions to be highly significant.
22

 Similar 

functions for patents with and without nonpatent references (BASIC) are shown in Figure 2. Patents 

with nonpatent references have both a higher innovation rate and a higher hazard function than 

patents without such references, with a significant difference between the groups.
23

 

[Figure 1] 

The estimates in Figures 1 and 2 show the bivariate correlation between 1) likelihood and 

speed of innovation and 2) references to previous patents and the nonpatent literature. Now, we turn 

to the multivariate analysis. In all three models (probit, survival, and ordered probit), we include the 

same explanatory variables, with some exceptions. The financing variables are not included in the 
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 Note that this is not a two-step Heckman model. No lambda is computed and used in the second step. 
21

 The survival functions are inverted in the figures for pedagogical reasons. Survival means that the patent is not 

commercialized. Therefore, the normal survival function would start at 1 and then decrease. 
22

 The chi-squared statistics are 11.94 and 7.19, respectively, significant at the 1% level for 1 df. 
23

 The chi-squared statistics for the log-rank and Wilcoxon tests are 7.10 and 3.51, respectively, significant at the 1% 

and 10% levels for 1 df. 



profitability model, and ACTIVE is defined only for commercialized patents and can be included 

only in the profitability model (section 5.3). 

[Figure 2] 

5.1. Estimations of the probit model 

The probit estimations are shown in Table 4. As an overall goodness-of-fit test, the percentage of 

correctly predicted observations is approximately 65 percent in all models. APPLIED always has a 

positive and significant relation to the probability of innovation. BASIC and the interaction term 

(APPLIED*BASIC) are never significant. The squared values are also not significant. Regarding 

marginal effects (Model 3a), if a patent has one more backward citation (APPLIED increases by 1), 

then the probability of an innovation increases by 1.29 percentage units. 

[Table 4] 

5.2. Estimations of the survival model 

The results of the AFT model are described in Table 5. Estimating the model with different residual 

distributions shows that the lognormal distribution had the best overall performance with respect to 

the likelihood value.
24

 The results for APPLIED echo the positive relation found in the probability 

model. More backward citations imply a faster innovation speed. The result for BASIC is 

ambiguous. The sign and significance of the parameter vary depending on whether squared 

variables (Model 3b) or interaction terms (Model 3c) are included, and in many of the models, 

BASIC has no relation at all to the time-to-market. Finally, the estimated parameter of the 

interaction term APPLIED*BASIC is positive and significant in Model 3c. Thus, patents combining 

applied and basic knowledge have a longer time-to-market for innovation. The quantitative 

interpretation of the estimated parameters is as follows: if the number of backward citations 

(APPLIED) increases by 1, the time to launch a product decreases by 2.69 percent (Model 3a) or 
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 The most general distribution, gamma, did not converge. 



4.51 percent (Model 3c).
25

 Concerning the interaction effect, if APPLIED*BASIC increases by 1, 

then the time to launch a product increases by 1.43 percent (Model 3c). 

[Table 5] 

5.3. Estimations of the profitability model 

The results of the ordered probit estimations with sample selectivity are shown in Table 6. 

Parameter ρ is significant at the 1 percent level in all estimations. This indicates that selectivity is 

present and that the two-step procedure should be used. Furthermore, the likelihood ratio tests show 

that the explanatory power of the models improves significantly when selectivity is used. The 

selection equation estimations are almost identical to the results of Model 3a in Table 4. 

In contrast to the results in sections 5.1 and 5.2, APPLIED never has any positive relation to 

the profitability of commercialization. On the other hand, BASIC always has a strong, positive and 

significant relationship with profitability. However, the squared value of BASIC has a negative and 

significant impact, indicating that innovations resulting from inventions embedding basic 

knowledge lose their profitability potential. Finally, the interaction term APPLIED*BASIC is never 

significant. 

Turning to the size interpretation of the important estimated parameters, if BASIC increases 

by 1, the probability of successful commercialization increases by 2.3 percentage points, while the 

probability of a break-even or loss result decreases by 0.8 and 1.5 percentage points, respectively 

(Model 3c). 

[Table 6] 

Summarizing the results of all the statistical models, APPLIED is positively related to the likelihood 

of innovating and innovation speed (i.e., accelerates the innovation process), thus confirming H1a. 

However, H1b is not supported since APPLIED has no significant relation to SUCCESS, probably 

indicating that modest profits can still be attained. BASIC has inconsistent effects on the likelihood 

of innovating and on innovation speed. Thus, we contend that H2a is not supported. Conversely, 
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 The quantitative interpretation of the effect of the explanatory variables (also dummies) on survival time is carried out 

as follows. If the explanatory variable increases by 1 unit, the survival time changes by 100(e

–1)%. 



H2b is confirmed since the linear term of BASIC is positively related to SUCCESS (i.e., faster 

innovation speed), while its squared term is negatively related to SUCCESS (i.e., slower innovation 

speed), thus suggesting an inverted U-shaped relationship. The interaction term is negatively related 

to innovation speed but has no clear effect on the likelihood of innovating, partially supporting H3a. 

