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Abstract

This paper proposes new power indices for revealed preference tests. The indices are based on
models of irrational consumption behavior where the consumer randomly allocates a certain fraction
of expenditure. The methods allow a researcher to trace out the entire power curve against random
expenditure allocation. The power indices are illustrated on altruistic choices in experimental data.
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1 Introduction

The standard way of testing whether consumer choice data is consistent with rationality, i.e., the hypoth-

esis of utility maximization, is to apply revealed preference tests. These procedures test whether the data

satisfies certain axioms, such as the generalized axiom of revealed preference (GARP). If the data satisfies

GARP, then there exists a continuous, strictly increasing and concave utility function rationalizing the

data (Varian, 1982).

However, when GARP is violated it does not tell us how well the utility maximization model fits the

data, which is usually referred to as goodness-of-fit.1 Conversely, when GARP is satisfied it does not

tell us how stringent the test is, that is, if GARP has enough bite to reject rationality if the data was

generated by some type of irrational behavior. This is commonly referred to as the power of the test.

For this reason, empirical studies most often accompany the GARP test with diagnostic measures,

such as goodness-of-fit and power, to assess how well the test performs. This paper proposes simple

procedures to calculate the power against random expenditure allocation. A novel feature of these

∗I thank the editor, two reviewers and Barry Jones for very useful comments. Funding from Jan Wallander och Tom

Hedelius stiftelse and Marianne och Marcus Wallenberg stiftelse is gratefully acknowledged. Correspondence to: Per

Hjertstrand, Research Institute of Industrial Economics (IFN), P.O. Box 55665, SE-102 15 Stockholm, Sweden. E-mail:

Per.Hjertstrand@ifn.se.

1Several goodness-of-fit measures has been proposed in the literature. The most prominent is the Afriat effi ciency

index proposed by Afriat (1972) and Varian (1990). For other measures, see Houtman and Maks (1985) and more recently,

Echenique et al. (2012) and Dean and Martin (2016). Varian (1985) proposed to deal with violations of GARP by testing

whether these can be attributed to measurement errors in the data (See Jones and Edgerton, 2009, and Demuynck and

Hjertstrand, 2019, for surveys).
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procedures is that it allows a researcher to trace out the entire power curve against random expenditure

allocation.

The procedures are generalizations of the uniformly random power index proposed by Bronars (1987).

This index is based on Becker’s (1962) model of irrationality, where consumption choices are uniformly

distributed on the frontier of the budget set.2 Bronars’uniformly random power index is based on the

assumption that the consumer randomly allocates the entire expenditure among the goods. However, this

type of irrational behavior has been criticized as being too naive, and consequently, not a very appealing

alternative hypothesis to rationality (Russell et al., 1998; Varian, 2006; Andreoni et al., 2013). Never-

theless, as Varian (2006, p.105) notes, there seem to be few alternative hypotheses other than uniformly

random behavior that can be applied using the same sorts of data used for revealed preference analysis.

For that reason, Bronars’index has been widely used in empirical applications and is unequivocally the

most popular power index in the literature.3

Instead, I propose a notion of irrational behavior where the consumer only randomly allocates a

certain fraction of the expenditure. This corresponds to a model of irrationality given by the weighted

average of the observed data and Bronars’purely uniformly random data. The weight can be interpreted

as the fraction of expenditure that is being randomly allocated. I propose a new power index, called the

partial uniform random power (PURP) index, based on this model of irrational behavior. By varying

the weight and, consequently, the fraction of expenditure that is randomly allocated, the model can be

used to trace out the entire power curve against uniformly random expenditure allocation.

An advantage of the PURP index is that it takes into account the information contained in the

observed choices, which is not the case for Bronars’uniformly random index. On this issue, Andreoni et

al. (2013, p.14-15) writes (brackets added):

”A disadvantage is that the alternative hypothesis [i.e., Bronars uniformly random hy-

pothesis] is perhaps too unconditional and takes no advantage of the information in observed

choices about the distribution over behavior. Suppose, for instance, the budgets offered did

not intersect near the points where individuals are actually choosing. Then if preferences do

not conform to utility maximization, the test would be unlikely to discover it. This is true

even if Bronars’ analysis shows that randomly made choices provide a high probability of

violations. What would be preferred, though, is an index of power based on an alternative

that takes account of the choices exhibited.”

The PURP index addresses this issue in a flexible way, since the fraction of expenditure that is

randomly allocated is set by the researcher. If this fraction is low then the index is ”very conditional”in

the sense that much of the information contained in the observed choices is accounted for. Conversely,

if the fraction is high the index is ”very unconditional” since little of the information contained in the

observed choices is taken into account.

