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Summary

Technical change in general milk processing is estimated within a homothetic

frontier production function allowing neutrally variable scale elasticity.

The results show that technical progress is characterized by a rapid increase
in optimal scale and a small capital saving bias, increasing the marginal pro-

ductivity of labour relative to capital.

To characterize technical change, Salter's measures of bias and technical ad-
vance are utilized and interpreted within the framework of the efficiency

concepts of Farrell,

1. Introduction

The purpose of this study is to amalyse technical progress in Swedish general
milk processing in terms of the production function. We shall try to find out
how much, if any, of the change in input requirements and unit costs is attrib-
utable to each of the following three factors: (1) the shift in the production
function; (2) factor substitution; (3) increasing optimal scale or elasticity

of scale., This study differs from earlier studies in several ways.

The process of technical change is studied by a best-practice or frontier

we know) frontier functions

93}

production function. In the literature (as far a
are estimated on the basis of cross section data. See e.g.Algner & Chu [2],
Carlsson [5], Timmer [29]. Earlier time series studies are based on some sort

of an average production function. See e.g. Ringstad [23] and Sato [26].

We have utilized a homothetic production function with a variable scale elas—
ticity. Inhomogeneous production functions implying variable scale elasticity
is the general rule in the production theory of Frisch [9], whereas it is the
exception in empirical analysis, the bulk of which is based on homogeneous
Cobb-Douglas (C-D) — or CES production functions. Homothetic functions offer
the easiest possibility of specifying variable scale elasticity, because the
scale elasticity is constant along an isoquant and independent of factor
ratices. (See Fgrsund [12]) Empirical studies are found in Nerlove [21],
Zellner and Revankar [30] and Ringstad [22] and [24]. As far as we know,

only homogeneous best-practice functions have previously been estimated in
the literature (see e g Aigner and Chu [2], Seitz [27],[28] and Timmer [29]).

Thus we have generalized the approach of Aigner and Chu [2] to allow for



variable scale elasticity. (This generalization was performed in Fersund

[11] and Fersund and Jansen [ 16] via estimating cost functions on cross

section data.)

The analysis is based on a complete set of cross section time series data for
10 years of 28 individual plants producing a homogeneous product. Estimation
of production functions on the basis of time series data are usually carried
out on a very high level of aggregation. Cross section data on individual
plants producing a homogeneous output are rather scarce except in the field

of agriculture and electricity generation. (See e.g.Christensen snd Greene [6],
Dhrymes and Kurz [7], Komiya [19], and Nerlove [21]. The analysis in Ringstad
[23] is, however, based on pooled time series cross section data but the level

of aggregation is rather high as the base unit of the industry construction is

the two—-digit group.

Earlier studies have almost exclusively been limited to estimating Hicks-—
neutral technical progress in production functions fitted as an average of

the sample. Exceptions here are e.g Ringstad [24] and Sato [26] studying non-

neutral technical progress.

In this study technical progress is analysed by introducing trends in all
the parameters of the frontier production function. In particular trends are
introduced in both of the scale function parameters, thus making it possible

to study whether optimal scale changes over time.

To further elucidate the progress of technical advance we have generalized,

in g Farrell inspired way, Salter's measure of technical advance.

We will employ the following notations in this paper:

= quantity produced milk in tonnes

= working hours by production workers

X
L
K = user cost of capital in Swedish crowns (1964~prices)
n = number of units

T

= number of vyears



2. Estimation of Frontier Functions

When estimating frontier functions three general approaches are found in the
literature (see Johansen [18], ch. 8 for a critical evaluation of some of the
approaches): i) utilizing the whole sample, but restricting the observed points
in the output—input space to be on or below the frontier, ii) eliminating
"inefficient" observations and estimating an "average' frontier function from
the subset of efficient points, i1ii) allowing some observations to be above
the frontier either by eliminating a certain percentage of the most efficient
observations (fittinga "probabilistic" frontier a”la Timmer{29]) or putting
different weights to be placed on positive and negative residuals as Aigner
et al [3] or specify both an efficiency distribution proper and pure random
variation of efficiency (see Aigner et al [4] and Meeusen & van der Broeck

[20]).

We will here utilize approach i) and generalize the programming method in

Aigner & Chu [2] to allow for neutrally variable returns to scale.

The best—practice production function is pre—specified toc be a homothetic

function of the general form

(1) G(x,t) = g(V: t)

where x = rate of output (single ware production), v = vector of inputs,

G(x,t) a monotonically increasing function, and g(v,t) homogeneous of degree

1 in v, The returns to scale properties are given by the scale elasticity
function
2) e,y = &b

x.G'(x,t)

As regards the generation of the actual 'data several schemes can be envisaged.
One hypothesis is that the production structure is of the putty-clay type
(Johansen [18])with simple Leontief (limitational) ex post functions. To
simulate the actual performance of plants an efficiency term with respect to
the utilization of the inputs distributed in the interval (0,1) can be intro-
duced multiplicatively on the r.h.s,of Eq (1). We will adopt this scheme and

in addition assume that the plants are operated on the "efficient cormers" of
the isoquants. Ex post the plant managers can only choose the rate of capacity
utilization. With these assumptions concern about "slack" in fulfilling margin-—

al conditions with respect to inputs is not relevant. The frontier function



can be regarded as a pessimistic estimate of the ex ante or planning

production function. However, it is not possible on our level of aggregation

to identify unique vintages. Technical change is characterized by successive
improvements, while we assume discrete time with one year as the unit, and fixed

coefficients for each year.