H3b is not supported since no significant relation of the interaction terms is found with respect to 

the profitability measure. 

 

5.4. Robustness 

We extended the analysis of backward citations to test for the originality of the patent with respect 

to both the technology class and geographical origin of the cited patents, as suggested by 

Trajtenberg et al. (1997). Technology and geography represent the technological and geographical 

roots of the patent. The larger the value of these Herfindahl indexes is, the broader the technological 

and geographical roots of the underlying research.
26

 Furthermore, we also measured the maturity of 

backward citations based on the maximum, average, and minimum time between the application 

dates of cited and citing patents. However, these extended estimations did not show any clear 

pattern for technology, geography or maturity in any of the models (probability, survival, or 

profitability). In fact, the estimated parameters of these variables were largely insignificant. This 

may further reinforce the reliability of our main outcomes. 

Finally, we measure nonpatent references as citations made by patent examiners, BASIC-E 

(instead of BASIC), and re-estimate all models (see section 3.3.4). By excluding references made by 

applicants, we hoped to avoid possible endogeneity problems. The results in Appendix Table A3 are 

similar to those in Tables 4–6. The recombination effect (APPLIED*BASIC) has a somewhat lower 

significance level in the survival model (Model 3c), and BASIC is only significant at the 10-percent 

level in Model 3a when examining the profitability for commercialization. Otherwise, we do not 

find any systematic differences with the baseline estimations. 

                                                           
26

 These are constructed as Herfindahl indexes, as suggested by Trajtenberg et al (1997). 



 

6. Discussion and conclusions 

This paper studies whether and how the characteristics of the knowledge embodied in SME 

inventions are related to their innovation and commercialization success. Hypotheses concerning 

these relationships are proposed following the recombinant search and technological opportunities 

perspectives. Econometric estimations assessing these arguments are based on a sample of 

individual Swedish patents owned by SMEs and inventors, information on the invention 

characteristics and commercialization journey of which is available from primary and secondary 

sources. 

The results reveal that SME inventions embedding applied knowledge, ceteris paribus, are 

more likely to lead to a product and do so more quickly. This is in line with arguments contending 

that applied knowledge is easier and safer to apply to commercial ends; in addition, it is more 

established, hence facilitating market acceptance (Adner & Snow, 2010; Ardito et al., 2016; Nerkar, 

2003). These are all advantages for SMEs seeking to minimize risks and R&D costs. On the other 

hand, innovation originating from such inventions appears to be neither detrimental to profitability 

nor exceptionally profitable. This can be explained by the weak distinctiveness of these innovations 

with respect to competing offerings and/or by the fact that the inability to effectively capture the 

created value (Ardito et al., 2016; James et al., 2013) prevents the creation of superior competitive 

advantage; nevertheless, modest profit may be attained. Conversely, inventions building on basic 

knowledge, ceteris paribus, are related neither to a high probability of innovation nor to a fast 

launch of a product. Explanations can be found in the lack of capacity of SMEs in terms of 

knowledge distant from the market logic and the need to engage in more resource-intensive and 

riskier innovation projects (Damanpour, 2010; Lefebvre, 2020). However, when such inventions 

become innovations, they are profitable; only innovations resulting from inventions mainly 

embedding basic knowledge lose their profit potential. Indeed, distinctive and better performing 

innovations may originate from SME inventions embodying basic knowledge, and these can be 



more easily protected (Fleming & Sorenson, 2004; Ke, 2020). Notwithstanding, an excessive 

reliance on basic knowledge could lead to innovations not being easily accepted by customers, 

especially if commercialized by SMEs (Arora et al., 2018; Salavou & Avlonitis, 2008). Finally, 

inventions based on the recombination of applied and basic knowledge complicate the innovation 

process (Du et al., 2019) such that product launch is slowed, although conclusions on the 

probability of a product launch or on profitability cannot be drawn. 

 

6.1 Implications for theory 

From a theoretical perspective, first, we add to the literature dealing with the conversion of 

inventions into products, with a focus on a single technology. Notably, factors at this level of 

analysis have been recognized to have relevant explanatory power in predicting innovation 

performance (Maurseth & Svensson, 2020; Wagner & Wakeman, 2016). Among these, technology 

attributes have been highlighted (Ardito et al., 2020; Nerkar & Shane, 2007). We add to this line of 

inquiry by delving into the characteristics of inventions’ knowledge base in terms of reliance on 

applied and basic knowledge. In fact, scant attention has been given to this issue in general, and the 

few studies considering it provide contradictory results (Su & Lin, 2018; Wagner & Wakeman, 

2016). Particularly, our results are in line with Su & Lin (2018) for what concerns the role of 

applied knowledge; that is, applied knowledge increases both innovation likelihood and innovation 

speed. Conversely, we find the effects of basic and applied knowledge on innovation likelihood and 

speed as negligible, in accordance with Wagner & Wakeman (2016). On one side, we acknowledge 

our findings are not fully coherent with any of the previous studies. On the other side, they are at 

least coherent with one or the other study when focusing on a given type of knowledge sourcing, 

avoiding creating further confusion among the specific effects of applied and basic knowledge and, 

hence, allowing us to offer more reliable conclusions. 