Some other advantages of the PURP index are that it doesn’t require a more detailed model of

2Bronars (1987) calls his uniformly random power index Algorithm 1.

3Andreoni et al. (2013) propose three alternative power indices. Their Afriat power index is a measure of how much

budget sets would need to be shifted outward in order to generate a violation of GARP. The optimal placement index is a

measure of how well an experimental design (i.e., the exogeneous choice of prices and expenditure in the data) performed

relative to the best possible design that could have been generated ex post. The jittering index is a measure of how noisy

the data must be in order for an experimental design to have any power. Heufer (2014) propose a conditional index, which

calculates the power against uniformly random behavior, where GARP is a necessary but not suffi cient condition (e.g.,

homotheticity and separability); See also Demuynck (2020).
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behavioral bias that may be context or setting specific, and that it can be applied to a wide range of

axioms and choice settings (e.g., budget choice and menu choice).

A potentially unappealing property of the PURP index is that it generates budget shares that are not

centered on the actual (observed) budget shares. I therefore introduce a generalization of the PURP in-

dex, called the centered partial uniform random power (cPURP) index, where budget shares are centered

on the observed shares. Thus, while the cPURP index still is based on the notion that the consumer only

randomly allocates a certain fraction of the expenditure, it differs from the PURP index in the sense

that the expected value of the budget shares are equal to the observed shares. As such, the cPURP

index relates to another power index proposed by Bronars (1987), which also generates shares that are

centered on the observed shares.4

Revealed preference procedures are often used in experimental economics to test whether the choices

of subjects are rational. Andreoni and Miller (2002) and Fisman, Kariv and Markovits (2007) analyzed

if altruistic choices of subjects are consistent with revealed preference in experimental frameworks. I

illustrate the PURP and cPURP indices to these data, and find that the power may be sensitive to the

amount of random expenditure allocation for many subjects in these two data sets.

This paper is organized as follows. Section 2 briefly recalls GARP from Varian (1982). Sections 3 and

4 introduces the PURP and cPURP indices. Section 5 contains the empirical application and Section 6

concludes.

2 The generalized axiom of revealed preference

Suppose a consumer chooses from K ≥ 2 goods observed in T ≥ 2 time periods. The goods and time
periods are indexed by K = {1, ...,K} and T = {1, ..., T}, respectively. Let xt = (x1t, ..., xKt) ∈ RK+
denote the observed quantity-vector at time t ∈ T with corresponding price-vector pt = (p1t, ..., pKt) ∈
RK++. It is assumed that budgets are exhaustive, so that budget shares can be expressed as:

wkt =
pktxkt
ptxt

, (1)

for all k ∈ K and t ∈ T. Consider the concept of revealed preferences: for two observations s, t ∈ T,
xt is directly revealed preferred to xs written xtRDxs if ptxt ≥ ptxs, which means that xt was chosen
when in fact xs also was affordable at prices pt. We say that xt is revealed preferred to xs, written

xtRxs, if there exists a sequence of observations (t, u, v, ..., w, s) ∈ T such that xtRDxu,xuRDxv, ...,
xwR

Dxs. The data D = {pt,xt}t∈T satisfies the Generalized Axiom of Revealed Preference (GARP) if

xtRxs implies psxs ≤ psxt (Varian, 1982).
The importance of GARP for empirical and theoretical work can be summarized in what has become

known as Afriat’s theorem (Afriat, 1967). We say that a utility function U (x) rationalizes a data set

D = {pt,xt}t∈T if ptxt ≥ ptx implies U (xt) ≥ U (x) for any x ∈ RK+ and all t ∈ T. Varian’s (1982)
formulation of Afriat’s theorem states that there exist a continuous, strictly increasing and concave

utility function rationalizing the data D if and only if D satisfies GARP. In practice, GARP can be

effi ciently implemented in standard statistical and mathematical software, and has become the most

popular test-method in empirical applications of consumer rationality.5

4This index is called Algorithm 3 in Bronars (1987).

5See Demuynck and Hjertstrand (2019) for a recent survey of Afriat’s theorem.
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3 The partial uniform random power (PURP) index

The power of a revealed preference test, such as GARP, is defined as the probability of rejecting GARP,

given that the consumption choices were generated from some type of irrational behavior. Bronars

(1987) proposes a power index where the irrational behavior is based on Becker’s (1962) uniformly

random model. In his model, budget shares are uniformly distributed on the unit simplex, which implies

that the consumption choices are uniformly distributed on the frontier of the budget set.