As regards the estimation procedure a key question is whether a specific
distribution of the efficiency terms is assumed or not. If sufficient informa-

ion is available (or if one is bold enough) to postulate a specific distribu-
tion the natural procedure is to derive maximum likelihood estimates as pointed
out in Afriat [1]. However, in this paper we will not follow this approach.

The case of specific efficiency distribution is treated in the Appendix.

A natural objective ~ with the information available = is that the observations
should be close to the frontier in some sense. In order to keep the estimation
problem as simple as possible it is here chosen to minimize the simple sum of

deviations from the frontier with respect to input utilization after logarith-

mic transformation, subject to on or below frontier constraints,.

As regards the form of the production function the following specification is
employed (cf Zellner—Revankar [30]}:

a~y,t (B-y.t)x t 2 a.-y.t
Yy e( Ys ) Y3 375

(3) G(x,t) = x = g{v,t) = Ae « I v

Technical change is accounted for by specifying the possibility of changes
in the constant term, A, and the kernel elasticities, aj, for labour, L, and

capital, K, and the scale function parameters a, 8.
The corresponding elasticity of scale function is:

1
(X-Y4t+ (B—Yst) X

4) e(xt) =

With this specification the estimation problem is reduced to the most simple

problem of solving a standard linear programming problem. The objective func-—

tion to be minimized becomes:

T n

— _..t ——
(5) tiliil{lnA + vyt + (agmyyt) InL(8) + (ay=v,t) -1nK, (£)=(a=v,) Inx, (£)

—,(B-Yst)-x.(t))
1

Note that although the objective function is linear in all the unknown para-

meters, the specification yields satisfactory.flexibility as regards technical

change.



Concerning the constraints of the LP-model, the expression within the brackets
in (5) constitutes (T+l) - n constraints securing the observed input points to

be on or below the frontier:
3 + —y . . -~ » I . — — .
(6) InA Y3t + (a1 }lt) lnLl(t) + (az (it) hKl(t) (a (4t)
>
% - - . z
Inx, (£) = (B-ygt) + x,(t) =0
In addition, we have the homogeneity constraint

(7 ra. = Z(a.~y.+t) = 1 t=1,...,T
3 A
J J
Since (7) must be satisfied for all t the specification (3) implies the

restriction:
(8) Yl +Y2 =0

It is not necessary to enter (7) for all T years because if it holds for

one year and (8) is wvalid it must hold for all other values of t. For con-
venience we have chosen t=0 for the constraint (7). (Note that the choice of
time index t=l,...,T, is not trivial. Our choice implies that the factor
elasticities can never obtain extreme values for year 1 if the trends are
different from zero.) In addition we want the kermel elasticities including

trends to be restricted to the interval (0,1).

fiA

a.

©r 0 Jst

A

ok
r

i
)
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e

In view of (7) and (8) these constraints reduce to

>

(10) a, - y.T'" 2 0 ji=1,2

J

We also want the scale parameters including trends to be non-negative

(1) a—yaT' zZ0

v
o

(12)  B-ygT!



We have found it reasonable to avoid the possibility of a too abrupt change

in the scale function in the last year i.e. the optimal scale can exist in the
next last year but might not exist in the last year, by putting T' = 2T.

Thus the non-negativity conditions will hold in the future for as long a pexiod

as the observed. This seems reasonable from a prediction point of view.

Finally we have the reasonable restrictions from the economic point of view
8, a, a]_’ aZ’ YS’ '\/4: YS 2z 0

1nA, Yl’ YZ unrestricted

3, The Data

In the empirical part of this study we have utilized primarv data for general
milk processing from 28 individual dairy plants during the period 1964-1973.
We have received all data from SMR (Svenska mejeriernas riksf8rening), a central

service organization for the dairies in Sweden.

The processing of milk in a dairy can be divided into different stages of

which each one can be refered to as a production process. The data used in

this study refer to the production process general milk processing. This

process includes reception of milk from cans or tanks,storing, pasteurizing

and separation. All milk passes this process before it goes further to different
processes for consumption milk, butter, cheese or milk powder etc. Thus this
stage defines the capacity of the plant. Moreover general milk processing

is often treated as a separate unit in cost accountings.

A strong reason for our choice of this part of a dairy is that it makes it
possible to measure output in physical or technical units (tonnes) avoiding
value added or gross output. This means that our estimated production function

is a true technical production function in the original sense.

Thus milk is regarded as a homogeneous product which is a very realistic
assumption. OQutput is measured in tommes of milk delivered to the plant each
vear. The amount of milk received is equal to the amount produced. There is
no measurable waste of milk at this stage. According to SMR any difference

is due to measurement errors. ( Differences were of the magnitude of kilos.)



The labour input variable is defined as the hours worked by production workers

including technical staff usually consisting of one engineer.

Capital data of buildings and machines are of user~cost type,including

depreciation based on current replacement cost, cost of maintenance and rate
of interest. The different items of capital are divided into five different
subgroups depending on the durability of capital which varies between 6 and
25 years, so the capital measure is an aggregated sum of capital costs from

these subgroups.

