
Economic Analysis and Policy 72 (2021) 700–714

A
a

b

r
t
c
t
i

r
c
T
a

Contents lists available at ScienceDirect

Economic Analysis and Policy

journal homepage: www.elsevier.com/locate/eap

Analyses of topical policy issues

Does precise case disclosure limit precautionary behavior?
Evidence from COVID-19 in Singapore✩

ljoscha Janssen a,b,∗, Matthew H. Shapiro a

Singapore Management University, Singapore
IFN, Sweden

a r t i c l e i n f o

Article history:
Received 21 May 2021
Received in revised form 13 August 2021
Accepted 24 October 2021
Available online 30 October 2021

JEL classification:
H12
I18
R50

Keywords:
COVID-19
Transparency
Precautionary behavior

a b s t r a c t

Limiting the spread of contagious diseases can involve both government-managed and
voluntary efforts. Governments have a number of policy options beyond direct interven-
tion that can shape individuals’ responses to a pandemic and its associated costs. During
its first wave of COVID-19 cases, Singapore was among a few countries that attempted
to adjust behavior through the announcement of detailed case information. Singapore’s
Ministry of Health maintained and shared precise, daily information detailing local travel
behavior and residences of COVID-19 cases. We use this policy along with device-
level cellphone data to quantify how local and national COVID-19 case announcements
trigger differential behavioral changes. We find evidence that individuals are three times
more responsive to outbreaks in granularly defined locales. Conditional on keeping
infection rates at a manageable level, the results suggest economic value in this type
of transparency by mitigating the scope of precautionary activity reductions.

© 2021 Economic Society of Australia, Queensland. Published by Elsevier B.V. All rights
reserved.

1. Introduction

In the first wave of Singapore’s COVID-19 infections, the country relied on a strategy, near unique among government
esponses, to mitigate the disease’s spread. Rather than implement shelter-in-place orders or enforce business closures,
he strategy entailed isolating potential patients, monitoring those they recently contacted, and sharing detailed data on
onfirmed cases, including their residence and places they visited. The motivation for this final piece was twofold. First,
he policy could encourage those who potentially contacted cases to seek testing. Second, it might induce the potentially
nfected into more cautious behavior while mitigating the impact on regular activity elsewhere.

In this paper we study the efficacy of disclosing precise case information in limiting the scope of voluntary activity
eductions. To address this question, we take advantage of local case announcements in combination with device-level
ellphone location data for more than 10% of Singapore’s population to track movement responses to positive cases.
o tease out the impact of case announcements on precautionary behavior, we make use of spatial variation in these
nnouncements at granular and successively larger geographic areas. Differences in individual responses to cases proximal
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o their typical routines compared to those more distant provide an opening to estimate the differential effect of more
recise information. Although the extent of a contagious disease is a function of travel behavior, we argue and demonstrate
hat, in our period of study cases, are effectively exogenous because of its then-limited spread.1

In our empirical exercises we study both inflow patterns to and outflow from areas in which positive cases live or
isited. Our results are consistent across different outcomes — including travel distance or the likelihood of staying home;
eople are significantly more responsive on the margin to local cases, both those near their homes and the places they
isit. We find that an additional COVID-19 case in an individual’s home census area decreases her daily travel distance
n the following day by 89 m (0.64% compared to the average) on average while a non-local case reduces travel by 28
(0.2%).2 Further, a local case increases the probability of staying home on the following day by 0.14 percentage points

0.54%) while we do not observe changes in response to non-local cases. These adjustments hold across different activity
ypes and are not specific to shopping, commercial, or visiting other residences. Our second set of results show that local
ases reduce inflow travel as well. On average, an additional case reduces the probability of entering that area by 0.34
ercentage points (5.09%) and individuals partially reroute their traffic to locations proximal to their typical destinations.
e take these results to mean that precautionary changes in individual travel and activity behavior are more localized
ith precise case information. Cases more distant from a person’s regular activities have a mitigated or null effect.
To provide context to our estimates, we explore a counterfactual using a stylized model. In the counterfactual,

ingapore does not disclose this detailed case information. We emphasize that we are not attempting to link the
ounterfactual to changes in transmission risk but rather pin down movement responses to the information. Using our
stimates we argue a conservative bound in which individuals might additionally change their travel under this alternative
olicy. In the best-case scenario for local travel, in which individuals underestimate their self-assessed risk of infection,
e find daily travel increases on average by less than half a kilometer, 3% compared to a baseline taken at the end of our
tudy period. In the worst-case scenario, in which individuals overestimate their risk, daily travel decreases on average
y more than 3 km (−20%).
In the microeconomic literature we contribute to papers that analyze behavioral responses to the COVID-19 epidemic

nd related governmental interventions using cellphone data (Abouk and Heydari, 2020; Allcott et al., 2020; Andersen,
020; Barrios and Hochberg, 2020; Borg et al., 2020; Brzezinski et al., 2020; Courtemanche et al., 2020; Dave et al.,
020c; Engle et al., 2020; Fan et al., 2020; Farboodi et al., 2020; Gao et al., 2020; Glaeser et al., 2020; Gupta et al.,
020; Mangrum and Niekamp, 2020; Nguyen et al., 2020; Painter and Qiu, 2020; Siedner et al., 2020; Tucker and Yu,
020) in the United States.3 Besides the location of our study, our research differs in two dimensions. First, our cellphone
ata are not aggregated on any geographical level. Hence, we can identify individual-level changes in response to case
nnouncements. Second, and key to our question, we can evaluate an individual’s response to highly local cases rather than
o those at aggregated geographies that may have virtually no impact on her risk assessment. Chen et al. (2020), Harris
2020), and Almagro and Orane-Hutchinson (2020) consider COVID-19 infection exposure within cities; each uses zip-code
evel data of infections in New York City. The authors do not study behavioral responses to the virus but rather evaluate
he determinants of the virus’s spread. Argente et al. (2020) utilizes an approach closest to ours. The authors study the
outh Korean case disclosure policy, which is like Singapore’s. They analyze the flows of individuals across neighborhoods
n Seoul using aggregated cellphone data and incorporate their results in an SIR model where virus spread is related to
hese flows. The authors conclude that the disclosure policy lowered the number of infections. Our approach differs as
e do not model the virus spread; instead, we shed light on the causal linkage between movement responses and local
nd non-local cases using individual data.
We also add to the academic and public policy discussion on COVID-19-related non-pharmaceutical interventions.4

