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Abstract

Despite the strong pace of globalization, the distance e�ect on trade is persistent

or even growing over time (Disdier and Head, 2008). To solve this distance puzzle,

we use the recently developed gravity equation estimator from Helpman, Melitz

and Rubinstein (2008), HMR henceforth. Using three di�erent data sets, we �nd

that the distance coe�cient increases over time when OLS is used, while the non-

linear estimation of HMR leads to a decline in the distance coe�cient over time.

The distance puzzle thus arises from a growing bias of OLS estimates. The latter

is explained by globalization more signi�cantly reducing the downward bias from

omitting zero trade �ows than it reduces the upward bias from omitting the number

of heterogeneous exporting �rms. Furthermore, we show that including zero-trade

�ows cannot solve the distance puzzle when using HMR. The HMR estimates are

strongly correlated with the time pattern in freight costs reported by Hummels

(2007).
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1 Introduction

�From the telegraph to the Internet, every new communications

technology has promised to shrink the distance between people, to

increase access to information, and to bring us ever closer to the

dream of a perfectly e�cient, frictionless global market.� (Thomas

Friedman, 2005, p. 204)

The many facets of globalization like the increased trade in �nal goods, interme-

diate inputs and services, or the increased international mobility of capital and labor,

are perceived to bring countries closer together, shrinking the impediments of distance.

However, gravity estimations regressing bilateral trade on distance, inter alia, tell us the

opposite. Disdier and Head (2008) undertake a meta analysis of the magnitude of the

distance coe�cient based on 103 empirical studies and �nd that (i) the mean e�ect of

the distance coe�cient is about | − 0.9| across studies, and (ii) the negative impact of

distance on trade rose around the middle of the century and has remained persistently

high ever since.1

A stable or rising distance coe�cient over time is puzzling because the distance coef-

�cient has the structural interpretation of the elasticity of bilateral trade with respect to

distance (e.g. Anderson and van Wincoop, 2003). Transport technology is known to be

biased in favor of long distances (see Hummels, 2007), which should lead to a decrease of

the distance e�ect. Hence, the elasticity of bilateral trade with respect to distance should

fall with increasing globalization.

In this paper, we use the recently developed gravity equation estimator from Helpman,

Melitz and Rubinstein (2008), henceforth HMR, which controls for sample selection and

exporter heterogeneity, to solve this distance puzzle.

We apply the HMR estimator on world trade for three di�erent data sets, two ag-

gregate data sets and one at the industry-level over di�erent time periods.2 We �nd

that the HMR estimates of the distance coe�cient (in absolute value) are decreasing on

average over time as expected. These estimated coe�cients are also strongly correlated

with the time pattern in freight costs reported by Hummels (2007) and Brun, Carrère,

Guillaumont and de Melo (2005), which in turn depend on �uctuations of oil prices.

Having shown that the HMR estimator does produce decreasing distance coe�cients

over time, we then compare the outcome with OLS. We �rst con�rm the �nding of HMR

that OLS produces larger distance coe�cients (in absolute value). More importantly, we

show that these distance coe�cients increase over time. Hence, the distance puzzle arises

1This paper also provides a good collection of references for the �distance puzzle�. Hence, we here
dispense with a discussion of all relevant papers and with providing all references.

2Berthelon and Freund (2008) document the distance puzzle on bilateral industry data rather than
on bilateral country data.
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due to the fact that the bias of OLS increases over time.

To explain the increasing OLS bias, we formally derive how the bias of the OLS

distance coe�cient evolves over time if the true data generating process is the HMR

model and the elasticity of trade with respect to distance3 decreases during globalization

through, for instance, improved transport and communication technologies.

We note that if the HMR model is the true model, OLS estimates su�er from two

sources of bias. First, there is a sample selection bias because bilateral trade is measured

as a logarithm and zero values of bilateral trade turn into missing values. As small or

distant countries are more likely to have small trade �ows, measurement errors in export

�ows will more likely lead to zero trade �ows for those countries. This leads to a positive

correlation of the error term with distance, causing a downward bias in the distance

coe�cient, i.e. the value of the distance coe�cient is too small in absolute terms. Hence,

accounting for zero trade �ows does not explain the distance puzzle.

Second, there is an omitted variable bias from ignoring that �rms are heterogeneous

in productivity. If an index of the size and the number of exporting �rms in an industry

is not included as a control in the gravity estimation, then it appears in the regression

error, causing a negative correlation between error and distance, because there are less

exporters to more distant destinations. Hence, the distance coe�cient is upward biased

through omitting a control on �rm productivity, i.e. the value of the distance coe�cient

is too large in absolute terms.

As these two biases work in opposite directions, the overall change of the bias from

OLS estimates is ambiguous. We �rst reproduce previous �ndings that the OLS estimates

are upward biased, i.e. the distance coe�cient is too large in absolute value. Hence, the

downward bias from sample selection due to omitting zero trade �ows is outweighed by

the upward bias due to ignoring that �rms are heterogeneous.

We then show how the two biases evolve over time in the course of globalization

measured as a fall in the elasticity of trade with respect to distance. We �rst show

that the downward bias through sample selection must decrease over time. Intuitively,

as trade costs decrease, ever less country pairs have zero trade �ows and eventually all

countries trade with each other. But then the sample selection bias disappears, i.e. the

distance coe�cient rises. We then show that the upward bias from omitting the number

of exporting �rms also becomes smaller over time when the elasticity of trade with respect

to distance falls. Intuitively, at a lower trade elasticity, most �rms will export, reducing

3We follow this interpretation of the distance coe�cient throughout the paper. Assuming decreasing
distance costs would lead to a �atter world without relative di�erences of trade volumes across trading
partners w.r.t to distance. However, Buch, Kleinert and Toubal (2004) argue that the distance puzzle
is not that puzzling when the e�ect of distance is interpreted in absolute terms. Under the assumption
of linear dependency of trade costs with respect to distance, they show that a potential decline in the
impact of distance would be caught by the constant term in the gravity equation. But still we should
� but do not � observe a decline in the relative impact of distance on bilateral trade, which is exactly
measured by the elasticity we look at.
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the upward bias, i.e. the distance coe�cient decreases. Since both biases decrease in the

course of globalization (measured as a fall of distance with respect to trade) globalization

has an ambiguous e�ect on the bias of OLS in general.