Relatedly, all in all, we further corroborate the recombinant search and technological opportunities 

perspectives concerning the view that knowledge components shaping inventions’ knowledge base 



are conducive to explaining innovation performance by affecting value creation and appropriation 

opportunities. We specifically do so by matching inventions with related products and profitability 

level, information that is usually extremely difficult to collect, especially in the SME context. To 

the best of our knowledge, no prior research has linked factors at the invention level – including 

characteristics of the knowledge base – to a direct profitability measure, thus improving the 

reliability of our contribution. 

Second, studies on this topic focused on the SME context are absent. Specifically, by 

showing whether and how SME inventions embedding applied and/or basic knowledge are related 

to innovation and commercialization success, we contribute to identifying how SMEs should design 

R&D processes to innovate. That is, we complement the literature seeking to provide a better 

understanding of how to improve the innovation performance of SMEs (Kumar et al., 2012; 

Moreno‐Moya & Munuera‐Aleman, 2016; Parida, Westerberg & Frishammar, 2012; Salavou & 

Avlonitis, 2008) by exploring a novel level of analysis (i.e., the invention level instead of the more 

frequently considered firm and network levels) and considering multiple performance measures 

simultaneously. 

Finally, researchers have studied the tendency to rely on applied/basic knowledge to develop 

an invention and whether this tendency has improved certain quality indicators, such as the impact 

of the invention in terms of knowledge flow, for developing subsequent inventions (Callaert, 

Grouwels & Van Looy, 2012; Callaert et al., 2006; Messeni Petruzzelli et al., 2015; Tijssen, 2002). 

However, studies on actual innovation and commercialization success are scarce. Moreover, an 

accurate analysis of the complementarity between basic and applied knowledge (i.e., their 

combination effect) when capturing whether an invention leads to an actual product/process is also 

missing. This is a matter for research that seeks to understand the degree to which pursuing R&D 

activities that follow different trajectories is conducive to better innovation performance, e.g., 

research about science-technology linkages (Acosta & Coronado, 2003; Breschi & Catalini, 2010). 

 



6.2 Implications for practice 

Our results have several important implications for SME managers and policymakers. We advise 

managers who want to innovate quickly to exploit inventions embodying applied knowledge. 

However, this comes with the risk of not reaping relevant profits, meaning that such approaches 

may help SMEs survive in the short term but may not help them attain a sustainable competitive 

advantage. Conversely, managers seeking greater profit should invest in inventions embedding 

basic knowledge even if they may never reach the market or reach the market slowly. Thus, SMEs 

leveraging inventions embedding basic knowledge face relevant risks if they need to enter the 

market quickly or do not have slack resources to compensate for failure. One could call for an 

ambidextrous approach that involves applied and basic knowledge. However, we discourage 

managers from investing in inventions embodying both types of knowledge. Indeed, the innovation 

processes will be slower, without any assurance of higher profits. Instead, we suggest that SME 

managers develop a technology portfolio including inventions based on either applied or basic 

knowledge to address different innovation objectives. Overall, being aware of which technology 

characteristics favor higher commercialization success places SME managers in a better position to 

design recombinant search processes in R&D activities, thus making the front end of product 

development less fuzzy (Markham, 2013). 

From a policy perspective, relying on basic knowledge helps SMEs develop inventions that 

are more profitable throughout the innovation process. Thus, policymakers should reduce the risks 

associated with managing basic knowledge, which are particularly harmful for SMEs. In particular, 

since SMEs appear to effectively manage applied knowledge to innovate, it is important that policy 

actions be directed toward helping SMEs reconcile applied and basic research. This can be done, for 

instance, by providing incentives to SMEs to engage in projects with lower technology readiness 

levels, where publishing scientific articles is mandatory. The rationale would extend SMEs’ 

absorptive capacity with regard to basic knowledge. Other actions may further encourage 

cooperation between universities and firms, e.g., granting public R&D financing or proposing 



incentives to participate in university spin-offs and facilitate technology transfer from the academic 

to the entrepreneurial sectors. 

 

6.3 Limitations and future research directions 

As with most studies, this paper has several limitations that may open further lines of inquiry. First, 

the sample is composed of Swedish patents granted in 1998. Thus, future research should 

corroborate our findings using a wider and more recent sample of patents. In turn, researchers could 

invest effort in building datasets linking inventions to new products instead of using imperfect 

proxies for innovation, such as patent forward citations. Moreover, as mentioned in section 3.1, 

Sweden is one of the innovation leaders in the world, and the results would be applicable for 

inventors/SMEs in similar countries. Future research may conduct similar studies in different 

contexts, e.g., emerging markets and less innovative economies. 

Second, some nonsignificant results have emerged. This does not mean that a certain variable has 

no relevance at all, since there may be moderating variables that can strengthen/decrease the effect 

of the considered variable on a certain performance outcome. Future studies may identify and 

investigate relevant moderating factors, perhaps at different levels of analysis. 