Bronars’uniformly random power index imposes the restriction that the entire expenditure is ran-

domly allocated among the goods. However, it seem more empirically sensible to assume that a consumer

only randomly allocates a fraction of her expenditure. In this model, the budget share, wqk, for any good

k ∈ K corresponds to the weighted average between the observed budget share wk and the uniformly

random budget share, wUk , i.e.,

wqk = (1− λ)wk + λw
U
k . (2)

The parameter λ ∈ [0, 1] can be interpreted as the fraction of expenditure that is randomly allocated.6

This model encompasses a continuum of sub-models. At the one extreme λ = 0, it conform to when no

part of the expenditure is being randomly allocated, in which case wqk is equal to the observed budget

share, i.e., wqk = wk (See the third remark below). At the other extreme λ = 1, the model reduces to

Bronars’pure model of uniformly random behavior, implying that wqk is equal to the uniformly random

budget share, i.e., wqk = wUk . Thus, from footnote 6, we see that in Bronars’power index equal weight is

put on all budget shares, i.e., E [wqk] = E
[
wUk
]
= 1

K .

The model (2) is illustrated in the four graphs on the left-hand side of Figure 1. We assume K = 3

and that the observed budget shares are given by (w1, w2, w3) = (0.6, 0.3, 0.1) (marked with a red

point). Each graph contain 5, 000 simulated points of (wq1, w
q
2, w

q
3) calculated from the model (2) for

λ = (0.25, 0.5, 0.75, 1.0).7 We see that as λ increases, the area containing the observed shares grow and

for λ = 1 (bottom left graph) it covers the entire unit simplex.

I propose to use (2) as the model of irrational behavior when calculating the power of GARP. The

implementation of this power index, which I call the partial uniform random power (PURP) index, takes

the following 8 steps:

1. Set λ ∈ [0, 1].

2. Choose the number of simulations S and set m = 0.

3. For each t ∈ T, generate the uniformly random budget shares
{
wUkt
}
k∈K on the unit simplex from

the Dirichlet distribution with all parameters set to one, i.e.,
(
wU1t, ..., w

U
Kt

)
∼ Dir (1, ..., 1). This

can easily be done by first generating Gamma(1, 1) random variables, denoted as {Gkt}k∈K, by
drawing K independent uniformly random numbers ukt ∼ U(0,1), and calculate Gkt = − lnukt.
The Dirichlet random numbers are given by wUkt = Gkt/

∑K
j=1Gjt for all k ∈ K.

6Assuming that wUk are Dirichlet distributed random variables with parameters (1, 1, ..., 1), the expected value, variance,

covariance and correlation of the budget shares in the model (2) are:

E
[
wqk
]
= wk + λ

(
1

K
− wk

)
, and V ar

[
wqk
]
= λ2

(K − 1)
K2 (K + 1)

;

Cov
[
wqk, w

q
j

]
= −λ2 1

K2 (K + 1)
, and Corr

[
wqk, w

q
j

]
= − 1

(K − 1)
for k 6= j.

7Each simulated three-dimensional point represents a vector that is projected on the two-dimensional simplex in every

graph. The vertices in the simplex are given by: (1, 0, 0) −→ (0, 0) , (0, 1, 0) −→ (1, 0) and (0, 0, 1) −→ (0.5, 1).
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Figure 1: 5, 000 simulated points on the unit simplex from the model in Eq. (2) and the model in Eq.

(3) for different values of λ. The red point are the observed budget shares (w1, w2, w3) = (0.6, 0.3, 0.1).
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4. For each t ∈ T, calculate {wqkt}k∈K from (2), where the observed budget shares {wkt}k∈K are

calculated from (1).

5. Given prices, pkt, and expenditure, ptxt, solve for the random quantities, qkt, corresponding to w
q
kt

as:

qkt = wqkt
ptxt
pkt

,

and define qt = (q1t, ..., qKt) for all t ∈ T.

6. If {pt,qt}t∈T violates GARP then set m = m+ 1.

7. Repeat steps 3-6 S times.

8. The power is equal to m/S.

Some remarks: First, the PURP index is just as easy to implement as Bronars’uniformly random

power index, and can be applied using the same sorts of data used for revealed preference.

Second, the index can trace out the entire power curve against uniformly random expenditure allo-

cation by implementing the model at each node in an equally-spaced grid for λ ∈ [0, 1].
Third, the case λ = 0, in which no uniformly random data is added to the observed data, is special in

the sense that it does not necessarily constitute a model of irrationality (i.e., it may be inconsistent with

any alternative hypothesis). Indeed, this case has two interpretations depending on whether the observed

data D = {pt,xt}t∈T satisfy or violate GARP. On the one hand, if D satisfy GARP, then by Afriat’s
theorem, these data were generated under the null hypothesis of rationality. As such, implementing the

8-step procedure calculates the size (and not power) of the GARP test. Note that the size of any revealed

preference test (e.g., GARP), by construction, is always zero.