trict governmental policies such as shelter-in-place orders, non-essential business closings, and school closure reduce
ravel activity and the spread of a virus (Dave et al., 2020b). However, they come with economic costs such as
nemployment (Baek et al., 2020; Couch et al., 2020; Kim et al., 2020), educational costs (Doyle, 2020), health costs such
s lower preventive and emergency medical care (Lazzerini et al., 2020), and psychological costs (Galea et al., 2020; Hsing
t al., 2020). In comparison, voluntary travel reductions, even in the absence of strong governmental intervention, suffices
o reduce the spread of COVID-19 while potentially limiting economic effects. Dave et al. (2020a) exploit a natural
xperiment in which the Wisconsin State Supreme Court lifted a state-wide shelter-in-place order and find no evidence
hat the repeal of the lockdown impacted social distancing or COVID-19 cases. While our paper does not compare
overnmental interventions directly, we first show that there are behavioral responses in the absence of strict policies
nd that it is highly dependent on the nature of information shared.
The macroeconomic literature has contributed several theoretical frameworks to link various infection mitigation poli-

ies to aggregate welfare outcomes. Alvarez et al., 2020, Chari et al., 2020, and Acemoglu et al., 2020 evaluate the welfare

1 We show that this intuition about exogeneity holds up to empirical scrutiny in our Online Appendix.
2 The home census area we use is a geography with an average population of 15 thousand residents, as of 2015 estimates. Local is defined by

larger census areas with an average area of 10 km2 .
3 Also, see Brodeur et al. (2020) for an extended discussion on the COVID-19 literature evaluating non-pharmaceutical intervention in the United

States.
4 There is also a literature on governmental policies in response to pandemic influenza. See, for example, Blendon et al. (2008), Fineberg (2014),

or Vaughan and Tinker (2009). However, those pandemics differ in severity, infection symptoms, etc.
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mpact of dynamic lockdown policies and policies targeted toward containing infections or targeting subpopulations
f different risk, respectively. Chudik et al., 2020 uses data on infection and recovery rates, along with varied policies
mplemented at the Chinese provincial level, to assess the economic and epidemic impact of voluntary and mandatory
easures. Empirical research weighing lockdown versus voluntary policies, however, require sufficient understanding of
oluntary responses to different information regimes governments could implement. We believe our research is a valuable
tep in estimating this behavior. On the optimal level of activity reduction, Hall et al., 2020 provides an estimate of the
aximal consumption a planner would be willing to give up to reduce infections, while Eichenbaum et al., 2020 explores

he decentralization of such a policy. A fundamental problem the latter research identifies is that individuals’ voluntary
esponses will, by nature, not internalize externalities their behavior imposes vis-à-vis infection risk.

The paper is organized as follows. In Section 2 we present background on Singapore’s disclosure policy during the
irst wave of infections. Section 3 describes our data. In Section 4 we introduce our empirical strategy, and results are
resented in Sections 5 and 6. Finally we discuss the results in Section 7 and conclude with stylized counterfactual results
n Section 8.

. Institutional background

A key element of our analysis is the quality of the information Singapore released on COVID-19 cases. The only other
ountry to match this Singapore’s disclosure was South Korea, though their first wave of infections was of a much larger
cope than Singapore’s. Following the global spread of the pandemic, travelers returning to Singapore accelerated new
ase counts following mid-March. After this point Singapore only provided daily aggregate case numbers and eventually
ntroduced a lockdown policy.

Singapore detected its first COVID-19 case on January 23rd. Along with the public announcement, the Ministry of Health
MoH) indicated the travel history of this case – a visitor from Wuhan, China – its intention to start contact tracing, and
ther cases pending confirmation. Additionally, the report indicated where this patient had visited in Singapore. They
ontinued to provide detailed reports every evening through the first wave of infections, which we define as ending
round March 17th. A sample of the location data provided for an early cluster born from a Chinese tour group follows:

Besides Yong Thai Hang (24 Cavan Road) and Diamond Industries Jewellery Company (Harbour Drive), the tour
group also visited Meeting You Restaurant (14 Hamilton Road), Royal Dragon Restaurant (2 Havelock Road), T
Galleria by DFS (25 Scotts Road) and D’Resort @ Downtown East (1 Pasir Ris Close).5

While the Singaporean government’s disclosure was to encourage people to come forward for tracing and testing,
few official recommendations or restrictions limited standard movement from ‘‘life as normal’’. This is a strategy the
Singaporean government also uses for communicating and managing the risk of dengue and zika infections. For COVID-
19 the first significant policy announcement was moving the Disease Outbreak Response System Condition (DORSCON)
to Orange on February 7th following several days of community transmission. Singapore uses this system to coordinate
its policies in a health crisis and communicate the severity and possibility of spread within the community. While the
announcement led to a brief run on supermarkets, few official movement restrictions immediately followed. The effect of
the announcement was to introduce temperature stations at public locations and global hotspot travel declarations. The
first legal movement restrictions were stay-at-home notices issued to any travelers from China on February 17th.

This relatively lax regime persisted through mid-March; only on March 13th did the government mandate social
distancing measures. We use this policy history to emphasize that most changes in domestic travel behavior through
mid-March should be attributed to voluntary activity reductions. While businesses voluntarily started split-team work
arrangements no later than February 17th, businesses did not widely implement gathering restrictions.

3. Data

We draw on two principal data sources for our analysis. We obtain coronavirus case information via daily announce-
ments from the Singaporean MoH, and the marketing company Lifesight provided the cellphone location data.

3.1. Coronavirus data

In Section 2 we discussed Singapore’s disclosure of key details for each COVID-19 case. Announcements included a
list of the new cases confirmed in the previous day. On or within a day, the announcements would provide additional
information about these cases including an approximation of their home area – typically the street block – locations
visited, and linkages to previously announced cases.6

5 From the February 5th MoH press release. The full text of the press release can be found at https://www.moh.gov.sg/news-highlights/details/four-
more-confirmed-cases-of-novel-coronavirus-infection-in-singapore.
6 While possible to geocode the data provided by the MoH, we take advantage of a site (https://sgwuhan.xose.net) put together by computer

programmer Ottokyu that mapped the reported cases and their linkages.
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Fig. 1. Total Cases Across Singapore, through 17 March 2020. Notes: Solid lines demarcate the five regions of Singapore. Dashed lines denote planning
reas, or subregions. The smallest units are subzones.