Our estimates show that the bias of OLS increases over time. Hence, it must be the

case that the downward bias from sample selection decreases faster than the upward bias

from not controlling for the number and size of exporting �rms. Thus, the HMR model

implies that the distance puzzle arises from �rm heterogeneity having become relatively

more important over time. This is nicely in line with empirical evidence provided by

Poschke (2011), that, as countries develop, the distribution of �rm sizes becomes more

dispersed.

For future work, we also suggest a linearization of the HMR estimator, which is

comparable to the non-parametric approach of Helpman, Melitz and Rubinstein (2008).

This approach is easy to implement with standard econometric programs because it is

estimable via OLS. We show that such a simpli�ed estimator performs just as well as the

original nonlinear least squares version.

We also show that a Heckman estimator deviates from the HMR estimates and pro-

duces bigger distance coe�cients and an increasing di�erence to the OLS estimates over

time. The Heckman correction results lead to the conclusion that taking into account

zero trade �ows cannot solve the distance puzzle, as expected from our theoretical results.

Alternative attempts to solve the distance puzzle stem from Felbermayr and Kohler

(2006), using Tobit estimates to take zero trade �ows into account.4 Other studies explain

why the substitution elasticity may have been rising over time (Glaeser and Kohlhase

(2004), Krautheim (2011), Lawless and Whelan (2007), Berthelon and Freund (2008)),

possibly overcompensating the fall in trade costs, which both determine the distance

coe�cient in theory. Duranton and Storper (2008) provide an alternative model to ra-

tionalize rising overall trade costs besides falling transport costs. They assume vertically

linked industries in which the quality of inputs is not contractible and where providing a

given level of quality to suppliers becomes more costly with distance. Their main �nding

is that lower transport costs imply that higher quality inputs are traded in equilibrium,

4There is ample evidence from microdata for particular countries that the extensive margin matters.
Bernard, Jensen and Schott (2006) use �rm-level data to distinguish the entry and exit of �rms into and
out of exporting (extensive margin) from the export volumes of exporting �rms (intensive margin). They
�nd that a reduction in trade costs may increase industry productivity through changes on the extensive
margin. Hummels and Klenow (2005) use disaggregated product-level data to distinguish between the
variety dimension (extensive margin) and the quality as well as the quantity dimension (intensive margin).
One of their main results is that adverse terms-of-trade e�ects occur more frequently if growth takes
place mainly at the extensive margin. Similarly, Baldwin and Harrigan (2011) use product-level data on
bilateral U.S. exports demonstrating that a large part of potential export �ows are zero, and showing
that the incidence of these zero export �ows is strongly correlated with distance and importing country
size. Hillberry and Hummels (2008) analyze trade at the �ve-digit zip codes and decompose the extensive
and intensive margins of shipments. Their main �nding is that distance reduces aggregate trade values
primarily by reducing the number of commodities shipped and the number of establishments shipping.
However, the extensive margin is important over very short distances.
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and the e�ect of this higher quality is that there is an increase in trade costs. Yotov

(2012) proposes to measure the e�ects of distance on international trade relative to the

e�ects of distance within national borders as a simple and useful solution of the distance

puzzle. He �nds a drop in the impact of distance on trade of roughly 50% from the mid-

sixties to 2005. Finally, using bilateral country data for the year 1986, HMR �nd that

their estimated distance coe�cient represents a drop of roughly one third as compared to

OLS. However, HMR do not examine the evolution of the distance coe�cient over time.

Hence, none of the mentioned papers discusses the role of the omitted variable problem

of �rm heterogeneity in creating an increasing bias over time, which is the contribution

of our paper.

The remainder of the paper is organized as follows. Section 2 derives the gravity

equation controlling for zero trade �ows and �rm-level heterogeneity following HMR in

subsection 2.1, whereas we calculate the biases of OLS estimates in subsection 2.2. Section

3 presents our estimation equation in subsection 3.1, describes the data in subsection 3.2,

and gives the results in subsection 3.3. The last section concludes the paper.

2 Theory

2.1 Deriving the gravity equation from Helpman, Melitz and Ru-

binstein (2008)

The HMR model is a multi-country monopolistic competition model with heterogeneous

�rms and identical consumers with CES �love-of-variety� utility functions à la Dixit and

Stiglitz (1977). Since we have bilateral industry trade data, we will add the assumption

of multiple sectors in the world economy, each characterized by monopolistic competition.

There are Nih �rms in a sector h of country i, each producing a di�erentiated variety l.

For ease of notation, we will drop the subscript h for sector whenever obvious. With a

substitution elasticity between any two varieties ε > 1, the demand xij(l) for a variety l,

consumed in country i and produced in country j is

xij(l) =
pij(l)

−ε

P 1−ε
i

µiYi, (2.1)

where pij(l) is the associated price, Pi =
[∫
Bi pij(l)

1−εdl
] 1

1−ε
is the price index on the set

of Bi symmetric domestic and imported di�erentiated goods consumed in country i, Yi is

the income in country i and µi is the (constant) share of income spent on a sector under

consideration by consumers of country i.

A �rm l in country j produces one unit of output at the cost cja, where cj is the

minimum cost of a bundle of inputs which is country- and sector-speci�c, and where a(l)
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is a �rm-speci�c input coe�cient implying that �rm l's productivity is given by 1/a(l). As

in Melitz (2003), �rms can be identi�ed by their productivity, allowing us to exchange the

index l for a. Shipping goods across borders involves iceberg trade costs, which implies

that τij > 1 units of output need to be shipped from country j to country i 6= j in order

for one unit to arrive. Delivering to home country customers involves no trade costs,

i.e. τii = 1. Exporting across borders is also associated with country- and sector-speci�c

�xed export costs fijcj, i.e. fii = 0 and fij > 0 for j 6= i.

The operating pro�t from producing a variety a in country j and selling it to country

i is then πij(a) = [pij(a)− τijacj]xij(a)− fijcj. From (2.1), this implies that a �rm with

productivity 1/a producing in country j for exports to country i will charge the price:

pij(a) =
1

α
τijacj, (2.2)

where 1/α = ε/(ε− 1) is the standard mark-up. It also follows that domestic consumers

are priced at pjj(a) = 1/αacj.

The assumption of the absence of �xed costs in home sales operations and �xed set-up

costs incurred in exporting operations implies that only a fraction of country j′s Nj �rms

will export to country i. To characterize exporters, de�ne the reduced-form operating

pro�t for country j exporters as πij(a) = πij(pij(a)), or:

πij(a) = (1/a)ε−1 (1− α)

(
τijcj
αPi

)1−ε

µiYi − fijcj. (2.3)

Let �rm-productivity 1/a be characterized from the cumulative distribution G(a) with

density g(a) over the �nite support a ∈ [aL, aH ], where aL is the �rm-speci�c input coef-

�cient of the most productive �rm and aH that of the least productive �rm, respectively.