On the other hand, if D violate GARP, then by Afriat’s theorem, these data were generated under
the alternative hypothesis of irrational behavior, and implementing the 8-step procedure calculates the

power of the GARP test. In this case, the power is, by construction, always equal to 1.

Fourth, what is a reasonable value of λ? This is not pertained to the methods suggested here,

but shared by other revealed preference procedures. In empirical revealed preference applications of

”approximate utility maximization”, for example, a cut-off point is chosen at which any cost-effi ciency

level below that point is considered as inconsistent with rational choice. In contrast, any point above

the cut-off is considered suffi ciently close to ”exact”utility maximizing behavior and therefore deemed

consistent with rationality. However, what consititutes a reasonable cut-off is subjective, and Varian

(1990) argues that it should depend on the problem at hand, e.g., the number of observations, power of

the test, and model under consideration.8

Since λ in the PURP index has a similar function as e in the theory of ”approximate rationality”,

the same principle can be extended to λ. Accordingly, I argue that the choice of ”cut-off”at which the

fraction of random expenditure allocation is deemed reasonable should depend on the problem and data

at hand. In particular, I do not take a direct stand on what constitutes a reasonable λ, but encourage

readers to make up their own minds on what they think is a small or large fraction of random expenditure

allocation in empirical applications of the PURP index.

Finally, following a suggestion of a reviewer, I provide an alternative interpretation of the PURP

index. Suppose that the observed data D = {pt,xt}t∈T satisfy GARP and consider the model (2). So

8A similar reasoning is applicable to standard statistical hypothesis testing, where the researcher is required to choose

a nominal significance level, and one can argue that this choice should also depend on the problem at hand.

6



far, λ have been interpreted as the fraction of the expenditure that is randomly allocated. Instead, let

us think of λ as measuring the degree of irrationality in the model (2), such that the model becomes

”more irrational”for larger values of λ. That is, for large values of λ, the model (2) is ”very irrational”,

while it is ”less irrational”for lower values of λ. The case λ = 0 constitutes a perfectly rational model.

Hence, in this framework, the PURP index for a fixed λ can be interpreted as the probability of rejecting

GARP at the degree of irrationality λ, denoted Prob[GARP is rejected | λ]. Assuming that the derivative
∂Prob[GARP is rejected | λ] /∂λ is well-defined, this derivative can then (roughly) be interpreted as the
”speed”at which the GARP test becomes rejectable at the degree of irrationality λ, given the observed

data D = {pt,xt}t∈T. Similar to the PURP curve, it is possible to trace out the entire ”speed”-curve
by calculating the derivative ∂Prob[GARP is rejected | λ] /∂λ at each node in an equally-spaced grid for
λ ∈ [0, 1] and then plotting the derivative against each node.

4 The centered partial uniform random power (cPURP) index

A possibly unappealing feature of the PURP index is that it does not generate budget shares that are

centered on the observed budget shares.9 In this section, I propose a simple modification of the PURP

index that satisfies this property. As above, we consider a model where the budget shares, in this case

denoted by wzk, are a linear combination of the observed budget share, wk, and a random budget share

denoted by wCk , i.e.,

wzk = (1− λ)wk + λwCk . (3)

However, in contrast to the PURP index where the random budget shares follow a Dirichlet distribution

with all parameters set to one, in this model, the random budget shares
(
wC1 , ..., w

C
K

)
follow a Dirichlet

distribution with parameters (K × w1, ...,K × wK). This ensures that the expected value of the random
budget shares is equal to the observed shares, i.e., E

[
wCk
]
= wk for all k ∈ K. Hence, the budget shares

wzk in the model (3) are always centered on the observed shares (for any λ), i.e.,
10

E [wzk] = E
[
(1− λ)wk + λwCk

]
= (1− λ)wk + λE

[
wCk
]

= (1− λ)wk + λwk
= wk.

As before, the parameter λ ∈ [0, 1] is the fraction of expenditure that is randomly allocated. The

graphs on the right-hand side of Figure 1 plots 5, 000 simulated shares of wzk from the model (3) for

λ = (0.25, 0.5, 0.75, 1.0). We see that the simulated shares for the model (3) are more scattered around

the observed shares (w1, w2, w3) = (0.6, 0.3, 0.1) than in the model (2).