In our analysis we group cases into census-defined geographies that partition Singapore. We use three successively
arger census areas to disentangle the impact of highly local and more distant cases on individual travel and activity
ehavior. The first are ‘‘subzones’’, denoted by light dotted lines in Fig. 1; these are used to detect movement from
ndividual’s home area as will be described later in this section. The second are 55 planning areas, denoted by dashed
ines in Fig. 1; we later call these areas ‘‘subregions’’ for clarity. Depending on the context, cases in the same subregion
o which a person travels or works are known as ‘‘local’’. Planning areas can be further aggregated into five large regions,
elineated by thick solid lines in the same figure. Cases within the same region are ‘‘non-local’’.
Fig. 1 illustrates the cumulative number of cases across Singapore’s subzones through March 17th, which again we

oosely refer to as the ‘‘first wave’’ of infections. A case is linked to an area if the government announces the home, or
otel for a traveler, falls within that location. While the government shared information on 250 cases during this period,
he figure illustrates the geographic dispersion of cases from the commercial and high income south-center of the island
o the industrial areas and hinterlands in the east, north, and west.

For each case we identified three potentially important dates for people to respond to the information in the case
riefing: the date of a case’s confirmation, of announcement, and when the MoH provided final details on issues like home
esidence. Given that our research agenda asks how people respond to information, we focused on the announcement and
nformation dates. Our analysis in this paper uses the information dates, though results do not qualitatively change with
he alternative measurement; for the rest of the paper, we call this date for information disclosure the ‘‘announcement
f the case’’.

.2. Cellphone data

The marketing company Lifesight provided our principal data on individual behavior. This dataset contains granular
ocation information for individuals over long time periods by tracking pings from specific cellphones. Each observation
n this main dataset is an individual ID, unique to the phone; a timestamp; and a longitude–latitude coordinate for that
erson at that time. Supplemental data provide home location estimates for individuals in the dataset.7 These data cover
he time period January to March of 2020 and parts of 2019.

In our empirical analysis we assume that for each individual data are representative of, if not a complete record of,
heir movement within a day. We find that, while there is significant variation in observation counts per person in a

7 Lifesight estimates home locations using their location data. Their method counts device pings during non-working hours. Home locations are
identified by where the devices consistently ping over these non-working hours.
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Fig. 2. Average Distances Traveled and Cases, through 17 March 2020. Notes: Traveled distances are calculated as a daily average per individual to
emove day-of-week effects. The distribution of travel distances are highly skewed right and so we present the median of this measure. The case
ates reported are assigned to the evening on which the government shared detailed location information on positive cases.

ay, conditional on a single person that variance is limited. We take this feature of the data to support, beyond the
tandard advantages, the value of using models with individual fixed effects to capture inherent differences in observation
requency.

A secondary challenge of using cellphone data is the quality of the collection. We implement two types of cleaning
ilters on the data. We eliminate observations that indicate errors in how the GPS data was collected. In the second
ategory of filters, we eliminate observations that imply unrealistic movement behavior, such as moving at improbable
peeds. In our Online Appendix we provide more details on cleaning the data as well as a general discussion of its quality.
Fig. 2 superimposes the timeline of daily COVID-19 cases against the median travel distance of individuals in our

iltered sample. The qualitative travel pattern is reflective of what our analysis will find. The onset of the first wave of
nfections reveals an initial drop in travel which slightly recovers as the infection rate appears to slow down. Our sample
nds just as individuals begin to respond to the harbinger of the large second wave of infections, eventually cresting at
everal hundred cases a day.
Table 1 summarizes the size of our data and various outcome variables. Panel A provides statistics on the subsample of

he cell data we use from January to March 17th 2020. While we have many pings from an individual on any given day,
he analysis selected for this paper focuses on outcomes derived at the person-day level. Panel B of Table 1 we include
ummary statistics for person-day outcomes in our analysis, including whether an individual stayed at home or what
istance they traveled. We caution against drawing conclusions from aggregate views of the data. Heterogeneity skews
evel averages and amplifies the pattern of travel reductions in February followed by a slight recovery in early March.

We complement this cellphone data with location information from Open Street Maps. We combine land use
lassifications across Singapore to project individual location pings to activity types. From Open Street Maps data, we
lassify pings based on the coordinate’s land-use type — commercial, residential, retail, or industrial.8 Panel C of Table 1
summarizes tendencies to visit each of these location types in any given day averaged over all individuals in the sample.
These statistics all reflect the general pattern of reduction and recovery seen in the other aggregate views of our data.

4. Empirical strategy

Our empirical analysis contains two components. First, we investigate if the announcement of cases local to residencies
affects the outward travel behavior of local individuals differently from those that are farther away. As noted in Section 3

8 Using cell phone or GPS data to accurately assign activities is not straightforward in a dense city like Singapore. More details of our approach
are discussed in the Online Appendix.
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Table 1
Data summary.

Jan 2020 Feb 2020 Mar 2020

Panel A: Cell Phone Data
Person-Day Count 4,140,000 4,762,227 2,404,511
Unique People 546,178 569,803 330,805
Avg Obs Per Person-Day 69.35 69.18 100.66

(129.27) (148.88) (147.88)

Panel B: Travel Statistics
Avg KM Traveled Per Day 18.54 12.95 16.28

(25.00) (21.66) (24.38)
Avg % Staying Home 22.87 27.80 26.42

(0.18) (0.15) (0.10)
Avg Subzones Visited Per Day 2.78 1.99 2.75

(2.80) (1.85) (2.72)

Panel C: Activity Statistics (Percent Visiting Daily)
Industrial 10.33 9.27 11.45
Commercial 24.50 16.41 24.44
Retail 2.72 1.49 2.62
Ind., Com., or Ret. 31.92 23.94 32.65
Recreation 31.17 19.43 29.99
Residential (Not Home) 80.10 73.59 84.92

Note 1: Data for March 2020 only covers through the 17th, the end of our period of study. The standard deviation for select
averages are presented in parentheses.
Note 2: Panel C uses data for a subsample of the dataset with estimates of an individual’s residence as it is required to generate
the statistics. Panels A and B use the full sample. Versions based on the subsample with home estimates available is in the
Online Appendix.