We need the lower bound because we want to generate zero trade �ows and the upper

bound because we will assume a Pareto distribution.5

The cut-o� productivity for being an exporter to country i based in country j, 1/aij,

is then determined from the zero-pro�t condition, πij(aij) = 0, or:

aij =
[
(1− α) µiYi

fijcj

] 1
ε−1 αPi

τijcj
. (2.4)

In Figure 1(iii), we show the operating pro�ts for a country j �rm as a function of the

�rm-speci�c input-coe�cient a in exporting πij(a) and home sales πjj(a). The operating

pro�ts decrease in a and, hence, increase in productivity 1/a, as shown in Figure 1(ii).

Thus, �rms in country j can only recover export �xed costs and export to country i if

their productivity exceeds the cut-o� productivity. Firms with a productivity lower than

5For an in�nitely productive �rm (a = 0), the operating pro�ts would always be large enough for
�nite positive �xed costs (fijcj) to ensure exports to every country.
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the cut-o� productivity will only sell on the domestic market.

Trade between countries i and j can now be characterized as follows: >From (2.1)

and (2.2), the export revenue for a country j �rm is pij(l)xij(l) = (1/a)ε−1
(
τijcj
αPi

)1−ε
µiYi.

As shown in Figure 1(i), the number of �rms endowed with a productivity 1/a is Njg(a).

Hence, the aggregate imports of county i from country j, Mij, are:

Mij =

∫ aij

aL

(1/a)ε−1

(
τijcj
αPi

)1−ε

µiYiNjg(a)da. (2.5)

De�ne Vij as a term indicating the share of exporting �rms (g(a)) weighted by a measure

of �rm size (a1−ε):

Vij =

{ ∫ aij
aL

a1−εg(a)da for 1/aL ≥ 1/aij,

0, otherwise.
(2.6)

Combining (2.5) and (2.6), imports from country j to country i can be written as:

Mij =

(
cjτij
αPi

)1−ε

µiYiNjVij. (2.7)

To obtain an estimation equation from (2.7), HMR proceed in several steps. First, they

specify trade costs as follows:

τ ε−1
ij = Dγ

ij, (2.8)

where Dij is the distance between source and destination country and γ is the elasticity

of bilateral trade with respect to distance, which may vary across industries.

Second, they assume a truncated Pareto distribution G(a) = (ak − akL)/(akH − akL),

where k > (ε − 1) is the shape parameter and show that Vij in (2.6) takes the form

Vij = ψWij, where:

Wij = max

{(
aij
aL

)k−ε+1

− 1, 0

}
, (2.9)

and ψ = (kak−ε+1
L )/((k − ε + 1)(akH − akL)) is a constant. Note that trade is observed

whenever Wij > 0, that is, if aij > aL, implying that the cut-o� productivity is smaller

than the productivity of the most e�cient �rm in the industry, 1/aij < 1/aL. From

Figure 1(i), note that the number of exporting �rms
∫ aij
aL

Njg(a)da is increasing in aij.

Importantly, from (2.9), it then follows that the number of country j exporters is increas-

ing in Wij, since Wij is increasing in aij.
6 Note also that a reduction of γ thus increases

the number of exporting �rms since it lowers the threshold productivity level 1/aij.

Third, they add a multiplicative error exp(uij) on the right-hand side of equation

6As illustrated in Figure 1, note that positive trade Mij > 0 requires aij > aL. But then Wij =

max

{(
aij
aL

)k−ε+1

− 1, 0

}
=
(
aij
aL

)k−ε+1

− 1. Thus, we have ωij ≡ lnWij = ln

[(
aij
aL

)k−ε+1

− 1

]
.
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(2.7). uij is assumed to be log normally distributed such that uij ∼ N (0, σ2
u).

Inserting (2.8) and (2.9) into (2.7) and adding exp(uij), taking logs and denoting

logged variables with lower-case letters, HMR obtain the gravity estimation equation in

logs:

mij = β0 + λj + χi − γdij + ωij + uij, (2.10)

where β0 = (ε − 1) ln(α) + ln(ψ), importer country-�xed e�ects χi contain χi = (ε −
1)pi + lnµi + yi, and exporter country-�xed e�ects λj contain λj = (1− ε) ln cj + nj and

the number of exporters is captured by

ωij = ln

[(
aij
aL

)k−ε+1

− 1

]
. (2.11)

Note that the term ωij is the only new one in the gravity equation as compared to

Anderson and van Wincoop (2003).

The estimation of (2.10) is hampered by two problems. First, it is only estimated on

data with positive trade �ows, since the dependent variable, the log of trade volumemij, is

not de�ned for zero import values,Mij = 0. Second, there is an omitted variable problem

through ωij, which captures the degree of �rm heterogeneity in country j, information

which is typically not available for gravity estimations on a world trade data set.7

HMR note that both problems are related to the extensive margin of trade. Rear-

ranging (2.4), they then de�ne an auxiliary variable Zij:

(
aij
aL

)ε−1

=
(1− α)

(
τijcjaL
αPi

)1−ε
µiYi

cjfij
(2.12)

≡ Zij.

As illustrated in Figures 1(i) and 1(iii), changes in Zij will indicate both, i.e. changes in

the number of exporting �rms through the cut-o� aij as well as zero trade links. Noting

that changes in Zij are exclusively driven by changes in aij, Figure 1(iii) shows that there

will be no exports if aij < aL, which is equivalent to the condition Zij < 1. In contrast,

the trade �ows will be non-zero when aij > aL, which implies Zij > 1.

Now, we can express the omitted variable ωij by inserting equation (2.12) into (2.11)

ωij = ln [exp [δzij]− 1] , (2.13)

where δ = (k − ε+ 1) / (ε− 1) and zij = lnZij. The estimation strategy of HMR is to

obtain an estimate of the expected value of the omitted variable ωij by estimating an

7Flam and Nordström (2008) have recently included a proxy variable for ωij , which is available for
Swedish exports. However, they did not estimate the distance coe�cient over time, which is the focus
of this paper.
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expected value of the auxiliary variable zij.