I propose the centered partial uniform random power (cPURP) index based on the model of irra-

tionality in (3). The cPURP index is implemented as follows:

1-2. Same as above.

9The budget shares in the PURP index are centered on the observed budget shares only if wk =
1
K
for all k ∈ K, which

implies E
[
wqk
]
= wk =

1
K
.

10The variance, covariance and correlation of the budget shares in the model (3) are:

V ar [wzk] = λ2
wk (1− wk)
(K + 1)

, Cov
[
wzk, w

z
j

]
= −λ2

wkwj

(K + 1)
and Corr

[
wzk, w

z
j

]
= −

√
wkwj

(1− wk) (1− wj)
for k 6= j.
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3. For each t ∈ T, generate the random budget shares
{
wCkt
}
k∈K on the unit simplex from the Dirichlet

distribution
(
wC1t, ..., w

C
Kt

)
∼ Dir (K × w1t, ...,K × wKt). These variables can be simulated by first

drawing Gkt ∼ Gamma(K × wkt, 1) and then setting wCkt = Gkt/
∑K

j=1Gjt for all k ∈ K.

4. For each t ∈ T, calculate {wzkt}k∈K from (3), where the observed budget shares {wkt}k∈K are

calculated from (1).

5. Given prices, pkt, and expenditure, ptxt, solve for the random quantities, zkt, corresponding to wzkt
as:

zkt = wzkt
ptxt
pkt

,

and define zt = (z1t, ..., zKt) for all t ∈ T.

6. If {pt, zt}t∈T violates GARP then set m = m+ 1.

7-8. Same as above.

Thus, the cPURP index differs from the PURP index only by step 3. The cPURP index reduces to

the PURP index when the observed budget shares (w1t, ..., wKt) are equal across goods, i.e., if wkt = 1
K

for all k ∈ K and t ∈ T, in which case, we have Dir (K × w1t, ...,K × wKt)
d
= Dir (1, ..., 1).

5 Applications

In this section, I apply the PURP and cPURP indices to experimental data collected by Andreoni and

Miller (2002) and Fisman, Kariv and Markovits (2007) to study if altruistic choices of experimental

subjects are rational.

5.1 Data from Andreoni and Miller (2002)

Andreoni and Miller (2002, AM) employed a generalized dictator game in which one subject (the dictator)

allocates token endowments between himself and an anonymous other subject with different transfer rates.

The payoffs of the dictator and the beneficiary are interpreted as two distinct goods and the transfer

rates as the price ratio. The experiment was split in two parts, where 142 subjects (Group 1) faced

T = 8 decision rounds while 34 subjects (Group 2) faced T = 11 decision rounds. AM used GARP to

test for rationality and found that 13 subjects (9%) in Group 1 and 5 subjects (15%) in Group 2 violated

GARP. They also reported a Bronars’uniformly random power index of 78.1% for Group 1 and 94.7%

for Group 2.11 Andreoni et al. (2013) provided a more detailed power analysis of these data by applying

their own three indices and all three of Bronars’power indices. I complement the analyses in AM and

Andreoni et al. (2013) by calculating the PURP and cPURP indices for those subjects in Groups 1 and

2 that satisfy GARP. I implement the indices at each node using a grid of 0.02 for λ (starting at 0 and

ending at 1) and the number of simulations in step 2 is set to S = 10, 000.

Figure 2(a) traces out the power curves for the 129 subjects in Group 1 that satisfy GARP using the

PURP index. The left panel in Table 1 gives summary statistics over these 129 subjects for different

values of λ. The power curves for most subjects are essentially zero up to a random expenditure allocation

of 20% (λ = 0.2). For a random expenditure allocation of 50% (λ = 0.5), we see that 75% (Q3) of all

11Because the subjects in each group faced the same prices and budgets, Bronars’uniformly random power index is the

same for every subject in each group.
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Figure 2: Power plots for the PURP and cPURP indices over all subjects that satisfy GARP in Groups

1 and 2.

(a) PURP curves for the 129 subjects in Group 1 that satisfy GARP
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(b) cPURP curves for the 129 subjects in Group 1 that satisfy GARP
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(c) PURP curves for the 29 subjects in Group 2 that satisfy GARP
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(d) cPURP curves for the 29 subjects in Group 2 that satisfy GARP
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Table 1: Summary statistics for the PURP and cPURP indices over the 129 subjects in Group 1 that

satisfy GARP for different values of λ.