Third, since many patent-owning inventors in the database do not run any company, traditional 

explanatory variables such as the age of the company and variables from the financial statement of 

the company cannot be included in the estimations. While this issue is not necessarily constraining 

in providing reliable results at the invention level, as in our case, future studies may still want to 

adopt multilevel studies of technology commercialization (e.g., Ardito et al., 2020). 

Fourth, we acknowledge that patents represent only a subsample of all developed inventions. 

Further research could consider this issue. Finally, we acknowledge that studies are delving into 

specific types of nonpatent references. An extension of this would be disentangling the effects of 

each type of nonpatent reference (e.g., Marx & Fuegi, 2020). 
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TABLES 

 

Table 1. Patents leading to innovation across firm sizes, number of patents and percent. 

Kind of firm where the invention was created 
Innovation 

Total 
Percent 

commercialized 
Yes No 

Medium-sized firms (51−250 employees)   88   29 117 75 % 

Small firms (11−50 employees) 108   50 158 68 % 

Micro-firms (2−10 employees) 105   37 142 74 % 

Individual inventors (1−4 inventors) 207 201 408 51 % 

Total 508 317 825 62 % 

 

 

 

 

Table 2. Backward citations and non-patent literature references across innovation, average 

number, and percent. 

Measure of backward citations and non-patent 

references 

Innovation 

All 

Difference 

between means 

(t-test) 
Yes No 

Average number of backward citations per patent    4.78    2.81   4.02   5.43 *** 

Average number of non-patent references per patent    0.71    0.52   0.63 1.74 * 

    Chi-square test 

(1 df) 

Percent of patents with at least 1 backward citation 

Percent of patents with at least 1 non-patent reference 

59.4 

40.7 

45.7 

30.0 

54.2 

36.6 

14.77 *** 

  9.77 *** 

Total number of patents 508 317 825  

 

 

 

Table 3. Backward citations and non-patent literature references across profitability, average 

number. 

Measure of backward citations and non-patent 

references 

Commercialization outcome  

Profit Break-even Loss All 

Average number of backward citations per patent 

Average number of non-patent references per patent 

   5.49 

   0.79 

   3.86 

   0.45 

4.15 

0.75 

  4.81 

  0.71 

Note: For backward citations, the mean for ‘profit’ is significantly different from ‘break-even’ at the  

10-percent level, and from ‘loss’ at the 5-percent level. For NPLs, no means are significant different from each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Empirical estimations of the Probit model. 
Dependent variable INNOV 

Statistical model Probit model 

Explanatory 

variables 

Model 1a Model 

1b 

Model 2a Model 2b Model 3a Model 3b Model 3c Model 3d 

APPLIED 

 

(APPLIED)
2 

 

BASIC 

 

(BASIC)
2
 

 

APPLIED*BASIC 

0.035*** 

(9.8 E-3) 

 

0.036** 

(0.017) 

–1.0 E-4 

(7.0 E-4) 

 

 

 

 

0.057 

(0.041) 

 

  

  

 

 

 

0.059 

(0.066) 

2.0 E-4 

(4.4 E-3) 

0.034*** 

(0.010) 

 

 

0.016 

(0.038) 

 

0.043** 

(0.019) 

–1.0 E-4 

(7.0 E-4) 

–0.080 

(0.079) 

6.8 E-3 

(5.5 E-3) 

0.044*** 

(0.013) 

 

 

0.057 

(0.052) 

 

 

–8.8 E-3 

(6.8 E-3) 

0.044** 

(0.020) 

2.0 E-4 

(9.0 E-4) 

–0.018 

(0.11) 

5.2 E-3 

(6.1 E-3) 

–7.2 E-3 

(8.4 E-3) 

FIRM1 

 

FIRM2 

 

FIRM3 

0.50*** 

(0.16) 

0.30** 

(0.14) 

0.54*** 

(0.14) 

0.50*** 

(0.16) 

0.30** 

(0.14) 

0.54*** 

(0.14) 

0.51*** 

(0.16) 

0.32** 

(0.13) 

0.57*** 

(0.14) 

0.51*** 

(0.16) 

0.32** 

(0.13) 

0.57*** 

(0.14) 

0.50*** 

(0.16) 

0.30** 

(0.14) 

0.53*** 

(0.14) 

0.49*** 

(0.16) 

0.30** 

(0.14) 

0.54*** 

(0.14) 

0.48*** 

(0.16) 

0.29** 

(0.14) 

0.52*** 

(0.14) 

0.48*** 

(0.16) 

0.29** 

(0.14) 

0.53*** 

(0.14) 

STATFIN 

 

PRIVFIN 

 

OTHFIN 

 

COMPLEXITY 

 

INVNBR 

 

DURE 

 

UNIV 

 

SEX 

 

ETH 

–0.01*** 

(2.8 E-3) 

2.0 E-4 

(3.6 E-3) 

–2.1 E-3 

(5.1 E-3) 

0.37*** 

(0.13) 

–0.015 

(0.079) 