To obtain another estimation equation, another error term is introduced by decom-

posing the �xed trade costs fij as follows:

fij = exp [(φEX,j + φIM,i + κφij − νij)] , (2.14)

where νij ∼ N (0, σ2
ν) and φEX,j is a measure of the �xed export cost common across all

export destinations, φIM,i is a �xed trade barrier imposed by the importing country on

all exporters, and φij is an observed measure of any additional country-pair speci�c �xed

trade costs.8

Taking logs of Zij in (2.12) and using (2.8) and (2.14), HMR obtain an equation for

a latent variable zij ≡ lnZij:

zij = γ0 + ξj + ζi − γdij − κφij + ηij (2.15)

= E [zij |dij,ξj, ζi, φij ] + ηij,

where ηij = uij + νij, ζi = (ε− 1) pi + yi + lnµi − φIM,i is an importer �xed e�ect,

ξj = −ε ln cj − φEX,j is an exporter �xed e�ect and σ2
η is the variance of ηij. While the

latent variable zij cannot be observed, one can observe if trade takes place. Thus, an

indicator variable Tij = I[zij>0] can be de�ned from which the selection equation for the

probability of strictly positive exports is obtained:

Pr
(
Tij = 1

∣∣dij,ξ∗j , ζ∗i , φij ) = Pr
(
z∗ij > 0

∣∣dij,ξ∗j , ζ∗i , φij ) (2.16)

= Pr
(
γ∗0 + ξ∗j + ζ∗i − γ∗dij − κ∗φij > −η∗ij

∣∣dij,ξ∗j , ζ∗i , φij )
= Φ

(
γ∗0 + ξ∗j + ζ∗i − γ∗dij − κ∗φij

)
= E

[
z∗ij
∣∣dij,ξ∗j , ζ∗i , φij ] ,

where Φ (.) is the cumulative distribution function of the unit normal distribution and

every starred coe�cient represents the original coe�cient divided by ση.
9

One can now in a �rst stage estimate (2.16) by a probit estimation. Inverting the

predicted probability from (2.16) yields an estimate of the underlying latent variable ẑ∗ij.

De�ning δ = ση
k−ε+1
ε−1

> 0, HMR use ˆ̄ω∗ij ≡ ln
{

exp
[
δ
(
ẑ∗ij + ˆ̄η∗ij

)]
− 1
}
as an esti-

mate for E[ωij|., z∗ij > 0],10 where ˆ̄η∗ij = φ(ẑ∗ij)/Φ(ẑ∗ij) is the inverse Mills ratio from the

8φij takes the role of an instrument in the empirical implementation and is assumed to be statistically
independent of νij as well as uij .

9As in every discrete choice model, the scale can be arbitrarily chosen, i.e. the model must be properly
normalized. We normalize by dividing through ση, following HMR. This leads the error term η∗ij = ηij/ση
to be distributed unit normal.

10Santos Silva and Tenreyro (2006, 2008) note that this is not a consistent estimate because of Jensen's
inequality. However, Santos Silva and Trenreyro (2008) also note that it is a reasonably accurate ap-
proximation in many practical situations. The similarity of our results from the linear approximation of
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�rst-stage probit estimation, which itself is well-known to be a consistent estimate of

E[uij|., z∗ij > 0].11 Inserting these terms into (2.10), HMR show that estimation of the

gravity model requires estimating the following speci�cation:

mij = β0 + λj + χi − γdij + ln
{

exp
[
δ
(
ẑ∗ij + ˆ̄η∗ij

)]
− 1
}

+ βuη ˆ̄η∗ij + eij, (2.17)

where βuη ≡ corr(uij, ηij)(σu/ση) = corr(uij, uij+νij)(σu/ση) > 0. The term ln{exp[δ(ẑ∗ij+

ˆ̄η∗ij)] − 1} corrects for the omitted variable ωij in the presence of sample selection12 and

βuη ˆ̄η∗ij is the well-known correction of the error term uij in the presence of sample selec-

tion. As a result, eij is an i.i.d. error term satisfying E[eij|., Tij = 1] = 0. Therefore,

one can estimate (2.17) using NLS and obtain an estimate of the distance coe�cient γ,

having the structural interpretation of the elasticity of bilateral trade with respect to

distance for all country-pairs in the population, i.e. for positive and zero trade �ows.

2.2 HMR and the distance puzzle

In this section, we use the HMR model to examine the distance puzzle. We will assume

the HMR model to be the data generating process and examine to what extent the OLS

estimation of (2.10) is biased and in what direction this bias goes. Then, we examine

how the bias of OLS is a�ected by globalization.

2.2.1 The Bias of OLS

Let us start by examining the properties of an OLS estimate of the distance coe�cient,

γ̂OLS, from estimating gravity equation (2.10) without a sample selection correction and

when not controlling for the omitted variable bias due to �rm heterogeneity by ωij. To

gain some intuition on these two biases and their direction, we �rst look at them in turn

before considering them simultaneously. We begin by �rst discussing the sample selection

bias and then continue with the omitted variable bias.

Selection bias We �rst show that the selection bias leads to an underestimation of the

elasticity of bilateral trade with respect to distance. Consider Figure 2, which contains

distance dij on the horizontal axis and imports mij on the vertical axis. We depict by

circles imports to country i from countries j = 1, 2, 3, 4, 5, holding the control variables

constant over countries j for the purpose of graphical illustration. From the selection

equation for the probability of strictly positive exports (2.16), we note that
∂ Pr(Tij=1|· )

∂dij,
=

−γ∗φ (·) < 0, where φ (·) is the normal density function. Thus, missing observations

HMR below support this claim (see 3.3.1).
11This term is also known as Heckman's lambda (see Heckman, 1979).
12In the absence of a sample selection bias but in the presence of the omitted variable bias, the

correction term would simplify to ln
{

exp
(
δẑ∗ij

)
− 1
}
, since plimˆ̄η∗ij = E[uij |., z∗ij > 0] = 0 in this case.
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are more likely the larger is the distance. In addition, the smaller is the error term uij,

the more likely is trade to be predicted to be zero. For this reason, we draw potential

imports between countries i and j = 4 and j = 5 such that the distance is large and

the error terms ui4 and ui5 negative, causing these two observations to drop out of the

sample, which we indicate by hollow circles. Since the negative ui4 and ui5 are not

only contained in the selection equation (2.16) but also in the gravity equation (2.10),

the imports that drop out do not only occur at a large distance but also at unusually

low values of imports.13 The non-missing imports at large distances, indicated by �lled

circles, are those with positive values of uij, i.e. E[uij|dij, Tij = 1] > 0 if the distance

dij is large. Since the unconditional expected value of uij is zero by construction of the

OLS estimator,14 i.e. E[uij|Tij = 1] = 0, the conditional expected value of uij is negative,