λ Mean Min Q1 Med. Q3 Max Mean Min Q1 Med. Q3 Max

PURP cPURP

0.1 0.121 0 0 0 0.120 0.551 0.201 0 0 0 0.301 0.890

0.2 0.124 0 0 0 0.132 0.551 0.203 0 0 0 0.303 0.890

0.3 0.163 0 0.055 0.055 0.226 0.551 0.217 0 0 0 0.331 0.890

0.4 0.225 0 0.159 0.159 0.274 0.551 0.234 0 0 0 0.451 0.890

0.5 0.279 0 0.197 0.212 0.346 0.592 0.261 0 0 0.022 0.530 0.925

0.6 0.371 0 0.272 0.386 0.454 0.610 0.285 0 0 0.044 0.630 0.934

0.7 0.467 0.120 0.393 0.489 0.547 0.661 0.313 0 0 0.098 0.702 0.946

0.8 0.572 0.343 0.528 0.583 0.631 0.693 0.334 0 0 0.136 0.746 0.954

0.9 0.675 0.589 0.658 0.681 0.696 0.723 0.353 0 0 0.163 0.777 0.961

1 0.743 0.743 0.743 0.743 0.743 0.743 0.370 0 0 0.239 0.806 0.963

Notes: Q1: 1st quartile (25th percentile), Med.: Median (2nd quartile, 50th percentile) and Q3: 3rd quartile (75th

percentile).

subjects have a power of 34.6% or less. The average power over all subjects is 46.7% for a random

expenditure allocation of 70% (λ = 0.7) and increases to 50% at λ ' 0.72. In general, the power

increases more rapidly for larger values of λ. For example, while the average power increases by 15.8%

from λ = 0.1 to λ = 0.5, it increases by 46.4% from λ = 0.5 to λ = 1. However, this is not the case

for the cPURP index, which is generally higher than the PURP index for lower values of λ (≤ 0.4), but
cPURP is lower than PURP for higher values of λ (> 0.4). A likely explanation for this is that a few

subjects have a high power as measured by cPURP at low values of λ (See Q3- and Max-columns). This

can be better seen by comparing Figures 2(a) and (b), where the cPURP-curves in Figure 2(b) are more

spread out and heterogeneous than the PURP-curves. In other words, there is a larger difference in

power between subjects when measured by the cPURP index. This is also visable from the right panel

in Table 1, which gives summary statistics over the 129 subjects for different values of λ in the cPURP

index. Specifically, half of the subjects have a power of at most 2.2% for a random expenditure allocation

of 50%, and the average power is 37% for a random expenditure allocation of 100%. Further illustrating

the heterogeneity over subjects in the cPURP index, note from the last column in Table 1 that the power

for a few subjects is close to 1 for values of λ near zero.

Figure 2(c) traces out the power curves for the 29 subjects in Group 2 that satisfy GARP using the

PURP index. The left panel in Table 2 gives summary statistics over the 29 subjects for different values

of λ. As expected from the larger number of decision rounds, the power is generally higher for subjects

in this group than in Group 1.

Next, consider the results for the cPURP index in Figure 2(d) and the right panel in Table 2. The

cPURP index is considerably lower than the PURP index for these subjects. The power for half of the

subjects is equal to zero even at a random allocation of 100%. Moreover, contrary to what one might

expect (given the larger number of decision rounds), the cPURP index is generally lower for subjects in

Group 2 than in Group 1. A possible explanation for this is that the cPURP index does not only depend

on the observed budget shares though the choice of λ, but also depend on the shares in the generation
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Table 2: Summary statistics for the PURP and cPURP indices over the 29 subjects in Group 2 that

satisfy GARP for different values of λ.

λ Mean Min Q1 Med. Q3 Max Mean Min Q1 Med. Q3 Max

PURP cPURP

0.1 0.071 0 0 0 0 0.682 0.110 0 0 0 0 0.965

0.2 0.243 0 0.160 0.241 0.241 0.702 0.128 0 0 0 0.039 0.976

0.3 0.287 0 0.250 0.282 0.282 0.721 0.142 0 0 0 0.122 0.979

0.4 0.341 0 0.329 0.334 0.337 0.751 0.155 0 0 0 0.174 0.982

0.5 0.385 0 0.342 0.380 0.380 0.786 0.167 0 0 0 0.217 0.989

0.6 0.587 0.272 0.488 0.623 0.626 0.850 0.190 0 0 0 0.281 0.992

0.7 0.717 0.545 0.664 0.746 0.746 0.889 0.211 0 0 0 0.390 0.994

0.8 0.824 0.742 0.803 0.841 0.845 0.905 0.229 0 0 0 0.490 0.996

0.9 0.896 0.870 0.887 0.903 0.905 0.919 0.250 0 0 0 0.593 0.997

1 0.939 0.939 0.939 0.939 0.939 0.939 0.266 0 0 0 0.649 0.998

of the Dirichlet random numbers (in step 3).12 Hence, for the cPURP index, increasing the number of

observations matter less if one wishes to obtain a more powerful test.