we define a case as local if it occurs in the home subregion of the resident, as depicted in Fig. 1.9 Second, we assess if
ase announcements local to places individuals visit influence their travel inflow.
When estimating individual responses to infection announcements local to an individual’s residence, we face a few

dentification challenges. First, case announcements must arrive as exogenous shocks to individuals and occur with
emporospatial heterogeneity. National trends in local travel behavior that may correlate with announcement dates violate
he exogeneity assumption for case announcements. We tackle this identification challenge by solely using variation on the
ndividual level, controlling for national patterns by using day fixed effects. A second threat is that movement itself affects
he transmission rate of the disease and in turn announcements. We argue that while this is theoretically inarguable, the
ow case count in our time period renders individual past behavior functionally irrelevant to the spread of the disease.
nless there is minimal heterogeneity in the travel behavior for people living in and visiting affected areas, any individual
atterns cannot empirically account for specific case announcements. Indeed, in robustness checks we find that inflow
nd outflow travel behavior through the fortnight prior to a case announcement is not significantly related to that event.10
One specific challenge to the argument that travel behavior changes are voluntary is the introduction of split-team

work initiatives. These arrangements began no later than February 17th. By this point some businesses had introduced
mandatory part-time telecommuting. Changes in movement because of workplace decisions are still voluntary but not
necessarily a function of individual-level discretion. Nonetheless, in our second analysis focusing on the inflow travel, we
may also pick up non-voluntary changes if travel reductions into working locales are due to home office arrangements.
Completely separating out the effect of these decisions is not possible, but we believe that date fixed effects should soak
up the impact of these policies. It is unlikely businesses are making these decisions based on highly localized cases but
rather on the basis of national patterns. In the first analysis, outward travel behavior should not be sensitive to these
arrangements as they are dependent on cases in an individual’s home location. In the Online Appendix, we provide two
robustness checks to deal with the work-from-home issue specifically.11

Finally, we intend to identify the response to local as well as Singapore-wide cases separately. As aggregate cases do
ot vary within Singapore, separately identifying these responses while simultaneously controlling for national trends

9 Our results are based on residence estimates. Because these estimates are not available for all individuals, we use a subsample of the data for
fitting the regression model. In the Online Appendix we conduct a robustness check by redefining cases close to an individual independent of home
location. The alternative definition defines close cases as those in any subregion the individual has visited within the last five days. We find similar
results.
10 Details are in the Online Appendix.
11 We first evaluate if subregions with more office space feature stronger inflow travel responses to local case announcements. We find some
correlation between the number of offices and the strength of our effect. However, independent of the number of offices, there remains a significant
linkage between inflow travel and the number of local cases.

In a second robustness check we test for work-from-home arrangements impacting outflow travel. In that exercise, found in the Online Appendix,
we develop a crude measure of an individual’s workplace and assess whether workplace cases interfere with the major findings presented in
Section 5.
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s not possible. Therefore, we approximate responses to aggregate cases by using case announcements within the five
egions of Singapore, depicted in Fig. 1, which are the highest geographical division of Singapore (Urban Redevelopment
uthority, 2020). Controlling for the subregion effect, the response of individuals to cases within a region is non-local
nd proxies as an aggregate response given the geographic and population size of a region.12 The advantage is that using
egions permit employing a day-level fixed effect structure, which controls for national trends. Meanwhile, this control
llows studying the impact of case announcements across regions; these five regions are still much larger than the 55
eographic units we use for local cases.13 We summarize our empirical strategy in the following regression model:

aijkt = β1LocalCasesjkt−1 + β2NonLocalCaseskt−1 + γi + ρt + εijkt (1)

onsider individual i with a home located in a subregion j, which itself is a subset of the region k. We consider each
ndividual’s travel behavior for each day t . aijkt is a vector of outcome variables measuring travel. In detail, we consider
our outcome variables in our main analysis: travel distance in meters (TravelDistijkt ); a dummy which takes the value
ne if i stays within the subzone of their home (StayHomeijkt ); a dummy which takes the value one if i visits a place with
n industrial-, commercial-, or retail-use classification (IndRetComijkt );14 a dummy which takes the value one if i visits a
lace with a residential-use classification (Residentialijkt ) outside the own home. Hence, we estimate a linear probability
odel for the last outcome variables.15 LocalCasesjkt are the number of announced cases in subregion j in the evening of
− 1, and NonLocalCaseskt−1 are the announced cases in region k.16 γi are individual and ρt date fixed effects.
While our first approach shows whether individuals change their travel behavior in response to living close to infected

individuals, our second measures if individuals actively avoid areas where confirmed cases live or visited before getting
tested. Considering individual i in time period t , our outcome variable is Visitijt , a dummy variable which takes the value
one if i has visited subregion j in time t . Our full model specification follows:

Visitijt =β1LocalCasesjt−1 + β2InfectionVisitjt−1(+NeighbourhoodCasesjt−1)+ (2)
γi × ξj + ρt + εijt ,

Where LocalCasesjt−1 are the number of case announcements for subregion j in the evening of t − 1 and InfectionVisitjt−1
are the number of positive cases who visited subregion j. We control for individual-subregion γi×ξj and time fixed effects
ρt . Therefore, we evaluate if individual i changes behavior visiting a specific subregion when cases within those subregions
are announced. In a final model specification, we further add NeighbourhoodCasesjt−1, which indicates the number of case
announcements in subregions neighboring j. The final model evaluates if there are signs of substitution between areas
visited, i.e. if individuals tend to visit subregion j in the event there is a new case in neighboring subregions.

5. Results

We now turn to analyze responses to local and aggregate case announcements. In this section we present average
responses to case disclosures. In the next section we take advantage of our individual-level data to decompose these
responses by individual demographics and characteristics, like existing travel behavior.

The first outcome is the travel distance on day t of an individual i living in subregion j. The regression result shows that
the announcement of a local case for subregion j in the evening of t−1 decreases the travel distance of i on a forthcoming
day by 61.32 m. The mean effect, calculated as the percentage difference from the outcome averaged over individuals, is
−0.44%. Simultaneously, individuals decrease their travel distance by 28.26 m (−0.2%) when a non-local, regional case is
announced. Accordingly, the local response is more than twice the size of the non-local response.