E[uij|dij, Tij = 1] < 0, if the distance dij is small. But then the error term in the outcome

equation uij and distance dij are positively correlated. The conditional expected value of

the error term feeds back into the estimated regression line, since

E[mij|dij, Tij = 1] = E[mij|dij] + E[uij|dij, Tij = 1], (2.18)

for all observations with Tij = 1,15 where E[mij|dij, Tij = 1] is �tted by an OLS regression

on the remaining three strictly positive import data from j = 1, 2, 3 and E[mij|dij] is �tted
by an OLS regression on the entire population including j = 4 and j = 5. This in turn,

is asymptotically equivalent to an OLS regression with a sample selection correction

denoted by Heckman in Figure 2. Hence, the positive slope of E[uij|dij, Tij = 1] in

dij results in a �atter declining slope of an OLS regression without sample selection,

E[mij|dij, Tij = 1], than one with sample selection, E[mij|dij]. This implies that the

distance coe�cient estimated by OLS, ignoring zero trade �ows, will be too small in

absolute values. Accounting for zero trade �ows will aggravate the distance puzzle, as

the estimates of the distance coe�cient based on Heckman will be larger in absolute

values. To sum up: the selection bias due to omitting zero trade �ows does not explain

the distance puzzle.

Omitted variable bias Next we show that the omitted variable bias leads to an over-

estimation of the elasticity of bilateral trade with respect to distance. We �rst need to

understand how the omitted variable ωij is correlated with distance dij. This can eas-

ily be seen by inserting (2.15) into (2.13) and taking the expected value conditional on

13Note that we have drawn negative values of mij . Naturally, negative values of mij can never exist,
but are generated by the gravity equation (2.10), since shocks are, by assumption, normally distributed
on a range from −∞ to +∞. However, whenever mij is negative, it is not observed.

14The estimated regression constant will always ensure that the unconditional expected value of the
error term is zero in an OLS regression, whereas the conditional expected value of the error term is only
zero for a correctly speci�ed model, i.e. a model without endogeneity problems.

15See, e.g., equation (16.34) in Cameron and Trivedi (2005, p. 549).
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distance dij and the other control variables z0 ≡ γ0 + ζi + ξj − κφij to obtain

E[ωij |dij, z0 ] =

∫
fωij

(ωij) ln [exp [δ (z0 − γdij + ηij)]− 1] dωij ≡ Ω (z0, dij) , (2.19)

where fωij
(ωij) is the marginal distribution function of ωij, and we take ωij to be con-

ditionally independent of dij and z0, i.e. we investigate the omitted variable bias after

having properly controlled for the selection bias (such as by the Heckman correction fac-

tor) or, equivalently, considering the case where no trade �ows are missing.16 This has the

purpose of comparing the Heckman estimator, which controls the selection bias but su�ers

from the omitted variable bias with the HMR estimator which controls for both biases.

Controlling conceptually for the selection bias while analyzing the omitted variable bias

implies that eδ(zo−γdij+ηij) > 1 to ensure that there are no missing observations causing

selection bias. Moreover, Ω (zo, dij) is the non-linear conditional expectation function,

the shape of which is easy to analyze. Taking the derivative of (2.19) with respect to

distance dij, we obtain

∂E[ωij |dij, z0 ]

∂dij
= −γδ

∫
fωij

(ωij)
eδ(z0−γdij+ωij)

eδ(z0−γdij+ηij) − 1
dωij < 0. (2.20)

Hence, there is a negative correlation between ωij and dij, because the share of exporting

�rms becomes smaller the larger is distance. If ωij is known (and other controls are kept

constant), a linear OLS regression of import values mij on distance dij controlling for

ωij is like a regression of (mij − ωij) on distance dij. This follows from the fact that the

regression coe�cient of dij explains the remaining variation of the corresponding variable

that is not at the same time common variation with another control variable (Frisch-

Waugh theorem) and ωij enters the regression equation (2.10) with coe�cient one. An

OLS estimator �tting the regression line E [mij − ωij|dij] then has the same slope in

dij as one �tting E [mij|dij, ωij] or, indeed, one using a consistent correction factor that

controls for ωij, i.e. the HMR estimator (while at the same time controlling for the sample

selection e�ect).

To obtain (mij − ωij) in Figure 2, which is indicated by crosses, we can read o� the

di�erence betweenmij andmij−ωij, an example of which is given for ωi1. As can be seen,

the crosses indicating (mij − ωij) are systematically located below the circles indicating

mij at low distances and above at large distances.17 Hence, a �t of the crosses by the

16To see how this equation is obtained, note that by de�nition of a conditional expected value
E[ωij |dij , z0 ] =

∫
f̂ (ωij |dij , z0 )ωijdωij , where f̂ (ωij |dij , z0 ) is the conditional distribution of ωij . Ac-

cording to Greene (2012), (B-51), this can be written as E[ωij |dij , z0 ] =
∫
f (ωij |dij , z0 )ωijdωij with

f (ωij |dij , z0 ) being the conditional distribution of ωij . If we then assume that ωij is conditionally
independent of dij and z0, we obtain from (B-60) f (ωij |dij , z0 ) = fωij (ωij) , where fωij (ωij) is the
marginal probability density (see B-45). Inserting this relation above, we obtain: E[ωij |dij , z0 ] =∫
fωij

(ωij)ωijdωij . Inserting (2.15) and (2.13) into this relation yields (2.19).
17Note that the HMR regression line �ts all crosses for j = 1, 2, 3, 4, 5, because it does not only correct
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solid HMR line E [mij − ωij|dij] rather than the circles by the Heckman line E [mij|dij]
is �atter, implying an upward bias of the distance coe�cient. Hence, the OLS estimator

omitting ωij overestimates the elasticity of bilateral trade with respect to distance. This

implies that the distance coe�cient estimated by OLS, ignoring the omitted variable

bias, will be too large in absolute values. Accounting for the omitted variable bias it is

therefore possible to solve the distance puzzle, as the estimates of the distance coe�cient

based on HMR will be smaller in absolute values. To sum up: the omitted variable bias

due to neglecting the heterogeneity of �rms can potentially explain the distance puzzle.