0.011 

(0.029) 

–0.34 

(0.31) 

0.30 

(0.33) 

–0.39 

(0.33) 

–0.01*** 

(2.8 E-3) 

2.0 E-4 

(3.7 E-3) 

–2.1 E-3 

(5.1 E-3) 

0.37*** 

(0.13) 

–0.015 

(0.079) 

0.011 

(0.029) 

–0.34 

(0.31) 

0.30 

(0.34) 

–0.39 

(0.33) 

–9.1 E-3*** 

(2.8 E-3) 

6.9 E-4 

(3.6 E-3) 

–2.3 E-3 

(5.1 E-3) 

0.41*** 

(0.12) 

–0.015 

(0.079) 

–1.8 E-3 

(0.029) 

–0.40 

(0.31) 

0.20 

(0.33) 

–0.32 

(0.31) 

–0.01*** 

(2.8 E-3) 

7.0 E-4 

(3.6 E-3) 

–2.3 E-3 

(5.1 E-3) 

0.41*** 

(0.12) 

–0.015 

(0.079) 

–1.9 E-3 

(0.029) 

–0.40 

(0.31) 

0.20 

(0.34) 

–0.32 

(0.31) 

–0.01*** 

(2.8 E-3) 

2.0 E-4 

(3.6 E-3) 

–2.2 E-3 

(5.1 E-3) 

0.37*** 

(0.13) 

–0.017 

(0.079) 

0.010 

(0.029) 

–0.35 

(0.31) 

0.30 

(0.34) 

–0.40 

(0.33) 

–0.01*** 

(2.8 E-3) 

–1.0 E-4 

(3.7 E-3) 

–2.4 E-3 

(5.1 E-3) 

0.35*** 

(0.13) 

–0.016 

(0.080) 

0.010 

(0.029) 

–0.33 

(0.32) 

0.28 

(0.34) 

–0.37 

(0.33) 

–0.01*** 

(2.8 E-3) 

–1.0 E-4 

(3.6 E-3) 

–1.7 E-3 

(5.1 E-3) 

0.36*** 

(0.13) 

–0.018 

(0.079) 

0.012 

(0.029) 

–0.36 

(0.31) 

0.29 

(0.34) 

–0.40 

(0.33) 

–0.01*** 

(2.8 E-3) 

–1.0 E-4 

(3.6 E-3) 

–2.1 E-3 

(5.1 E-3) 

0.35*** 

(0.13) 

–0.014 

(0.080) 

0.011 

(0.029) 

–0.34 

(0.32) 

0.27 

(0.34) 

–0.40 

(0.33) 

Region Dummies  Yes Yes Yes Yes Yes Yes Yes Yes 

Tech. Dummies Yes Yes Yes Yes Yes Yes Yes Yes 

Log-likelihood –496.3 –496.3 –502.4 –502.4 –496.2 –495.2 –495.4 –494.8 

Test vs. restricted 

model 

106.4*** 106.4*** 94.2*** 94.2*** 106.6*** 108.0*** 108.2*** 109.4*** 

% of correctly 

predicted obs. 

65.3 65.3 64.5 64.6 65.5 65.1 65.1 65.0 

Note: The total number of observations equals 825, 508 of which equal 1 for COM. Standard errors are in parentheses 

and ***, ** and * indicate significance at the 1, 5 and 10 percent level, respectively. Intercepts as well as individual 

region and technology dummies are available from the authors upon request. 

 

 

  



Table 5. Empirical estimations of the AFT model. 
Dependent variable log (SPEED) 

Statistical model Accelerated failure time (AFT) model 

Explanatory 

variables 

                  Log-normal model 

Model 1a Model 1b Model 2a Model 2b Model 3a Model 3b Model 3c Model 3d 

APPLIED 

 

(APPLIED)
2 

 

BASIC 

 

(BASIC)
2
 

 

APPLIED*BASIC  

–0.028*** 

(9.9 E-3) 

 

–0.014 

(0.018) 

–5.0 E-4 

(6.0 E-4) 

 

 

 

 

–0.045 

(0.040) 

 

 

  

 

 

 

0.082 

(0.077) 

–7.7 E-4* 

(4.1 E-4) 

–0.027*** 

(0.010) 

 

–0.020 

(0.041) 

 

–0.034* 

(0.019) 

–3.0 E-4 

(6.0 E-4) 

0.22** 

(0.089) 

–0.014*** 

(4.5 E-3) 

–0.046*** 

(0.014) 

 

 

–0.080 

(0.050) 

 

 

0.015** 

(7.2 E-3) 

–0.035* 

(0.019) 

–5.0 E-4 

(6.0 E-4) 

0.13 

(0.12) 

–0.011** 

(5.3 E-3) 

9.1 E-3 

(8.9 E-3) 

FIRM1 

 

FIRM2 

 

FIRM3 

–0.81*** 

(0.18) 

–0.56*** 

(0.16) 

–0.68*** 

(0.16) 

–0.82*** 

(0.18) 

–0.57*** 

(0.16) 

–0.70*** 

(0.16) 