5.2 Data from Fisman, Kariv and Markovits (2007)

Like AM, Fisman, Kariv, and Markovits (2007, FKM) conducted a laboratory experiment to study

individual preferences for giving. They also employ a generalized dictator game, where the payoffs of the

dictator and the recipient can be interpreted as goods. While the experiment in AM consisted of 8 and 11

decision rounds, the experiment in FKM consisted of 50 decision rounds with 76 subjects. Thus, because

of the many more decision rounds in the FKM-experiment, the power of the revealed tests used to check

if subjects’choices are rational should have a higher discrimatory power against irrational behavior than

in AM. Heufer and Hjertstrand (2017) provide a detailed analysis of the power for these data, but only

considered Bronars (1987) alternative hypothesis of pure uniformly random behavior.

Most subjects in the FKM data violate GARP, and to test if the subjects’choices obey the notion

of ”approximate utility maximization” (as briefly discussed in Section 3), FKM calculate the minimal

adjustment of expenditure required to make the data consistent with GARP, given by the Afriat effi -

ciency index (AEI).13 Since adjusting expenditure by the AEI gives a less stringent test, Heufer and

Hjertstrand (2017) analyze the loss in power for data that are adjusted by the AEI. To calculate the

power, they employ the following three-step procedure: (i) compute the AEI using the observed data;

12Note that this is the difference between cPURP and PURP since the generation of the uniformly random budget shares

in the latter is fixed (drawn from a Dirichlet distribution with all parameters set to one).

13GARP can be straightforwardly modified to test for ”approximate utility maximization” and calculate the AEI.

Consider an effi ciency level 0 ≤ e ≤ 1: xt is directly revealed preferred to xs at effi ciency level e, written xtRDe xs if

eptxt ≥ ptxs. The relation Re is the transitive closure of RDe and defined analogously as R. The scalar e can be thought

of as how much less the potential expenditure on a bundle xt has to be before we will consider it worse than the observed

choice xs. For example, if e is 0.9, we will only count bundles whose cost is less than 90% of an observed choice as being

revealed worse than that choice. The data D = {pt,xt}t∈T satisfies the Generalized Axiom of Revealed Preference at

effi ciency level e (GARPe) if xtRexs implies epsxs ≤ psxt. The AEI is defined as the maximal e such that the data obey
GARPe.
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Table 3: Summary statistics for the PURP and cPURP indices for GARP over subjects in the FKM

data for different values of λ.

λ Mean Min Q1 Med. Q3 Max Mean Min Q1 Med. Q3 Max

PURP cPURP

0.1 0.411 0 0.126 0.361 0.716 0.985 0.473 0 0.175 0.505 0.701 0.994

0.2 0.524 0 0.165 0.426 0.960 1.000 0.537 0 0.282 0.560 0.818 1.000

0.3 0.621 0 0.266 0.755 0.992 1.000 0.603 0 0.380 0.634 0.903 1.000

0.4 0.722 0 0.469 0.914 0.999 1.000 0.659 0 0.469 0.756 0.957 1.000

0.5 0.800 0.007 0.723 0.986 1.000 1.000 0.691 0 0.514 0.808 0.973 1.000

0.6 0.865 0.016 0.892 0.999 1.000 1.000 0.718 0 0.546 0.882 0.984 1.000

0.7 0.909 0.032 0.966 1.000 1.000 1.000 0.739 0 0.556 0.919 0.996 1.000

0.8 0.944 0.054 0.992 1.000 1.000 1.000 0.756 0 0.557 0.945 0.999 1.000

0.9 0.967 0.171 0.999 1.000 1.000 1.000 0.768 0 0.578 0.969 1.000 1.000

1 0.985 0.442 1.000 1.000 1.000 1.000 0.778 0 0.603 0.981 1.000 1.000

then, (ii) generate random datasets using Bronars’approach; and, finally, (iii) calculate the fraction of

sets violating revealed preference where expenditures are adjusted by the AEI (computed in the first

step). In addition to applying GARP, Heufer and Hjertstrand (2017) also test for ”approximate ho-

mothetic utility maximization”by applying the homothetic axiom of revealed preference (HARP). See

Heufer and Hjertstrand (2017) for a detailed discussion of HARP and for the definition of ”approximate

homothetic utility maximization”, and also for the definition of the homothetic effi ciency index (HEI),

which is analogous to the AEI in terms of homotetic utility maximization.