Interacting the two biases Distance has three in�uences on imports. There is a

direct one on positive trade �ows through the intensive margin (and which is the only

one present in homogeneous �rm models), and an indirect one on positive trade �ows

through the extensive margin at the �rm-level, i.e. the share of exporting �rms ωij. A

third margin is given by the extensive margin of positive overall trade �ows. If omitting

proper controls for the extensive margin ωij and for the selection of countries into positive

trade �ows, the distance coe�cient captures all three margins.18

Overall, it is then indeterminate whether the OLS line E [mij|dij, Tij = 1] is �atter or

steeper than the HMR line E [mij − ωij|dij]. In anticipation of our empirical results, we

have drawn it such that the OLS line is steeper than the HMR line, which implies that

the omitted variable bias dominates the sample selection bias in levels. We depict this as

Bias OLS in Figure 2.

Let us now consider both biases simultaneously, formally taking into account the

interaction of the two biases. For this purpose, we need to draw on an approximation of

(2.13),

ωij ≈ δzij, (2.21)

where δ = ∂ωij/∂zij evaluated at the mean of zij.

We then have the following proposition:

Proposition 1. When assuming that the HMR model is the data generating process,

the OLS estimate of γ in (2.10) may then be (asymptotically) up- or downward biased,

depending on whether the omitted variable bias from the share of exporting �rms or the

sample selection bias due to the omission of zero trade �ows dominates, respectively.

We derive the simultaneous bias term in the Appendix, which is given by the following

for the omitted variable bias, but also for sample selection simultaneously. If only the omitted variable
bias was controlled for but not the sample selection bias, such a regression line would only �t the crosses
corresponding to j = 1, 2, 3.

18Chaney (2008) and Krautheim (2011) theoretically derive the e�ects on the elasticity of bilateral
trade �ows with respect to distance disentangling the intensive and extensive margin.
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simple expression:

Bias(γ̂OLS) = γδ − Ξ [δ + βuη] η̄
∗
ij T 0, (2.22)

where Ξ =
∑

i

∑
j dij/

∑
i

∑
j (dij)

2.

Thus, as shown in Figure 2, the term γδ > 0 in (2.22) represents an upward bias in

OLS (and Heckman) from not controlling for the number of exporting �rms, and the last

two terms measure a downward bias from sample selection in OLS, when omitting zero

trade �ows, as βuη, η̄
∗
ij and Ξ are positive.

2.2.2 Globalization

How would the bias of OLS evolve over time when globalization reduces the responsiveness

of bilateral trade �ows with respect to distance, due to new and better communication

and transport technologies? Make the following assumption:

Assumption Increased globalization implies that ∂γ
∂t
< 0.

We then have the following proposition:

Proposition 2. When assuming that the HMR model is the data generating process,

both the downward bias from sample selection due to zero trade �ows and the upward bias

from omitting the number of exporting �rms decrease in the pace of globalization.

The change in the bias of the distance coe�cient ∂Bias(γ̂OLS)
∂t

can once more be un-

derstood intuitively, looking at the two biases separately. Beginning with the change of

the sample selection bias over time, we �rst notice that the bias depends on how the

slope of E[uij|dij] changes when γ changes over time. To understand this, we need to

�rst look at how the selection process is in�uenced by a reduction in γ. An observation

is missing whenever z∗ij < 0 according to (2.16). Obviously, a reduction in γ decreases

z∗ij
(
∂z∗ij/∂γ = −dij < 0

)
, where some missing trade links turn positive. Eventually, all

missing trade links have turned into positive ones at su�ciently low γ. Hence, the true

line �tting the data after globalization becomes �atter.

Turning to the change of the omitted variable bias over time, we once more need to

understand how the slope of the conditional expectation function E[ωij|dij] changes with
a reduction of γ. For this purpose, it is su�cient to look at how ωij changes for each

observation when γ falls. From (2.15) and (2.13), we immediately obtain

∂ωij
∂γ

= −dijδ
eδzij

eδzij − 1
< 0, (2.23)

for all ωij that are non-missing. Hence, the share of exporting �rms of a country j

exporting to country i is increasing for each country pair when γ falls. More importantly,
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this share increases less for increasingly distant trading partners:

∂2ωij
∂γ∂dij

= −δ eδzij

eδzij − 1
− dijγδ2 eδzij

(eδzij − 1)
2 < 0, (2.24)

for all ωij that are nonmissing.

Since Ea[ωij|dij] is �atter after globalization than Eb[ωij|dij] is before globalization,

the upward bias in the distance coe�cient from omitting the variable ωij also becomes

smaller.

Considering changes in both biases simultaneously, we cannot tell whether the dif-

ference in slopes between the HMR-line and the OLS line will increase or decrease over

time, because the downward bias from sample selection decreases and the upward bias

from the omitted variable ωij also decreases. Since we cannot tell how the bias of OLS

will behave under globalization, the OLS estimate of the distance coe�cient may also

increase or decrease over time.

The HMR estimator and the distance puzzle Let us now show how the HMR

estimator can be used to explain the distance puzzle. That is, let us now show how

the HMR estimator can be used to explain the �nding in the literature that the OLS

estimates of the elasticity of bilateral trade with respect to distance do not fall over time.

Suppose that the omitted variable bias dominates in levels at the beginning of the

data period such that there is an overall upward bias in the distance coe�cient (see the

estimates of Helpman, Melitz and Rubinstein (2008)), i.e. the OLS estimated schedule

is steeper than the true line (HMR) just as in Figure 2. A decrease in the upward bias

through the omitted variable ωij makes the OLS estimate �atter and a decrease in the

downward bias through less sample selection makes the OLS schedule steeper. Now, if

the downward bias from sample selection due to the omission of zero trade �ows decreases

faster than the upward bias from omitting the share of exporting �rms, then, overall, the

estimated OLS schedule will become steeper.

Note also that the sample selection bias alone cannot solve the distance puzzle if the

HMR model is the data generating process, as was suggested by Felbermayr and Kohler

(2006) without being speci�c about underlying data generating process. As the sample

selection bias leads to a downward bias, the importance of distance will be underesti-

mated. Hence, the level cannot be correctly captured accounting for sample selection

alone. However, to capture the change of the bias in the distance coe�cient, we need a

larger decrease in the zero-trade �ows bias as compared to the omitted variable bias due

to �rm heterogeneity. A �rst glance at the data and anecdotal evidence cope with these

facts. Whereas there has been a dramatic decrease in zero-trade �ows over the last two

decades, �rm sizes and productivities are still heavily dispersed (Poschke (2011)) and the

share of exporting �rms remains small.
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3 Econometric analysis

3.1 Base-line estimation equation and alternative estimators

Our baseline estimation equation is the HMR gravity equation (2.17). Since our main

interest rests on the coe�cient of the distance variable γ and how it evolves over time,

we will estimate this equation separately by year and industry. We use the following

augmented speci�cation:

mij = β0 − γdij + αXij + λj + χi + ln
{

exp
[
δ
(
ẑ∗ij + ˆ̄η∗ij

)
− 1
]}

+ βuη ˆ̄η∗ij + eij, (3.1)

where we explain the additional variables below. Once more, note that ln
{

exp
[
δ
(
ẑ∗ij +

ˆ̄η∗ij
)
−1
]}

captures the omitted variable bias due to �rm-level heterogeneity in the presence

of sample selection, whereas ˆ̄η∗ij captures the sample selection bias of the error term from

estimating (3.1) for non-zero trade. To estimate these correction terms, we add a �rst-

stage equation in order to estimate (2.16), where:

z∗ij = ϕ∗0 − γ∗dij + ϑ∗Xij + ϕ∗1COMM_RELij + ϕ∗2COMM_LANGij + ξ∗j + ζ∗i + ηij.