–0.82*** 

(0.18) 

–0.57*** 

(0.16) 

–0.71*** 

(0.16) 

–0.81*** 

(0.18) 

–0.56*** 

(0.16) 

–0.73*** 

(0.16) 

–0.81*** 

(0.18) 

–0.56*** 

(0.16) 

–0.68*** 

(0.16) 

–0.80*** 

(0.18) 

–0.55*** 

(0.16) 

–0.71*** 

(0.16) 

–0.77*** 

(0.18) 

–0.54*** 

(0.16) 

–0.66*** 

(0.16) 

–0.78*** 

(0.18) 

–0.54*** 

(0.16) 

–0.71*** 

(0.16) 

STATFIN 

 

PRIVFIN 

 

OTHFIN 

 

COMPLEXITY 

 

INVNBR 

 

DURE 

 

UNIV 

 

SEX 

 

ETH 

0.011*** 

(3.7 E-3) 

–8.0 E-4 

(4.3 E-3) 

1.1 E-3 

(6.3 E-3) 

–0.37*** 

(0.14) 

0.021 

(0.095) 

0.036 

(0.034) 

0.44 

(0.39) 

–0.38 

(0.40) 

0.45 

(0.40) 

0.010*** 

(3.7 E-3) 

–1.2 E-3 

(4.3 E-3) 

1.2 E-3 

(6.3 E-3) 

–0.37*** 

(0.14) 

0.017 

(0.095) 

0.038 

(0.034) 

0.43 

(0.39) 

–0.35 

(0.40) 

0.56 

(0.42) 

0.011*** 

(3.7 E-3) 

–1.5 E-3 

(4.3 E-3) 

2.0 E-3 

(6.3 E-3) 

–0.42*** 

(0.14) 

0.022 

(0.095) 

0.043 

(0.034) 

0.49 

(0.39) 

–0.29 

(0.40) 

0.30 

(0.40) 

0.012*** 

(3.7 E-3) 

–2.0 E-3 

(4.3 E-3) 

2.5 E-3 

(6.3 E-3) 

–0.41*** 

(0.14) 

0.012 

(0.095) 

0.046 

(0.034) 

0.50 

(0.39) 

–0.23 

(0.40) 

0.24 

(0.40) 

0.011*** 

(3.7 E-3) 

–1.0 E-4 

(4.3 E-3) 

1.3 E-3 

(6.3 E-3) 

–0.37** 

(0.14) 

0.021 

(0.095) 

0.036 

(0.034) 

0.45 

(0.39) 

–0.37 

(0.40) 

0.45 

(0.41) 

0.011*** 

(3.6 E-3) 

–1.6 E-3 

(4.3 E-3) 

1.9 E-3 

(6.3 E-3) 

–0.33** 

(0.14) 

0.020 

(0.094) 

0.041 

(0.034) 

0.44 

(0.39) 

–0.30 

(0.40) 

0.47 

(0.42) 

0.011*** 

(3.7 E-3) 

–1.1 E-3 

(4.3 E-3) 

1.0 E-3 

(6.3 E-3) 

–0.35** 

(0.14) 

0.020 

(0.094) 

0.032 

(0.034) 

0.50 

(0.39) 

–0.35 

(0.40) 

0.43 

(0.40) 

0.011*** 

(3.6 E-3) 

–1.7 E-3 

(4.3 E-3) 

1.0 E-3 

(6.3 E-3) 

–0.33** 

(0.14) 

3.5 E-3 

(0.094) 

0.039 

(0.034) 

0.47 

(0.39) 

–0.29 

(0.40) 

0.52 

(0.42) 

Region Dummies  Yes Yes Yes Yes Yes Yes Yes Yes 

Tech. Dummies Yes Yes Yes Yes Yes Yes Yes Yes 

Scale parameter  

 

1.48*** 

(0.05) 

1.48*** 

(0.05) 

1.49*** 

(0.05) 

1.48*** 

(0.05) 

1.48*** 

(0.05) 

1.46*** 

(0.05) 

1.47*** 

(0.05) 

1.46*** 

(0.05) 

Log-likelihood –1167.3 –1166.9 –1170.7 –1168.9 –1167.2 –1161.9 –1165.1 –1161.4 

Test vs. restricted 

model 

116.6*** 117.4*** 109.8*** 113.4*** 116.8*** 127.4*** 121.0*** 128.4*** 

Note: The total number of observations equals 825, 508 of which are interval-censored observations and 317 right-

censored. Standard errors are in parentheses and ***, ** and * indicate significance at the 1, 5 and 10 percent level, 

respectively. Intercepts as well as individual region and technology dummies are available from the authors upon 

request. 