In specifications (2) to (4) of Table 2 we consider dummy variables as outcomes. To allow for a more convenient
interpretation, we inflate the dummy outcome variables by 100, so the coefficients should be interpreted as percentage
point changes. Specification (2) considers if individual i stays within their residence’s subzone in period t . An additional
local case increases the probability of staying home on a forthcoming day by 0.54 percentage points (0.54%). We do not
observe a statistically significant response to non-local cases and conclude that people tend to stay at home or in the
immediate neighborhood only as a response to local rather than non-local cases. Model specification (3) considers the
outcome if an individual enters a subregion on day t with an industrial-, commercial-, or retail-use classification. From
the regression results, we observe that in response to an additional local case, individuals reduce visits to industrial,
retail, or commercial to that locale by 0.12 percentage points (−0.4%). In comparison, non-local cases lead to a slight
decrease of 0.083 percentage points (−0.29%). Finally, specification (4) considers if an individual enters a residential area

12 The size of the five region ranges between 4267 and 8873 km2 and each has a population between 573,000 and 923,000.
13 In additional robustness checks found in the Online Appendix, we show our results are minimally changed by different fixed effects structures,
including regional or subregional fixed effects.
14 Specifically we check for whether any of i’s ping coordinates intersect with land classified according to these categories. See Appendix 1.4 for
details.
15 In the Online Appendix we verify that a conditional logit version of this model for the relevant outcome variables does not substantially alter
our findings when most observation are not dropped.
16 In the Online Appendix we tested if, rather than local cases, local incidence values drive our estimate. Using an alternative measurement of
cases, weighted by population, we show that the number of cases rather than the incidence of cases matter for behavior.
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Table 2
Estimation of local and general response.

TravelDist StayHome IndComRet Residential
(1) (2) (3) (4)

LocalCasesjt−1 −61.433∗∗∗ 0.140∗∗∗
−0.117∗∗∗

−0.055∗∗

(14.429) (0.034) (0.035) (0.026)

NonLocalCasesjt−1 −28.045∗∗∗ 0.006 −0.083∗∗∗
−0.029∗∗

(6.776) (0.015) (0.016) (0.013)

Individual FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Mean Local Effect in Percent −0.44 0.54 −0.4 −0.07
Mean Aggregate Effect in Percent −0.2 0.02 −0.29 −0.04
N 9,482,376 9,482,376 9,482,376 9,482,376

*p < 0.1, **p < 0.05, ***p < 0.01.
Notes: The table presents results of regression model (1). One observation corresponds to an individual on a specific date.
Each model specification corresponds to a different outcome variable. TravelDist is the travel distance in meters, StayHome is
a dummy variable that takes the value one if an individual remains at their home subzone for an entire day. IndComRet is
a dummy that takes the value one if an individual enters at least one industrial, commercial, or retail place. Residential is a
dummy that takes the value one if an individual enters a residential place except their own residence. Note that we multiply
outcome variables StayHome, IndComRet , and Residential by 100 such that the coefficients are interpreted in percentage points.
LocalCases are the number of local cases in a subregion announced in the evening of t−1. NonLocalCases are the cases announced
in region k. For all models we include individual and date FE. Additional models are reported in the Online Appendix. We
calculate the mean local effect and mean aggregate effect as percentage difference from the average outcome. Standard errors
are reported in parentheses and clustered on the individual level.

utside the own residence. A local case decreases the probability of visiting a residential building by 0.06 percentage
oints (−0.07%), while a non-local case is associated with 0.029 percentage points (−0.04%) more visits to a residential
rea. Thus, we observe a higher response to local cases compared to non-local cases in all specifications.
Our second set of results concern the inflow of individuals into subregions affected by case announcements. Table 3

hows the results of regression model (2) across four different specifications. Specification (1) solely includes subregion
ixed effects, (2) adds time fixed effects, and (3) and (4) introduce subregion-individual as well as date-specific fixed
ffects. In model specification (1) to (3), we consider the effect that the announcement of cases who reside in or visited
ubregion j have on the probability of visiting j. In comparison, model (4) investigates these effects as well as the impact
f announced cases in subregions neighboring j.
Recall that for the second set of regressions we construct a day-individual-subregion panel. The large sample size

akes a regression analysis of the whole sample prohibitive. Therefore, results in Table 3 are based on a bootstrapping
rocedure in which we draw 10% of the individuals in the full sample and repeat after replacement 100 times.
In all model specifications an announcement that a local resident has tested for COVID-19 reduces the probability

ndividuals enter the locale. In our favored model specification with subregion-individual and day fixed effects, an
dditional case decreases the probability of visiting the region by 0.081 percentage points (−1.2%). The impact of an
nnouncement claiming a case visited subregion j has a similar qualitative effect. In specification (3) we find that such
n announcement decreases the probability of a visit in the subregion by 0.017 percentage points (0.26%). Finally, we
how significant substitution between neighboring subregions. An additional case announcement in neighbors around j
ncreases the probability of an individual visiting j instead by 0.048 percentage points (0.21%).

. Heterogeneity analysis

Within this section we deconstruct our main results by exploring heterogeneous travel responses along two critical
imensions. First, we investigate precautionary behavior changes across the distribution of typical travel distances. Using
quantile regression we show that the differences in responses between local and non-local cases are especially high for

ndividuals who travel more. Individuals in high percentiles of the travel distance distribution respond less to non-local
ases but reduce their movement more in response to locally announced cases. Second, we analyze the effect of locally
nnounced cases across neighborhoods of varying socioeconomic status. Our principal finding is that individuals with
omes in wealthier neighborhoods respond more strongly to local case announcements. Further, we observe a correlation
etween the usage of public transit and the strength of the travel response.
We start by comparing the impact of case announcements across consumers of different baseline travel behaviors.

pecifically, we investigate the effect of local and non-local cases depending on an individual’s quantile of typical traveled
istance per day. We unpack this relationship (Eq. (1)) using an unconditional quantile regression.17 Fig. 3 reports the
nconditional quantile regression coefficients of local and non-local cases on travel distance in meters.

17 Note that the unconditional quantile regression in comparison to the conditional provides the advantage of interpreting the effects as the effects
over the distributions of other covariates are marginalized. For an econometric discussion see Firpo et al. (2009). Further, Borah and Basu (2013)
provides an empirical comparison.
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Table 3
Regression, visiting affected areas.