Capital costs,divided into building capital and machine capital,are calcu-
lated on the basis of these subgroups as a sum of the

capital costs of the subgroups. The capital measure has been centrally acconted
for by SMR according to the same principles for all plants and after regulary
capital inventory and revaluations of engineers from SMR. Afterwards we have
aggregated building capital and machine capital into one measure. Thus we have
assumed that the conditions of the composite commodity theorem are fullfilled.
In fact the relative prices of buildings and machine capital have developed
almost proportionally during the 10-year period. The price index have moved
from 100 in 1964 to 158 in 1973 for buildings and to 161 for machine capital.
An alternative would be to retain the disaggregation of building and machine
capital but in the case of a C-D kernel function implying a unitary elasticity
of substitution. This seems to be a less realistic assumption. Note that this
capital measure is proportional to the replacement value of capital, which

can serve as a measure of the volume of capital. See Johansen & Sdrsveen 117].

As the data is not adjusted for capacity utilization we have investigated

a measure based on monthly maximum amount of milk received compared with

the yearly average. This ratio is fairly stable over time, and the differences
between plants are not very great. In consequence we have not corrected for
capacity utilization. The increasing output over time for most of the plants

support the assumption.

4. Empirical Results: Frontier Estimates

The estimates of the parameters of the frontier or best—practice production
function are shown in Table I and the figures below.The different runs perfor-
med have been denoted Case 1 to Case 4. Case 1 is regarded as the main case

while the other cases represents the sensitivity analysis. In Case 2, the



sensitivity of trend specifications is shown because only Hicks neutral
technical progress is assumed. In Case 3 and 4 another kind of sensitivity
analysis is performed. In Case 3 we have excluded the largest plant from the
sample and in Case 4 we have excluded the four smallest plants. The results

show the sensitivity with regard to the observations.

TABLE I  Estimates of the frontier production function. Combined time series
cross section analysis. Estimates of the production function
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The Main Result

Technical change for Case 1 is characterized by an increasing kernel elasticity
of labour and a mirror image decreasing kernel elasticity of capital. For

constant factor prices this implies that the units should increase the labour-

capital ratio. The technical change can in this sense be characterized as

capital saving.

The estimated trends in the scale elasticity function implies a considerable
increase in optimal scale; about a doubling during the period. The Hicks
neutral term turned out to be on its zero lower boundary. The impact on the
production surface of these changes is shown in Fig.l. Cutting the production
function with a vertical plane through the origin along the average factor
ray, a ray corresponding to the average factor ratio, one obtains the classical
text-book S-shaped graph of the production function. For this average factor
ratio the development through time gives the impression of a rapid technical

progress due to the increase in optimal scale.
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FIGURE 1 The change in the frontier production function through time.
Combined time series cross section analysis. The production
function cut with a vertical plane through the origin along a ray,
uL°,1k®), 1% 13 000 and K°= 200 000
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The shift in the elasticity of scale function can be studied in Fig.2 where
the function is plotted for different years. The level of g=1, i. e. optimal
scale is indicated. The scale elasticity shift through time in a such a way
that optimal scale increases at an accelerating rate; from 6% at the start

to 107 at the end of the period.

The output of the largest plant has been in the interval 111 000 - 141 000
tonnes in the period 1964-73, while the average output has increased from
29 000 tonnes to 39 000 tonnes. Thus the largest unit has had a scale elast-
icity less than one during the period while the average output corresponds

to scale elasticities considerably greater than one.

It is obvious from Fig.l that the production function is not concave over
its entire domain. In Férsund [13:] it is shown that the production function
with the functional specification utilized in this paper, is concave for the

values of output corresponding to € < VI/a. In Case 1 here the estimate of a
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is .32 in 1964 and .27 in 1973, yielding that the production function is
concave for £ < 1.77 in 1964 and € < 1.92 in 1973, which corresponds to an

output of 17 583 and 33 961 respectively.

0 } 30 000 60 000 90 000 120 000 150 000 tonnes

FIGURE 2 The plotting of the elasticity of scale function for all

10 years

1
CE A B - Yst)x

e(x,t) =

The characteristics of technical advance can also be illustrated in the

input coefficient space (cf. Salter [25] ch. 3) by the development of the
technically optimal scale curve (see Frisch [9], ch. 8) which we here will

call the efficiency frontier. See Fdrsund and Hjalmarsson [13]. The effici-
ency frontier is the locus of all points where the elasticity of scale equals
one, i.e. it is a technical relationship between inputs per unit of output

for production units of optimal scale. Thus the efficiency frontier represents
the optimal scale of the frontier production function. In the input coefficient
space the frontier or ex ante production function defines the feasible set

of production possibilities while the efficiency frontier is a limit towards
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the origin of this set. (This consideration has been elaborated in detail
in Férsund [10].) The development of the efficiency frontier and the observed
input coefficients for 1964 [® ] and 1973 [x] are shown in Fig. 3. Note that

for homothetic functions the shape of the efficiency frontier is identical
with the shape of the isoquants

2.0 |74 EFFICIENTY ERONTIERS
9.6 .
7.2 l‘
4.8 |
2.4
o ) O

FIGURE 3 The changes in the efficiency frontier through time

combined time series cross section analysis. Estimates

of the production function

oa—yat (B—Yst)x
e

. V3t (ap7vyt)  (ay =Y,t)

= Ae L K
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a;7Y it 37Y,t vot fe(B=y.t)y FTY4ET
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The speed with which the efficiency frontier moves towards the origin is
clearly exhibited. For instance,along the ray of the average factor ratio,
the input coefficients of the 1973 frontier are about 407 of the input
coefficients on the 1964 efficiency frontier. It is also interesting to note

that 17 of 28 units in 1973 have passed the 1964 efficiency frontier.