 

 

 

  



Table 6. Empirical estimations of the profitability model. 
Dependent variable SUCCESS 

Statistical model Ordered probit model with sample selection 

Explanatory 

variables 

Model 1a Model 1b Model 2a Model 2b Model 3a Model 3b Model 3c Model 3d 

APPLIED 

 

(APPLIED)
2 

 

BASIC 

 

(BASIC)
2
 

 

APPLIED*BASIC  

3.7 E-3 

(8.7 E-3) 

 

 

0.014 

(0.015) 

–4.1 E-4 

(5.0 E-4) 

 

 

 

 

0.068*** 

(0.027) 

 

 

 

 

 

 

 

0.21** 

(0.087) 

–7.6 E-3** 

(3.8 E-3) 

4.0 E-3 

(9.2 E-3) 

 

 

0.067** 

(0.028) 

 

–2.2 E-3 

(0.019) 

–1.1 E-4 

(5.4 E-4) 

0.23** 

(0.10) 

–8.1 E-3* 

(4.5 E-3) 

3.4 E-3 

(0.015) 

 

 

0.065** 

(0.030) 

 

 

4.4 E-4 

(6.6 E-3) 

–2.2 E-3 

(0.019) 

1.9 E-4 

(7.7 E-4) 

0.31** 

(0.12) 

–0.011** 

(5.0 E-3) 

–8.2 E-3 

(9.5 E-3) 

FIRM1 

 

FIRM2 

 

FIRM3 

0.56*** 

(0.18) 

0.50*** 

(0.15) 

0.13 

(0.14) 

0.54*** 

(0.18) 

0.50*** 

(0.15) 

0.12 

(0.14) 

0.66*** 

(0.20) 

0.57*** 

(0.17) 

0.18 

(0.15) 

072*** 

(0.22) 

0.64*** 

(0.18) 

0.21 

(0.16) 

0.69*** 

(0.22) 

0.60*** 

(0.18) 

0.20 

(0.16) 

0.70*** 

(0.22) 

0.63*** 

(0.18) 

0.19 

(0.16) 

0.69*** 

(0.22) 

0.60*** 

(0.18) 

0.20 

(0.16) 

0.69*** 

(0.22) 

0.63*** 

(0.18) 

0.19 

(0.16) 

ACTIVE 0.30** 

(0.14) 

0.31** 

(0.14) 

0.32** 

(0.15) 

0.33** 

(0.17) 

0.33** 

(0.16) 

0.32** 

(0.16) 

0.33** 

(0.16) 

0.33** 

(0.16) 

COMPLEXITY 

 

INVNBR 

 

DURE 

 

UNIV 

 

SEX 

 

ETH 

–0.072 

(0.13) 

0.069 

(0.09) 

4.4 E-3 

(0.03) 

0.022 

(0.36) 

–0.074 

(0.31) 

0.61 

(0.34) 

–0.072 

(0.13) 

0.067 

(0.09) 

6.3 E-3 

(0.03) 

0.024 

(0.37) 

–0.056 

(0.31) 

0.70 

(0.33) 

–0.065 

(0.13) 

0.077 

(0.09) 

5.8 E-3 

(0.03) 

–0.14 

(0.42) 

–0.10 

(0.32) 

0.50 

(0.37) 

–0.051 

(0.14) 

0.080 

(0.09) 

0.011 

(0.03) 

–0.099 

(0.44) 

–0.036 

(0.33) 

0.38 

(0.39) 

–0.064 

(0.13) 

0.083 

(0.09) 

6.5 E-3 

(0.03) 

0.14 

(0.43) 

–0.081 

(0.33) 

0.44 

(0.38) 

–0.048 

(0.13) 

0.076 

(0.09) 

0.012 

(0.03) 

–0.096 

(0.44) 

–0.050 

(0.33) 

0.44 

(0.37) 

–0.064 

(0.13) 

0.083 

(0.09) 

0.064 

(0.03) 

–0.14 

(0.43) 

–0.081 

(0.33) 

0.44 

(0.38) 

–0.046 

(0.13) 

0.076 

(0.09) 

0.014 

(0.03) 

–0.074 

(0.44) 

–0.059 

(0.33) 

0.39 

(0.38) 

Region Dummies  Yes Yes Yes Yes Yes Yes Yes Yes 

Tech. Dummies Yes Yes Yes Yes Yes Yes Yes Yes 

ρ –1.00*** –1.00*** –0.91*** –0.85*** –0.88*** –0.87*** –0.88*** –0.88*** 

Log-likelihood –934.6 –934.5 –933.2 –930.9 –933.1 –930.8 –933.1 –930.3 

Test vs. restricted 

model 

 9.3***   8.5***   9.6***   6.6***   5.2**   5.8**   5.2**   5.9**  

Note: n=818 in the selection equation and 501 in the ordered probit model. The selection model estimates are almost 

identical to Model 3a in Table 4. Standard errors are in parentheses. ***, ** and * indicate significance at the 1%, 5% 

and 10% levels, respectively. Intercepts as well as individual region and technology dummies are available from the 

authors upon request. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

 

Table A1. Descriptive statistics of explanatory variables. 
 

Explanatory 

variables 

 

Definition 

All observations 

(825 observations) 

COM = 1 

(501 observations) 

Mean Std. dev. Mean Std. dev. 