(3.2)

3.1.1 Other estimators

We have shown that the distance puzzle can be studied by systematically comparing the

estimates from HMR with corresponding estimates obtained with OLS. The OLS estima-

tor estimates equation (3.1), omitting the correction terms for �rm-level heterogeneity

and sample selection, i.e. excluding ln
{

exp
[
δ
(
ẑ∗ij + ˆ̄η∗ij

)
− 1
]}

and ˆ̄η∗ij. By comparing

the HMR and OLS estimators, we can evaluate how the bias of OLS evolves over time as

predicted by Propositions 1 and 2. We will also compare our estimates with HMR with

a number of other estimators.

Heckman The usual Heckman estimator estimates equation (3.1) omitting the cor-

rection terms for �rm-level heterogeneity but including that for sample selection, i.e.

excluding ln
{

exp
[
δ
(
ẑ∗ij + ˆ̄η∗ij

)
− 1
]}

but including ˆ̄η∗ij.

Linear approximation of HMR As δ enters the estimation equation non-linearly, we

�rst estimate equation (3.1) via non-linear least squares, as proposed by HMR. However,

as discussed in Santos Silva and Tenreyro (2008), this correction term is biased if their

theoretical model is the data generating process. However, for a wide range of ẑ∗ij + ˆ̄η∗ij,

the term ln
{

exp
[
δ
(
ẑ∗ij + ˆ̄η∗ij

)
− 1
]}

may be well approximated by
_

δ
(
ẑ∗ij + ˆ̄η∗ij

)
for some

appropriate parameter
_

δ, which can be estimated by OLS (see our discussion in section
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2.1). Hence, we also estimate the model via OLS and include $ij =
_

δ
(
ẑ∗ij + ˆ̄η∗ij

)
instead

of ln
{

exp
[
δ
(
ẑ∗ij + ˆ̄η∗ij

)
− 1
]}
.19

3.2 Data

The �rst of three data sets which we employ is borrowed from the original HMR paper

(Helpman, Melitz and Rubinstein, 2008). Despite that HMR provide their main results

for the year 1986, they also o�er results for 1980s, adding year �xed e�ects to a panel. A

comprehensive description of these data can be found in Appendix I in the HMR paper;

the data are available at http://scholar.harvard.edu/helpman . The second data set is

the standard CEPII gravity data set (available at www.cepii.fr), originally generated

by Keith Head, Thierry Mayer and John Ries. A full description can be found in the

appendix of Head, Mayer and Ries (2010). The CEPII data enables us to explore the

distance coe�cients a longer period as the original HMR data set. Although the CEPII

data set already starts in the 1940s, � due to the number of observations � we use data

from 1980 to 2006 which is the latest available year. Thirdly, we use an industry-level

data set where imports are taken from Nicita and Olarreaga (2001), who have compiled

an industry data set corresponding to the 3-digit ISIC, revision 2, level that contains 28

manufacturing industries for up to 100 countries during 1976-2004. Because there is a

large number of missing values in the early years and we are lacking a control variable in

the last year, we have restricted the sample to 1978-2003. This data set is available for

downloading from the World Bank (www.worldbank.org\trade). In turn, this data set

draws its bilateral industry import data from COMTRADE of the UN which is based on

the Standard International Trade Classi�cation (SITC) and then transformed into ISIC.

Production data are taken from UNIDO (International Yearbook of Industrial Statistics).

3.2.1 Dependent variable

The dependent variable mij in (3.1) is the natural logarithm of bilateral imports of

country i from country j at a given year t; for the industry-level data additionally in

a given industry l, measured in million US$ converted by the Penn World Tables 6.0

purchasing power parity exchange rate (PPP) and de�ated by the U.S. consumer price

index.

3.2.2 Explanatory variables

The original HMR data set and the CEPII data set contain geographical information.

The industry-level trade data set is merged into a balanced geography data set cover-

ing 170 countries. Thus, all three data sets contain geographical variables common to

19HMR use a polynomial of degree 3 in the score variable in one of their robustness checks. We will
point out that even a linear approximation works well in practice.
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gravity estimations. These geography variables appear in (3.1) and (3.2) and the di�er-

ent data sets as follows: common to all data sets, dij is the log of the distance between

countries i and j. λj and χi are a full set of exporter and importer dummy variables,

respectively, which control for, among others, the multilateral resistance terms pointed

out by Anderson and van Wincoop (2003). Xij contains a dummy variable indicating a

common border between i and j in all data sets as well as a indicator whether there is

a common trade agreement between exporter i and importer j. Dummy variables for a

common legal system, a common colonial history, a currency union and bilateral mem-

bership within GATT/WTO are only available and included for the HMR and the CEPII

data sets. Common island and landlock status indicators are included in the HMR and

the industry-level data sets. All these variables are captured by Xij in (3.1) and (3.2).

3.2.3 Exclusion restriction variables

To overcome the weak identi�cation just through functional form, HMR propose at least

three exclusion restriction variables for their procedure.

HMR prefer a speci�cation where, in the �rst stage probit, a proxy variable of bi-

lateral �xed export costs is employed. This variable�measuring the bilateral number of

procedures needed to start exporting�might not in�uence the intensive margin but the

probability of a positive trade �ow. Since this variable does not cover a rich country

sample they o�er alternative exclusion restrictions. Beside the coverage issues of this

variable, we suspect that the �xed exporting costs might change a lot over time. There-

fore, using this variable which is, at best, available for periods after year 2000 would not

�t our multi-period trade data sets starting in the seventies.