Visit Visit Visit Visit
(1) (2) (3) (4)

LocalCasesjt−1 −0.31∗∗∗
−0.099∗∗∗

−0.081∗∗∗
−0.344∗∗∗

(0.003) (0.003) (0.002) (0.008)

InfectionVisitjt−1 −0.276∗∗∗
−0.149∗∗∗

−0.017∗∗∗
−0.014∗∗∗

(0.002) (0.002) (0.001) (0.001)

NeighbourhoodCasesjt−1 0.048∗∗∗

(0.001)

Subregion FE Yes Yes No No
Date FE No Yes Yes Yes
Subregion × Individual FE No No Yes Yes
Mean Local Effect in Percent −4.59 −1.47 −1.2 −5.09
Mean Infection Visit Effect in Percent −4.08 −2.2 −0.26 −0.21
N 477,903,426 477,903,426 477,903,426 477,903,426

*p < 0.1, **p < 0.05, ***p < 0.01.
Notes: The table presents results of regression model (2). One observation corresponds to a combination an individual,
subregion, and specific date. We exclude observations from the sample that do not provide variation: (1) subregions that
an individual has never visited and (2) home subregions of individuals. Each model specification corresponds to the outcome
variable Visit , a dummy that takes the value one if the individual visits the subregion in t . Note that we multiply outcome
variable by 100 such that the coefficients are interpreted in percentage points. LocalCases are the number of local cases
in a subregion announced in the evening of t − 1. InfectionVisit are the number of newly announced cases that visited
subregion j. Finally NeighbourhoodCases are announced in the immediate neighborhood subregions of j announced in t − 1.
Model specification (1) includes subregion fixed effects, specification (2) adds date fixed effects, and specifications (3) and (4)
include date and subregion×individual fixed effects. Results are based on a bootstrapping procedure in which we draw 10%
of the individuals in the full sample and repeat after replacement. We calculate the mean local effect and mean infection
visit effect as percentage change from the average outcome. Standard errors are reported in parentheses and clustered on the
individual level.

Two major patterns emerge from this analysis. First, the impact of case announcements attenuates for people with
ower baseline travel distances. We observe a limited response to local and non-local cases in the lower 40 percent of the
ravel distribution. From the 50th to 70th percentiles, individuals decrease their travel to the same extent in response to
ocally and regionally announced infections. However, from the 80th percentile, a second pattern emerges; responses to
ocal and non-local cases diverge for the most traveled people. Those individuals respond much less to non-local than local
ases. Specifically, the coefficient on non-local cases remains constant for the 70th, 80th, 90th, and 95th percentile and is
ven increasing and insignificantly different from zero. In comparison, the non-local cases’ coefficient largely decreases for
he higher percentiles. Overall, the result shows that those individuals in the upper part of the distribution respond to case
nnouncements differently depending on their proximity. One interpretation of the result is that it is costly for individuals
ho usually travel to decrease their travel. In comparison to individuals in the lower parts of the travel distribution, they
o not respond to non-local cases but only to those cases close to their home.
We additionally focus on response heterogeneity based on home neighborhood demographics and characteristics.18

o show evidence for the correlation we evaluate a simple extension from our main model in Eq. (1):

TravelDistijkt =β1LocalCasesjkt−1 + β2NonLocalCaseskt−1+ (3)
β3LocalCasesjkt−1 · log(Cjk) + β4NonLocalCaseskt−1 · log(Cjk)+
γi + ρt + εijkt

he additional feature interacts local as well as regional, non-local cases with a characteristic of the local area j in region k,
ollected in a vector of local characteristics Cjk: population density, average household income, share of high education (at
east post-secondary education), the share of population older than 65 years old, the share of population living in a private
ondominium or landed property, the share of the population using public transport to their workplace, and the average
ime transport takes to the workplace. For each of these characteristics, we present evidence from a separate regression.
ence some of these factors may proxy for similar relevant demographics, e.g. household income and education. We take
he logarithm of each statistic of a local area to compare effects to each other. For example, a 10% higher average income
n a local area is correlated to an average additional travel distance change of β3/10 in response to the announcement
f an additional local case. Note that individual fixed effects γi soak up any non-interacted characteristic terms. Our key
nterest is if some characteristics are correlated with a greater travel distance response.

Fig. 4 shows the coefficients β̂3 for each individual regression, i.e. the correlation between local characteristics and the
verage travel distance response to local cases. Note that each coefficient should only be interpreted as a correlation; we

18 These characteristics are based on 2015 Singaporean household surveys (Statistics Singapore, 2016).
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Fig. 3. Unconditional Quantile Regression Results. Notes: The figure displays coefficients from an unconditional quantile regression of Eq. (1) For each
ercentile ({5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99}) we show the coefficient in response to local (β1) and non-local (β2) cases. The regression
ncludes individual and date fixed effects. The error bars correspond to the 95% confidence interval.

re not discerning any causal mechanism at play. We first observe a negative but insignificant correlation with density,
hat is more dense areas show a higher reduction in travel distance. For high income and highly educated individuals,
e observe a strong and negative correlation. We also find that areas with more residents over 65 in which a higher
ercentage of households live in private condominiums and landed property, both connected to higher social-economic
tatus in Singapore, show negative correlations to travel responses. Finally, we evaluate the correlation with two variables
hat provide information about the population’s work commute. We specifically find that a higher share of individuals
ho use public transport is correlated with a higher reduction in travel distance after the announcement of local cases.
urther, the longer the commute time, the higher the reduction.

. Discussion

We separate our discussion of these results by inflow and outflow behavior around locales with newly announced
ases. Our focus is on the relative impact of local and non-local case types on the travel behavior of individuals traveling
o or from the affected areas.