The increasing slope of the efficiency frontier illustrates the capital

saving bias even if the trends in the kernel elasticities of labour and
capital are rather small. The estimated capital saving technical progress

is contrary to what one would guess a priori. Examples of labour saving
techniques which have been introduced in the dairies are easy to find: Changes
of milk reception from cans to tanks,self-cleaning separators and one storey
buildings. The observed capital—-labour ratio has increased substantially for

all the production units over the ten year period. Fig. 3 reveals that all

the units have reduced their input coefficients of labour while about half
of the input coefficients of capital have increased. But the relative price
increase of labour has been considerably higher than for capital, the price
indexes for the last year being 2.45 and 1.60 for labour and capital respect-
ively (1 for the base vear). The results are therefore not in conflict with
the observations. Capital saving progress means in our context that the
marginal productivity of labour is increasing over time. Put this way it may

1)

seem as reasonable as the other way round.

Sensitivity Analysts

In Timmer [29] a kind of sensitivity analysis was performed by estimating

the "probabilistic" frontier, by discarding efficient units on the frontier
from the first run and then reestimating a new frontier without the
most efficient units. The purpose was to investigate the effect of the most

" extreme'" observations. The result was that the new frontier without the

" extreme" observations differed a lot from the original frontier but was

mow similar ( except for the constant term) the traditional average production
function for the same data set. When assessing frontier estimation, however,
one must keep in mind that the raison d'€tre of frontier function estimation

is that the most efficient units should count unproportionally.

1) In Férsund and Hjalmarsson [15] the technical progress was estimated to
be labour saving. However, the data set for two dairies for one year each
have since been corrected. The measurement errors made one of the dairies

considerably more labour intensive.
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In our case we are more interested in another kind of sensitivity analysis,

As it is one dominating large firm we are interested in its influence on the
scale properties of the production function.Incidentally it is once on the
frontier. The influence on the results of the smallest plants, of which one is
once on the frontier, are also of interest because one can suspect that if these
plants were to be built today new and more efficient techniques might be
available for the same scale of output. The Hicks neutral case is, of course

also of interest because most earlier studies have been limited to this case.

In Case 2 with only neutral technical progress the elasticity of scale function
is constant and optimal scale obtains a moderate value, somewhat higher in 1964,
than for Case 1, but considerably lower in 1973. On the other hand the trend

in the constant term is now rather high so neutral technical progress amounts

to about 6% which is a rather high value. ( Cf. Ringstad [23].) Labour
elasticity is also lower and capital elasticity higher in this case. Thus

with this specification a 607 higher capital-labour ratio is optimal for the

same relative factor prices,than for Case 1 in 1964,and 1307 in 1973.

4

The objective function (5), the sum of slacks, increases with 3.67 from Case 1
to Case 2, and is thus not negligible. In Case 1, 6 units were on the frontier,
while in Case 2, 5 units were on the frontier. Moreover, in Case 1, one

unit is on the frontier in 1973, the unit with the lowest input coefficient

of labour, but in Case 2 no unit is on the frontier after 1971. With the
flexible specification in Case 1 it pays in terms of reduced objective function
to shift the ratio between the kernel elasticities in favour of labour, such

that this highly labour efficient unit appears on the frontier.

The exclusion of individual observations in Case 3 and 4 has some influence
on the results. The exclusion of the largest plant in Case 3 reduces optimal
scale and increases capital saving bias. An inspection of data shows that the
input coefficients of labour and capital have been very stable for this plant
which has tended to reduce the capital saving bias. The opposite is true for
the four smallest plants whose input coefficients for labour, which are among
the highest in the sample, have decreased relatively more than for most other
plants. This explains the large reduction in capital saving bias in Case 4
where all these small plants are excluded. In this case, however, the level

and development of optimal scale is very similar to Case 1.



14

If small obsolete plants are included the frontier may give a pessimistic

bias over the relevant range. However, removing these units has created a

much stronger bias. The small units are not replaced by observations of techno-
logically new plants of the same scale,so really we have no control over

what happens with the frontier. It turms out that the four smallest plants

now in the sample are very close to the frontier,and one small unit being on the

frontier at the start and another at the end of the period.

5. The Characterization of Technical Change

In order to assess the importance of the various parameter changes reported
in Table 1 we will here follow Salter's [25] proposals for characterizing

technical advance:

i)  Relative change in total unit cost assuming cost minimization and

constant factor prices.

ii) Relative change in factor ratioes for constant factor prices (bias

measure).

iii) Relative change in the elasticity of substitution. (This is introduced
by Salter in order to sort out the various influences on productivity

change).

Since we work with production functions with constant substitution elastici-

ties (and equal to 1) it is the two first measures that are of interest here.

Salter considered only two factors. We will first state the measures for
the case of n factors and then introduce the specific homothetic function

employed here.

The relative change in unit cost for discrete time is, in general:

(13) T = ct+1(Xt+1’ql9'-qn)/ct(xt’q1:-'9qn)a

where c(.) is the average cost function and a5 i=1l,..,n, are the factor
prices, equal for both periods. Salter compares unit costs for the sameé

output level, i.e. x_ = He notes the lack of reference to economies

t o Fesl
of scale in the measures, and suggests ways of measuring the impact of scale



15

change on unit cost and factor bias. However, it might be preferable to make

use of the relationship;

(14) ¢ = edc¢/dx = ec!

where € is the scale elasticity (Frisch [9]). Insertion in (13) yields

1

(15) T={¢ 41

(X:qls--9qn) c (X,q13°-gqn)}/igt(xsqla-':qn)Q

t+l

14
o X,t(x:q15-~:qn)}

The change in unit cost is split up in the change due to change in the
elasticity of scale and the change in marginal cost, for constant output

and input prices.