APPLIED The number of backward citations to other patents 

by the patent and its family members 

4.07 5.93 4.83 6.57 

(APPLIED)
2 

Squared value of APPLIED 51.7 181.4 66.4 224.6 

BASIC The number of references to non-patent literature 0.63 1.66 0.72 1.93 

(BASIC)
2 

Squared value of BASIC 3.16 29.66 4.24 37.7 

APPLIED* 

BASIC 

Interaction term between APPLIED and BASIC 5.12 13.58 6.04 14.96 

ACTIVE Dummy that equals 1 if inventors were active 

during the first commercialization phase and 0 

otherwise 

----- ----- 0.87 0.34 

FIRM1 Dummy that equals 1 if the invention was created 

in a medium-sized firm (101−1000 employees) and 

0 otherwise 

0.13 0.34 0.15 0.35 

FIRM2 Dummy that equals 1 if the invention was created 

in a small firm (11−100 employees) and 0 

otherwise 

0.23 0.42 0.26 0.44 

FIRM3 Dummy that equals 1 if the invention was created 

in a micro-company (2−10 employees) and 0 

otherwise 

0.16 0.37 0.20 0.40 

STATFIN Percentage of R&D-costs financed by government 

authorities. 

7.06 18.58 ----- ----- 

PRIVFIN Percentage of R&D-costs financed by private 

venture capital firms or business angels. 

3.14 14.44 ----- ----- 

OTHFIN Percentage of R&D-costs financed by universities 

and research foundations. 

2.73 14.39 ----- ----- 

INVNBR Number of inventors 1.34 0.66 1.33 0.65 

DURE Number of years between application and granting 

of the patent 

2.71 1.65 2.73 1.68 

UNIV Dummy that equals 1 if the invention was created at 

university, and 0 otherwise. 

0.048 0.21 0.039 0.19 

SEX Share of female inventors 0.023 0.14 0.023 0.14 

ETH Share of non-European inventors 0.030 0.16 0.024 0.15 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table A2. Distribution of technology class dummies. 
Id Technologies No. of patents Id Technologies No. of patents 

  1 Electrical engineering   30 16 Chemical engineering   53 

  2 Audiovisual technologies   18 17 Surface technologies   10 

  3 Telecommunication   17 18 Material processing   51 

  4 Information technologies   11 19 Thermal processes   23 

  5 Semiconductors     4 20 Environmental technologies   27 

  6 Optics     9 21 Machine tools   54 

  7 Control technologies   67 22 Engines   24 

  8 Medical technologies   53 23 Mechanical elements   53 

  9 Organic chemistry        4 * 24 Handling 124 

10 Polymers        2 * 25 Food processing   39 

11 Pharmaceutics   11 26 Transport   82 

12 Biotechnology        6 * 27 Nuclear engineering        3 * 

13 Materials     6 28 Space technologies   19 

14 Food chemistry     7 29 Consumer goods   97 

15 Basic materials chemistry   18 30 Civil engineering 175 

Note: The 825 patents have 1,097 technology classes. A patent can have more than one technology class, i.e., the 

technology dummies are not mutually exclusive. An asteria * means that there are too few observations to include a 

dummy for the technology class, since estimations do not converge. 

 

 

 

Table A3. Re-estimation with nonpatent references by examinators. 
Dependent variable 

Statistical model 

INNOV 

Probit model 

log(SPEED) 

AFT model 

SUCCESS 

Ordered probit model with 

sample selection 

Explanatory variables Model 3a Model 3c Model 3a Model 3c Model 3a Model 3c 

APPLIED 

 

BASIC 

 

APPLIED*BASIC 

0.036*** 

(0.010) 

–0.0131 

(0.049) 

 

0.045*** 

(0.014) 

0.025 

(0.062) 

–8.7 E-3 

(8.0 E-3) 

–0.028*** 

(0.010) 

4.9 E-3 

0.057 

  

 –0.045*** 

(0.014) 

–0.058 

(0.068) 

0.015* 

(8.8 E-3) 

4.5 E-3 

(9.3 E-3) 

0.067* 

(0.040) 

 

9.0 E-3 

(0.015) 

0.081** 

(0.041) 

–3.9 E-3 

(7.0 E-3) 

Log-likelihood –496.3 –495.7 –1167.3 –1165.9 –935.5 –937.9 

Test vs. restricted model 106.4*** 107.6*** 116.6*** 119.4*** 5.2** 5.1** 

% of correctly 

predicted obs. 

ρ 

65.3 

 

--- 

65.8 

 

--- 

--- 

 

--- 

--- 

 

--- 

--- 

 

–0.86*** 

--- 

 

–0.86*** 

Note: The total number of observations equals 825, 508 of which equal 1 for COM. Standard errors are in parentheses 

and ***, ** and * indicate significance at the 1, 5 and 10 percent level, respectively. Control variables, intercepts as 

well as individual region and technology dummies are available from the authors upon request. 

 

 

 

 

 

 



 

 

FIGURES 

 

Figure 1. Survival distribution and Hazard functions across APPLIED, 825 observations. 

 

 

Figure 2. Survival distribution and Hazard functions across BASIC, 825 observations. 
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