Beginning with the outflow analysis, summarized in Table 2, recall local cases refer to those in the subregion of an
ndividual’s residence. Non-local cases refer to those in areas outside the home subregion but in the same region; therefore,
hese cases might nonetheless be ‘‘local’’ to areas the individual visits away from home.19

Nonetheless, the results support that local case announcements have a stronger marginal impact on travel outcomes
han non-local cases. We find that the reduction in travel behavior and increase in the likelihood of staying home are
eflected across multiple channels of adjustment including how often individuals visit shopping areas (specification (3))
nd even other non-home residential areas (specification (4)). We take these changes to mean that individuals reduce
heir travel behavior as they increasingly perceive themselves as a more likely virus vector. Indeed, this is most stark
hen looking at the impact local cases have on people simply staying home. In contrast non-local cases yield no effect. A
ase local to home, does not marginally increase the risk for contracting the disease in locations away from home yet we
bserve these behavior changes. That non-local cases have a smaller impact suggests that people perceive the risk change
rom these additional cases to be smaller when occurring away from home.

The inflow analysis, the results of which are summarized in Table 3, affirm our findings of the impact of local case
nformation on travel behavior. For this analysis local cases are those in the same subregion where the individual might

19 In an alternative definition, the results for which are available in the Online Appendix, we redefine local cases based on subregions the individual
has visited within the last five days. Non-local cases are cases in areas where the individual has not been in the same time period. We find similar
results to those presented here.
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Fig. 4. Heterogeneity of Local Areas, Regression Results. Notes: The figure displays coefficients β̂3 of regression (3). Each coefficient corresponds to
ne average characteristic of a local area. By increasing the value of the characteristic in a local area by 10% we observe on average a change of
ravel distance by β3/10 in response to the announcement of an additional local case. Each regression includes individual and date fixed effects.
he error bars correspond to the 95% confidence interval.

isit. We control for non-local cases through day fixed effects in specifications (3) and (4) as well as cases from neighboring
ubregions in specification (4). Across specifications we see that individuals reduce their likelihood of traveling to locations
ither home to or visited by recently announced cases. We do not, however, find consistent results about which of the two
s more influential on this decision. While the risk of disease contraction and becoming a vector for it are inextricably
inked, we take these results as stronger evidence of avoiding contraction. Specification (4) particularly supports this
inding. We find that new cases in neighboring areas increases one’s likelihood to travel to the unaffected subregion.
ence, people are not simply cutting their travel outright but making marginal adjustments in their destinations. The
inding suggests that individuals will use precise information to update their risk assessment at levels of granularity the
nformation shared allow.
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Finally, our result on heterogeneous responses in travel outcomes have an additional purpose in evaluating the impact
of localized information. On the one hand, the analysis reveals that the policy could have a differential impact across
the average travel distance distribution. Especially for those who travel a lot, we observe a diverging response between
local and regional responses. In the case a policy intends to target those individuals, localized information may be a
suitable policy tool. On the other hand, the analysis reveals that high-income households respond strongly to local
case information. The finding is in line with previous observations in the literature (Almagro and Orane-Hutchinson,
2020; Desmet and Wacziarg, 2020) which shows that economically disadvantaged households have less opportunity in
precautionary behavior. Additionally, we find a correlation between travel along vectors carrying greater transmission
risk, e.g. on public transport, and the adjustment in precautionary behavior.

8. A stylized counterfactual

In this section we develop a simple model to provide light framing for our results and to describe how risk perceptions
might impact our estimated travel behavior. We do not explicitly model the role that new information, like case disclosure,
plays in updating these perceptions. Rather we use the model to rationalize how imprecise beliefs can generate our
findings. We close the section by connecting our empirical results to a back-of-the-envelope counterfactual exercise
estimating how people may have behaved without Singapore’s local information disclosure.

8.1. Set up

We start with the setting of a standard SIR model; there is a city’s population in which each individual i in day t is
in one of four states σt ∈ {S, K , R,D}, susceptible, infected, recovered, and deceased. As we focus on the beginning of
a pandemic, we assume for simplicity that only susceptible and infected persons exist. The share in the population that
are susceptible or infected are st and kt respectively. Provided the information kt is available, individuals may distinguish
etween local, e.g. close to their residence or perhaps locations they frequent, and non-local cases. Denote local cases

klit = αikt for some αi ∈ [0, 1], which may be based on the individual’s perception. Summarize the relevant information
for an individual in Θit .

Every day individuals must choose how much to travel cit . Individuals earn utility from traveling and engaging in
daily activity while infection with COVID-19 reduces utility, u(ci, σi), so u′

c > 0 and u(c; S, Θi) > u(c; K , Θi) for all c.
he individual discounts future utility by δ and maximizes expected lifetime utility

∑
∞

τ=t δ
τu(ciτ ; σiτ , Θit ). As in our time

eriod there is little feedback between infection rates and individual behavior, we assume people do not worry about
eveloping expectations over the city’s infection status. Rather they behavior in t as if Θit will hold for the near future.
One cost of travel is the chance to become infected by COVID-19. The ‘‘true’’ probability an individual gets infected in

is g(citβkt ) ∈ [0, 1) where g ′ > 0 and β is some known infection factor for the infected population.20 Hence travel and
he rate of infection both result in higher infection rates. Individuals, however, are motivated by their perceived infection
isk. This perceived infection risk is ĝi ≡ g(citβ k̂it ), where k̂it ≡ fi(kt ); any perception errors are based on uncertainty
round the number of people infected.
The second cost is based on concerns that an infection, even if undiagnosed, could unwittingly spread the disease.

efore a positive diagnosis an individual i is in the susceptible state and is uncertain if she is infected or not; denote the
erceived probability of her own infection by p̂i ≡ p

(
k̂lit

)
∈ [0, 1]. Note that this uncertainty is not necessarily based

n symptoms but based on concern about one’s exposure to local infected people. Let a(cit ) be a negative externality
mposed on others by an infected person. We assume a′ > 0. Hence, for person i the internalized component of the
xpected negative externality is p̂ia(cit ).

.2. Individual decisions

We can summarize the maximization problem of susceptible people in the following Bellman equation.

V s
i (Θi) = max

c

{
u(c; S, Θi) − p

(
k̂li

)
a(c) + δ

[
g(cβ k̂i)V k

i (Θi) +

(
1 − g(cβ k̂i)

)
V s
i (Θi)

]}
(4)

olving the first order condition yields

u′(c; S, Θi) = g ′(cβ k̂i)β k̂iδ
(
V s
i (Θi) − V k

i (Θi)
)  

infection risk cost

+ p
(
k̂li

)
a′(c)  

externality cost

(5)

Hence the marginal benefit of more travel is weighed against two marginal costs, roughly corresponding to the costs
discussed previously. The first factor is the perceived marginal increment of becoming infected. Note that belief crucially
depends on the private perception of the risk in the population k̂i. The second effect is the marginal impact on the expected
externality. In this model local cases have two channels to impact behavior as compared to non-local cases. Only local
cases impose costs through both cost channels identified above. This result is meant to line up with our empirical findings
summarized in Table 2, specifically the relative strong impact of local and non-local (regional) cases on travel behavior.