" When working with inhomogeneous production functions it is natural to con-
centrate on the change in the minimum unit cost, i.e. when €= 1, This
corresponds to the unit cost along the efficiency frontier in the input

coefficient space. From (15) we then have:

= ! * ' £
(16) T CX,t+1 (Xt+1’ q130-3qn)/c X,t(xt’ q1"~sqn)
5 * % = =
where x¥,1» X[ are the output levels that corresponds to a1 €, 1

It might be of interest to note the similarity between this measure of
technical advance and Farrell's [8] concept of overall efficiency. (See
Férsund [11], Férsund and Hjalmarsson, [13] for interpretations of the
Farrell measures in a setting of inhomogeneous functions.) This can be illu-
strated in the two factor case. Let P in Fig. 4 be the point of reference

on the efficiency frontier for the base period. Q' is the point on the effi-
ciency frontier for a later period where the factor prices are the same.

A measure analogous to the Salter measure i) above, assuming cost minimiza-
tion, is then the relative change in unit cost from P to Q', i.e. the unit
cost reduction possible when choosing techniques from two different ex ante
functions for constant factor prices and realizing optimal scale. This
change is equal to OR/OP in Fig. 4 which is also the Farrell overall effi-
ciency measure for a production unit with observed input coefficients given

by P relative to next periods efficiency frontier.

N
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Efficiency frontiers
y t+1 t

M|

L/x

FIGURE 4 The generalized Salter measure of technical advance and

its components.

The Farrell overall measure, and correspondingly the Salter technical advance
measure, can be split multiplicatively into technical efficiency, 0Q/0P, and
price efficiency, OR/0Q. In our context this splitting shows the relative
reduction in unit cost due to the movement along a factor ray and the move-
ment along the next period efficiency frontier generated by biased technical

change.

The general version of the Salter bias measure is:

D.. = (v /

13 i,t+1

)/(vi /v. )

v.
j,t+l st 1,t

(17)

(hi,t'*']_(xt’l'l,ql,.‘.’qn)/hj,t'l‘l(xt'*‘l’ql,".’qn))/

(hi,t(xt’ql""’qn)/hj,t(xt’ql"'"qn))

where the h(.)'s are the factor demand functions. It seems that Salter

assume X ., = X . Relating this measure to the efficiency frontier means



that the optimal scale outputs x§+1, xt should be inserted in (17). It is
obvious that this bias measure must be related in some way to the price or
allocative measure of Farrell since the latter measure shows the reduction
in unit cest by adjusting tc the optimal factor ratio { whilie keeping
technical efficiency constant), i.e. the unit cost reduction due to changing
from the optimal factor ratio on the old technology to the optimal factor

ratio on the new one while keeping factor prices constant.

For the homothetic function the cost function is ¢ = G(K}A(ql,...,q ),

n
(see e.g. Férsund [11] and [121), and the technical advance measure {(16)
becomes:

14 = (! * A LLe Y/ 5ok
{13> T GX t‘é‘l(xt‘*l)‘ t+1(<§1>- ’qg.’l}i GX,ECKE)AE(QI.’...’QH)

3

With the functional form (3) chosen here optimal scale, x*, is:

e x? = (l-at)/gt

The factor demand functions corresponding to the homothetic production

function are in general:

= 9 = Ol T
(20) v, oc/aqi G\x)ﬁi(ql,...,qn)

With a C-D kernel function, which we will employ, the calcualation of the

a

bias measure (17) becomes especially simple.

_ -1 -a, a,
(21) At(q) = A gi(aj,t) j,t (qj) It

which yields:
Al (qys...,q9 )/A! I < U a. . )
(22) D, = Lt 41 A T R I - iot iyl

1’3 ) ¥
Ai,t(ql"'"qn)/Aj,t(ql""’qn) aj,t+1 ai,t

In order to show the Farrell splitting up of the unit cost reduction in

a part due to proporticnal shift towards the origin and a part due to the
change in the optimal factor ratio, the factor ratioes must be introduced

in (18) with (21) inserted. Comsider the n-1 factor ratioes
23 b.. = v, /v. i=l,...,n
( ) l_] i J’ J > 3
When these are given, all the other ratioes follow. The prices generating
these ratioes must then be:

(24) qj/qi = ajbij/ai’ j=1l,...,n
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Substituting the price ratices in (18) with (21) inserted yields:

-1
' *

x,t+1(xt+1). At+l . I )—a. t+1 ai,t a
ARG F A

a. -a.
'g(bij) J.t+l T3,¢t

(25) T = =
! *
Gy, 5D A J &1 e+1 3

To find the proportional cost reduction part, Tl’ we may calculate:

(26) (vi,t+1/x§+1)/(vi’t/xt)

We get v and v, from (20) utilizing (21) by inserting the factor

it i,t+1
ratioes (23) constant for t and t+l. From (2) we obtain when €t(xt)=1,

Gé(x§)=Gt(xz)/x§. The result with a C~D kernel function is:

-1
G (% ) /x* A
+1 g+l t+ + . -a,
IO S L. fll gn(bij)aj,t+1 as ¢
k £ 3 3
Gt (Xt) /Xt At J

The first ratio, 0S, shows the reduction in unit cost due to change in
optimal scale, the second term, H, shows the cost reduction due to Hicks
neutral technical change and the third term, B, shows the cost reduction

due to factor bias technical change for constant factor ratio.