In this application, I apply the PURP and cPURP indices to the FKM-data using the three-step

procedure. This analysis gives a more complete picture of the power and provides at least a partial

answer to whether it is meaningful to infer if these data were generated by (homothetically) rational

subjects even when expenditures are deflated by the AEI/HEI. I implement the indices at each node

using a grid of 0.02 for λ (starting at 0 and ending at 1) and the number of simulations in step 2 is set

to S = 1, 000.

Table 3 gives the results for GARP when expenditures are deflated by the AEI (the last column

replicates the results in Heufer and Hjertstrand, 2017). In general, the power is higher at lower levels of

random expenditure allocation than in AM’s data, which is most likely due to the many more decision

rounds in the FKM-data. This is even more evident for the cPURP index, which is considerably higher

in the FKM-data. As in AM’s data, the cPURP index for most subjects is higher than the PURP index

at lower levels of expenditure allocations but, again, lower at higher levels of λ.

Next, we turn to the results for HARP (recall that expenditures are deflated by the HEI), which is

given in Table 4 (the last column replicates the results in Heufer and Hjertstrand, 2017). Note that since

the HEI cannot be higher than the AEI, the HARP test may actually be less stringent than the GARP

test (when deflated by the HEI and AEI, respectively). Hence, with expenditures deflated by the HEI

and AEI, the power may be lower for HARP than for GARP.

The PURP results in the left panel of Table 4 are very similar to the PURP results in Table 3. The

cPURP results on the right panel of Table 4 are uniformly higher than the cPURP results in Table

3. If the HEI for the subjects is considered large enough and therefore suffi ciently close to ”exact”

homothetic utility maximizing behavior, then the results in Table 4 may be taken as some evidence that
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Table 4: Summary statistics for the PURP and cPURP indices for HARP over subjects in the FKM

data for different values of λ.

λ Mean Min Q1 Med. Q3 Max Mean Min Q1 Med. Q3 Max

PURP cPURP

0.1 0.408 0.005 0.081 0.184 0.928 1.000 0.545 0 0.423 0.555 0.711 1.000

0.2 0.515 0.005 0.119 0.372 1.000 1.000 0.622 0 0.477 0.656 0.835 1.000

0.3 0.617 0.006 0.205 0.648 1.000 1.000 0.688 0 0.545 0.744 0.914 1.000

0.4 0.708 0.009 0.403 0.947 1.000 1.000 0.733 0 0.585 0.836 0.962 1.000

0.5 0.793 0.010 0.680 0.990 1.000 1.000 0.769 0 0.619 0.903 0.993 1.000

0.6 0.863 0.013 0.888 1.000 1.000 1.000 0.794 0 0.659 0.961 0.999 1.000

0.7 0.915 0.020 0.983 1.000 1.000 1.000 0.808 0 0.711 0.987 1.000 1.000

0.8 0.954 0.057 0.999 1.000 1.000 1.000 0.817 0 0.738 0.992 1.000 1.000

0.9 0.974 0.194 1.000 1.000 1.000 1.000 0.824 0 0.755 0.997 1.000 1.000

1 0.989 0.626 1.000 1.000 1.000 1.000 0.829 0 0.773 0.999 1.000 1.000

the ”approximate”homothetic utility maximization model describes the behavior of the subjects better

than the ”approximate” standard utility maximization model. Heufer and Hjertstrand (2018) propose

to use the ”approximate”homothetic utility maximization model to recover preferences by calculating

bounds on indifference curves in experimental data.14 One may therefore argue that the results in Table

4 gives further motivation for using Heufer and Hjertstrand’s (2018) methods to recover preferences (as

opposed to using the ”approximate”standard utility maximization model).

6 Conclusions

This paper has proposed new power indices for revealed preference tests. The indices are based on

models of irrationality where the consumer only randomly allocates a certain fraction of expenditure.

This is different from other power indices, where the consumer is assumed to randomly allocate the

entire expenditure. A novel feature of the new power indices is that they can be used to trace out the

entire power curve against random expenditure allocation. The indices are easy to implement and can

be readily combined with other power indices such as Heufer’s (2014) conditional power index.

14 Imposing homotheticity on preferences have some obvious advantages since, under homotheticity, everything there is

to know about an agent’s preference is implicit in a single indifference set. In particular, when there are only two goods,

which is common in experimental economics, a preference can therefore be completely summarized graphically by showing

a single indifference curve.
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