20 A classic assumption on g is that it is a logistic function. At this point in the pandemic, the city should be in the convex portion of this function.
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.3. Impact of information

Finally, we turn to discussing the potential role Singapore’s local case disclosure may have played in changing an
ndividual’s behavior. In the context of the model, government case disclosures impact an individual’s risk evaluation
hrough perceived population infection rates k̂i. The structure of the disclosure may have a different impact on k̂i and k̂li.

As previously noted the goal of the paper is not to estimate people’s risk perceptions. We do emphasize, however, how
hey might respond differently to local case data versus non-local case data. In our back-of-the-envelope counterfactual
xercises we will offer two extremes for how individuals might respond to cases. In a ‘‘local extreme’’ people take local case
nformation as indicative of the infection rates throughout the city. If government information were perfectly accurate, this
ppears as an over-estimation of the infection probability. In another extreme people respond to all cases as if non-local;
n this case the reaction would appear as an under-estimation.

To illustrate these extremes we start with the baseline of Singapore’s disclosure regime and assume that individuals
ake government disclosures as the true infection rates. In this case the government provides sufficient information for
veryone to accurately set k̂it = kt and k̂lit = klt , in contrast to a guess of αi. In the counterfactual disclosure environment
n which the government does not provide local information, only kt is known. To construct k̂lit , the individual must now
uess what fraction αi of cases are local. In the local extreme (LE) counterfactual, αLE

i = 1. In the non-local extreme (NE)
NE
i = 0. Generally, we can think of the former as a weak over-estimation of the case counts in one’s local areas while
he latter is an under-estimation.

These counterfactual extremes can predict a wide range of potential impacts on travel behavior. Let k◦ stand in for the
baseline information. In both extremes outlined above k◦

= kLE = kNE while 0 = kl,NE ≤ kl,◦ ≤ kl,LE . It is obvious from the
FOC in Eq. (5) that optimal travel among the three cases follows cLE ≤ c◦

≤ cNE . After presenting the back-of-the-envelope
alculations, we discuss more on which extreme we find more plausible with the evidence available.
In the calculation we make two simplifying assumptions, both consistent with the stylized model in this section. The

irst is to hold the transmission and distribution of the disease constant under alternative policies. There is ample evidence
f the impact behavior has on transmission rates – see Chudik et al., 2020 for a related context – but we leave it to future
esearchers to explore how these travel movements link to transmission explicitly. Second, we assume that the marginal
ffects presented in Table 2 apply for the cumulative local and non-local cases for the entire period.21 Hence, as we use
he results from estimating model (1), local cases are those near an individual’s residence. In the local extreme we find
ndividuals would, on average, reduce daily travel by an additional 3 km by the end of the first wave. Compared to the
verage daily distance traveled for the last week in our sample, this would amount to a 20% reduction. In the non-local
xtreme daily travel distance would increase by 350 m, or 3% compared to the average.
To oversimplify and consider travel distance as proportionally correlated with economic activity, the local extreme

arries a larger downside than the potential non-local extreme upside. We emphasize that we are not attempting to
ink this to changes in transmission risk. If from a simple epidemiological standpoint less travel is good, then the local
xtreme’s downside would be mitigated.
Our stylized counterfactual is agnostic about the exact position of the real counterfactual. However, we present two

rguments that a true counterfactual would be closer to the local extreme. That is, without local information we would
ave observed a larger downside in economic activity. First, there is survey evidence that individuals over-estimated the
isk of getting infected and dying from COVID-19 in the beginning of the pandemic (Akesson et al., 2020). Second, the data
he government discloses is a lower bound, ignoring many false positive tests, on the true number of infections in the
ity. It would be reasonable that perceived local infections are higher than government-reported infections, i.e. perceived
nfections k̂l ∈ [kl,◦, kl,LE].22

This back-of-the-envelope calculation only considers outward travel outcomes, while there is a separate impact of
recise confirmation that we see in specification (4) of Table 3. Specifically, precise information gives individuals the
pportunity to minimally adjust their travel decisions by shifting to proximal areas unaffected by a recent case. All else
qual this should strengthen the case for providing precise information; it is safe to suggest this type of switching is not
n available risk-adjustment tool to individuals in a counterfactual regime with only aggregate case information. Modeling
he specific location choices of individuals, however, is beyond the scope of this paper.

. Conclusion

In this paper we contribute to the large literature that developed around the study of COVID-19 by focusing on the
mpact and efficacy of precise case information disclosure. For severe diseases insufficiently endemic to support extensive
ockdown measures, as COVID appeared in its nascency, governments must carefully balance disease management and
ocial or economic concerns. Our paper sheds light on the efficacy and impact of case disclosures as one possible tool
uring this stage. Singapore’s initial decision to provide detailed information about the location and movement of positive

21 Consistent with the explanation provided above, in the non-local extreme individuals react to every case as though regional. In the local extreme
individuals react as if all cases over the time period are local.
22 In fact, in the baseline case with this rationale k̂l > kl,LE as well.
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ases was a near ideal setting for assessing the efficacy of this policy tool. Because the policy was implemented before
andatory movement restrictions, we are able to observe largely voluntary changes in individual behavior.
Assessing whether the policy is ultimately effective requires understanding the government’s, here Singapore’s, specific

bjectives. Presumably, two of these objectives, particularly during the first wave of infections, included minimizing
ransmission of coronavirus while also minimizing the impact on local economic activity. While we intentionally do
ot touch on this first objective, we are able to present proxies for the latter through changes in individual travel and
ctivity behavior. We find robust evidence of individuals responding to granular information with more precise movement
djustments. Our results showing that individuals carefully adjust their routines to areas proximal to new cases provides
he most optimistic case for detailed case disclosure. Hence, we believe it should merit further investigation. Future
esearch could evaluate the trade-off of transmission of COVID-19, or future diseases, and local economic activity, both
nfluenced by localized case information.

ppendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.eap.2021.10.007.
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