In view of (12) the bias cost reduction part,Tz, must then be:

(28) T, - H(Dij)_aj,t+1 -él’t
] i,t+l

The factor neutral (Hicks) term, H, and the change in the scale function,

0S8, only affect the labelling of the isoquants, so they naturally belong to

the proportional change term, T,. Note that this term depends on the factor

1
prices ( factor ratioes), but that the bias cost reduction tenn,Tz, 1s
independent of the factor prices. The latter term is, naturally, made up of a

combination of the trends in the kernel elasticities.

The time functions used here are:
Y3t
. — o — = =;A
al(t) a; Ylt, az(t) a, th, Yl Y2’ A(t) e

(29)
a(t) = o - Y, b B(t) = B - Yst

With the two inputs utilized here the technical advance measure (25) becomes:
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e (B-y, (£+1) ) 1- (=, (£+1))

{
\ 1-(o-v, (e+1))

+1
(30) T = (e+1)

- e '3 -(b21 )—Y2'(D21.)-32-Y2
e(B‘Yst) \ 1—(a-v4t)

(
\ l—(&~Y4t)

a t

1771
al~y1(t+1)

b3

The other measures follow from inserting the time functions (29) in (22),

(27) and (28).

6. Empirical Results: Technical Progress Measures

The estimated technical advance measures are set out in Table II

for the observed average factor ratio.

TABLE II The Salter measure of technical advance and its components.
K/L = 13.4 (the average factor ratio).

Type of relative unit cost reduction
measures at optimal scale 28 units 27 units 24 units
1964/65 1972/73 1964/65 1972/73 1964/65 1972/73

T ¢ Overall technical advance L9207 .8882 .9186 .8816 L9415 .9038
T, : Proportional technical advance L9208 .8883 .9188 .8820 L9415 L9038
08 : Change in optimal scale L9070 L8750 .8963 L8603 L9367 .8992
B : Proportional change due to bias 1.0152 1.0152 1.0252 1.0252 1.0051 1.0051
H  : Hicks-neutral advance 1 1 1 1 1 1
TZ : Factor bias advance L9999 .9999 .9997 L9995 1.0000 1.0000
DLK : Relative change in optimal labour

capital ratic 1.0377 1.0474 1.0672 1.1111 1.0094 1.0097

For the first two years the overall technical advance measure is T=.92

i.e. the average cost at the optimal scale in the second year is 927 of

the average cost at optimal scale in the first year, representing a decrease
in the average cost of about 9%. Between the last two years technical advance
is somewhat more rapid, about 13% decrease in average costs. Overall technical

advance, T, is the product of proportional technical advance, Tl, and
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factor bias advance, T In our case technical advance is due to the

9
movement of the efficiency frontier towards the origin, the factor bias
advance, T2, representing only .01%7 of the reduction in average cost.

The splitting up of the proportional advance measure, Tl’ reveals that the
cost saving is due to the change in the optimal scale: 0S increases with
about 10% at the start of the period and with 147 at the end. The factor bias
puts a brake on the cost saving along the factor ray chosen. The estimated

factor bias, D implies that, for constant prices or a constant factor ratio,

LK
it is optimal to increase the labour- capital ratio with 4% at the start and
5% at the end of the observed period. As already pointed out this change

yields practically no returns in terms of cost saving.

Since we have found increasing optimal scale as the driving force behind

cost saving it is of special interest to investigate the sensitivity

of the overall technical advance measure when the specification of the
production function is changed, as regards the time development of

the parameters. Allowing a time trend in the constant term only, i.e.
Case 2, the overall advance measure, T, becomes .94, or an average
cost reduction (independent of time) of about 6 Z. This is a somewhat
lower cost reduction than obtained with the flexible specification,
Case 1, but still a substantial figure for a sector characterized

by small day to day improvemmnts.

The dairy industry in Sweden has been characterized as relatively in-
efficient (Carlsson, [5]). As pointed out in a comment on that result

(Fégrsund and Hjalmarsson, [14]) the more rapid the technical change

the less efficient the industry appears based on cross section data
as in Carlsson [5]. Our estimate of technical change over a period

covering that year fits well into this explanation of his result.

The sensitivity of the results with respect to the units included in

the estimation 1s also shown in Table II. When the biggest production
unit is removed the results for the overall advance measure, T, is about
the same, and when the smallest units are removed the measure is some-
what smaller. If the small units are "obsolete'" as regards relevant

ex ante designs the inclusion of these units when estimating the frontier
function leads to a positive bias in the estimated technical advance.

The proportional technical advance measure, Tl’ follows the same pattern
as the overall measure, T. But the impact of the change in optimal

scale, 0S, is somewhat greater when the largest unit is removed, and
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less than for all units when the smallest units are removed. Again,
if these units are obsolete in the ex ante sense the inclusion of them
gives a positive bias to the increase in optimal scale. The removal
of the largest unit adds to this bias. Although the difference between
the scale elasticity functions in Case 1 and Case 4 revealed in Table T
is small it leads to a marked slower increase in the 0S term in Case 4,

7 % and 11 7 respectively, at the start and end of the period.

In Case 3 the capital saving bias increases markedly, the optimal labour-
capital ratio increases with 7 7 and 11 7 at the start and end of the
period respectively. As already mentioned the removed unit is quite stable
as regards its input coefficients. However, this increased bias has

still a minimal impact on the cost reduction, .03 7 and .05 Z. If

the units are changed over time in accordance with the relevant ex ante
function it does not matter much in cost terms if the factor ratio is

not the optimal.

For Case 4 the change with respect to the bias is the opposite. The

bias has now no impact on the cost reduction, and the increase in the
optimal labour-capital ratio is .9-1.0 %Z. It is the change within

the smallest units that gives rise to the capital saving bias, as pointed
out in the previous section. If, therefore, the smallest units are
technically obsolete, the technical progress has been almost neutral,

but with an increasing optimal scale as the driving force.

7. Conclusions

When allowing variable returns to scale the driving force behind technical
progress turned out to be a fairly rapid shift in the returns to scale
function (Fig.2). The wupward shift of the production frontier (Fig. 1)
tended to be non neutral, increasing the kernel elasticity of labour and

decreasing the kernel elasticity of capital somewhat.

The splitting up of the generalized Salter measure shows that it is the
movement of the efficiency frontier (Fig. 3) along a ray towards the origin
that results in the significant reductions in the average costs at optimal
scale of 9-13 per cent per year. Optimal adjustment to the capital saving

bias results in quite insignificant cost reductioms.
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The senmsitivity analysis showed that the production function parameters
were influenced by discarding a priori chosen units,some of which turned
out to be on the frontier of the complete sample. However, the form and
shift of the elasticity of scale function were fairly stable, leading to

quite small variations in the cost reduction measures.



Appendix

As stated in Section 2 introducing a stochastic variable in the
production function to simulate differences in technology betwesen
units, one may then proceed to derive maximum likelihood (ML) esti-
mators. To investigate this approach consider the following specifi-
cation of the production relation (1) (where the time dimension is

dropped for notational ease):

(AD) G(x) = g{(v)u, u€(0,1],

where u is the stochastic variable implying input—neutral differences
between units with respect to what they get out of their inputs. (We
assume that each unit has perfect knowledge of its own production
function; u is the econometrician's own device of simulating differ-
ences.) If the inputs are assumed to be exogeneous and u is assumed
to be identically and independently distributed, writing (Al) on loga-

rithmic form the simaultanecus probability distribution for the sample

I3
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(A2) f(xl,...,xn) = ?h{lnc(xi) - lng(vi)} « [J]
where

(A3) 3] = [alnui/aznxj] = q!a1nc(xi)/a1nxi[,

1

and h(.) is the distribution function for lnu. On logarithmic form

becomes:

n n
(Ad) lnf(xl,...,xn) = i§1lnh{1nG(xi) - 1ng(vi)} + ifllnfélnG(xi)/axif

Specific functional forms must now be inserted enabling us to derive

ML-estimators. Introducing the one-parameter distribution

(A5) h(lnw) = (1+a)e(TFAIn o )
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insertion in (A4) yields

n
Inf(x,,...,x ) = Z {In(l+a) + (1+a)(1nG(x,) - Ing(v,))}
1 n’ t '
1=1
(46) n
+ % 1n|31nG(x,)/3x, |
i=1 oo

If ML-estimates for the production function parameters were available

an ML-~estimator for a is:

1nf 2
=2+ % {InG(x,) - lng(v.)} =0
da 1+a . i i
1=1
(A7) n
n+ I {1nG(xi) - lng(vi)}
=> g = lfl — = = -1
n n
- T {1nG(x.) = Ing(v.)} - Z {1nG(x.) - lnz(v.)}
i=1 * t i=1 t *

where ML-estimates are inserted for the G(.) and g(.)-function parameters.
Note that E{lnG(xi) - Ing(v,)] =-1/(1+a),i.e. the estimator for a is
derived from using the estimated average of lnu as estimator of the

expected value (-1/(1+a)) of lnu.

Inserting (A7) in (A6) to obtain the concentrated log likelihood
function, it seems to be very difficult to avoid solving a non linear
programming problem to obtain ML-estimates when specific functional
forms for the functions G(.) and g(;) are introduced. Comparing (A6) with
the objective function (5) in Section 2, we see that it is the last
term on the r.h.s. of (A6) that creates problems in this respect. In-

sertion of the functional forms given in (3), Section 2, yields:

Inf = I

{1n(1+a) + (1+a) (olnx.+Bx.-1lnA-flnv.. a.)}
: i i ) i3 73

1 j
(A8)

+
[ e =1

In|B+a/x. |
i

i=1



The concentrated log likelihood function is:

n
Inf* = nlon = n - nin( T 1ng(vi) - 1nG(xi))
i=1
n
+ F 1n[31n€(xi)/8xi§
(A9) 1=1
n m
= nlnn ~n ~ nin( Z (InA + I lov..a., - alox., - Bx.))
i=1 j=1 3 * *
n N
+ I In|B + afx, |

i=1

One could now proceed by using (A9) as the objective function and derive

the estimates of the G and g functions by maximizing (A9) subject to the on

or below the frontier contraint (6) in Section 2 and the homogenity

contraint, (7) , on g(.), and then use (A7) to estimate a.

However, if one has access to a LP program only, it may seem worth

while to try the following iteration procedure:

1, Start with the followinpg objective function:

n
L {inG(x.) - Eng(v;))
o=l t "
(ALO) n o
= I {alpx., + Bx. - 1InA - % lnv,.a.)
i=1 t t =1 M3

Maximize this subject to our constraints (6), 1nG(xi) - 1ng(vi) <0,

i=1,...,n, and (7), g(vi) homogenous of degree 1 in Section 2:

§ m
AT o -
(A11) 1nxi + Bxi InA - T lnv,..a. <
| j=1 M I
§ m
(AlZ)' Z a. = 1
, j=1 d

2. Estimate a according to (A7) by using these estimates. (Actually, in
this first round the value of the objective function is the denominator
in the first expression on the r.h.s. of (A7). This denominator is in

general the sum of slacks of the constraints (All).

3. The step 1 and 2 estimates of a,a,S,A,aj are inserted in (A8) yield-
ing the value of the objective function. (In this calculation it should

be utilized that the sum of slacks appear in the exnression.)



4, The coefficients of a,B8 in the objective function (Al10) are changed
according to the partial derivatives with respect to n,B of the objec-
tive function (A8):

n

n
(1+a) I Inx. + L 1/(B + a/x.)x.
i=1 7 i=1 rot

(A13) 31Inf/3q

n n
(1+b) I x; + 5 1/(R + a/x.)
i=1 i=1 1

i

(Al4) 31nf/3B

The new coefficients in the objective function (Al0) for o and B become:

n n

(Al3) For o % Inx. + I 1/{(8+a/x.)xi(l+a)].
i=1 b =1 t
n n

(A16) For B: I x, * X 1/{(8+a/xi)(1+a)}.

i=1 i=1

The step 1 and 2 estimates are used.

5. The new problem (A10 -~ Al2) is solved and new estimates obtained. Step
2 and step 3 are repeated. The last value of the objective function (A8)
is compared with the value previously obtained. If the last value is .
greater by a & factor or more, the procedure continues with step 4. If

the last value is less by a & factor or more, the iterations are stopped.



REFERENCES

[1] AFRIAT,S.N.:"Efficiency Estimation of Production Functions," Inter-

national Economic Review,13 (1972), 568-598.

[2] AIGNER,D.J., AND S.F. CHU:"On Estimating the Industry Production

Function," American Economic Review, 58 (1968),226~239.

[3] AIGNER,D.J., T. AMEMIYA, AND D.J. POIRIER:"On the Estimation of Prod-
uction Frontiers:Maximum Likelihood Estimation of the Parameters of a

Discontinuous Density Function," International Economic Review,.
17 (1976),377-395.

[4] AIGNER,D.J.,C.A.K. LOVELL, AND P. SCHMIDT:"Formulation and Estimation

of Stochastic Frontier Production Function Models," Mimeographed,1976.

[5] CARLSSON,B.:"The Measurement of Efficiency in Production:An Application
to Swedish Manufacturing Industries 1968," Swedish Journal of Eco-
nomies, 74 (1972),468-485,

[6] CHRISTENSEN,L.R.,AND W.H. GREENE.:"Ecomomies of Scale in U.S. Electric

Power Generation," Journal of Political Economy, 84 (1976),655-676.

[7] DHRYMES,P.J.,AND M. KURZ:"Technology and Scale in Electricity Generation,"
Econometrica, 22 (1964), 287-315.

[8] FARRELL,M.J.:" The Measurement of Productive Efficiency," Journal
of the Royal Statistical Society, Series A, 120 (1957),253-290.

[9] FRISCH,R.: Theory of Production. Dordrecht:D.Reidel Publishing Co
[10] FPRSUND,F.R.:" A Note on the Technically Optimal Scale in Inhomogen-
eous Production Functions," Swedish Journal of Economics, 73 (1971),

225-240.

[11] FPRSUND,F.R.:" Studies in the Neoclassical Theory of Production," Memo-

randum from the Institute of Economics,University of Oslo, 4 February,1974.



[12] FORSUND,F.R.:"The Homothetic Production Function," Swedish Journal
of Economics, 77 (1975), 234~244.

[13] FORSUND,F.R.,AND L. HJALMARSSON:"On the Measurement of Productive

Efficiency," Swedish Journal of Economics, 76 (1974), 141-154.

[14] FYRSUND,F.R.,AND L. HJALMARSSON:'"Comment on Bo Carlssons "The Measure-
ment of Efficiency in Production:An Application to Swedigh Manufact—

uring Industries,1968"," Swedish Journal of Economics, 76 (1974), 251-254.

[15] F@PRSUND,F.R.,AND L. HJALMARSSON:"Technical Progress and Structural
Efficiency of Swedish Dairy Plants," Captital in the Production Function.
Institut de Recherches en Efonomie de la Production,Paris X -~ Nanterre,

1977.

[16] FORSUND,F.R.,AND E.S. JANSEN:" On Estimating Average and Best Practice
Homothetic Production Functions via Cost Functions,'" International

Economic Review, 18 (1977), 463-476.

[17] JOHANSEN,L.,AND R. S@PRSVEEN:"Notes on the Measurement of Real Capital
in relation to Economic Planning Models," The Review of Income and

Wealth, 13 (1967), 175-197.

[18] JOHANSEN,L.:"Production Functions.Amsterdam:North-Holland, 1972.

[19] KOMIYA,R.:"Technological Progress and the Production Function in the
United States Steam Power Industry," The Review of Economics and Stat-
istics, 44 (1962), 156-166.

[20] MEEUSEN,W.,AND J. VAN DEN BROECK:"Efficiency Estimation from Cobb-
Douglas Production Functions with Composed Error," International

Economic Review, 18 (1977), 435-444,

[21] NERLOVE,M.:"Returns to Scale in Electricity Supply," in C.Christ et al:
Measurement in Economics:Studies in Mathematical Economics and Econo-
metrics in Memory of Yehuda Griinfeld.Stanford:Stanford University
Press, 1963,