Alternatively HMR use the bilateral measures common religion and common language

and do not �nd a qualitative di�erence in their results across any employed exclusion

restrictions. The common religion variable measures to what extent the importer and the

exporter share a common religion in the population according to data from the Christian

Research Association for the year 2003. In particular, the measure takes the sum over

the set of all existing religions summing up a population's share of the importer country

confessing a religion multiplied with the same share of the exporter country. This measure

is bounded between 0 and 1, with large numbers indicating a large degree of overlap in

the religious structure of importer and exporter country. The second excluded variable

indicates whether the importer and the exporter share a common language. Below we

stick to this choice of exclusion restrictions and use the same control variables as in (3.1)

(including the importer and exporter �xed e�ects) in addition to both excluded variables

to estimate the probability of exporting in the �rst stage. We do so for all three data

sets.
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3.3 Results

To explore the distance puzzle, we thus estimate (3.1) for all three data sets by year and

additionally by industry for the industry-level data set. With ten years from the original

HMR data set, 27 years from the CEPII data set and data for 28 industries over 26 years

from the industry-level data set and with four speci�cations respectively, this amounts to

estimating 765 �rst-stage regressions and 3060 second-stage regressions. For expositional

reasons, we show our results graphically.

3.3.1 HMR versus OLS

Figure 3 depicts distance coe�cients estimated with OLS and the non-linear method from

HMR for the original HMR data set. For each year, the distance coe�cient is calculated,

which is then plotted over the available time period from 1980-1989. To indicate the

time pattern for each estimator, we have added a quadratic trend with an associated 95

percent con�dence interval. Several interesting features are present in Figure 3.

Note that the trend of the distance coe�cient, when estimated by OLS, γ̂OLS, is

slightly increasing over time. This con�rms the puzzling result in previous studies that

the negative impact of distance on trade seems to increase rather then decrease over time,

which would be expected from the globalization process. Turning to the HMR distance

coe�cient, γ̂HMR, we note that γ̂HMR is indeed decreasing over time. Examining the bias

of OLS, γ̂OLS− γ̂HMR, we note that this is positive. From Proposition 1, this is consistent

with the upward bias from omitting the number of exporters dominating the selection

bias from omitting zero trade �ows. In addition, the bias grows over time. From theory,

this suggests that globalization and reduced trade costs seem to decrease the downward

bias from selection more than they reduce the upward bias from the number of exporters,

see Proposition 2. Hence, the omitted variable bias seems to dominate the selection bias,

and becomes relatively more important than the selection bias over time.

In Figure 4, we compare OLS with the linear approximation of HMR. We note that

the results are qualitatively the same as in Figure 3: the HMR distance coe�cient is

decreasing over time, whereas the OLS coe�cient increases with the associated bias of

OLS increasing. Comparing Figures 3 and 4 we note that the linear approximation of

HMR gives very similar results to the non-linear version of HMR. That the linear approx-

imation of the HMR works satisfactorily is useful information for a future application of

the linear approximation of the HMR methodology, given the cumbersome estimation of

the non-linear version of HMR.

This main empirical �nding holds for all three data sets as can be seen from Figures

5-8. Figures 6 show for the CEPII data qualitatively the same results as Figures 3 and 4

do for the original HMR data set. Again, we �nd this for the non-linear method of HMR

and the linear approximation we propose. When we estimate (3.1) by year and industry
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and then average the estimated distance by year, we �nd a very similar pattern shown in

Figures 7-8.20

3.3.2 Heckman versus OLS

Next, we make a comparison by results obtained with the usual Heckman procedure.

Since Heckman does not correct for the omitted variable bias, but the sample selection,

we expect it's estimated distance coe�cients to be larger in absolute values than those

from OLS. This is exactly what our results in Figure 9 for the original HMR data depict:

the estimated distance coe�cients are bigger than those estimated from OLS in every

single year in our data.21 This empirical �nding is very much in line with our theoretical

result that accounting for zero trade �ows cannot solve the distance puzzle when HMR is

the data generating process. The results for the CEPII data (Figure 10) and the averaged

distance coe�cients from the industry-level estimates (Figure 11) again support this

theoretical result: we �nd no evidence for a reduction of estimated distance coe�cients

when accounting for sample selection from ignoring zero trade �ows compared to OLS

estimates. Figure 11 also shows bigger distance coe�cients in every single year and an

increasing trend for the Heckman estimates. The importance of zero trade �ows seems

to be less for the CEPII data set given that the Heckman estimates are very similar to

the OLS results. This is reasonable since Head, Mayer and Ries (2010) �ll up many zero

trade �ows which actually have not been zero while generating the CEPII data set (see

appendix of Head, Mayer and Ries, 2010).

To sum up our results up until here, we do not �nd a qualitative di�erence between

the three data sets. Some quantitative di�erences are quite reasonable since for example

the results for the industry data are averaged over industries with equal weights.

3.3.3 Industries

Figures 12a-12d show changes over time in the level of distance coe�cient for each of

the 28 industries from HMR and OLS. Most industries show a similar pattern, where the

distance coe�cient with OLS is increasing over time and the HMR distance coe�cient is

decreasing over time, producing an increasing bias of the OLS estimates.22 In particular,

these patterns are present in industries that are characterized by intra-industry trade

20Note here that, although the linear approximation works best for values of δ around 1 (see footnote
24), it still performs well for di�erent values of correction factors.

21Note that we do not depict con�dence intervals in Figures 9 and 10 since they are overlapping, which
does not contradict our theoretical expectations.

22Actually, the bias can be identi�ed visually from Figures 12a-12d. Therefore we added again
quadratic �ts and 95% con�dence intervals over time to our estimates. We mostly observe an increase in
the di�erence between the quadratic �t of the OLS estimates and the quadratic �t of the HMR estimates
over time, at least for the second half of our data period. Note that this di�erence is always signi�cant
since an overlap of the con�dence intervals between the two �ts is not indicated at any �gure and never
converges to the end of our data period, except for �petrolium re�neries�.
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(e.g. �Footwear� or �Manufacture of machinery�), whereas the patterns seem weaker in

industries where the pattern of trade is to a larger extent explained by comparative

advantage (e.g. �Tobacco manufactures� or �Petrolium re�neries�). This is also what

should be expected since trade in the HMR model generates intra-industry trade.

Descriptive evidence of these results shows Table 1 where the ISIC classi�cation is

linked to the industry classi�cation with respect to product di�erentiation according to

Rauch (1999) and the information of whether OLS bias increases or not. Rauch classi�es

industries at the SITC 4-digit level as di�erentiated or not. However, we �rst subsume

these SITC 4-digit classi�cation into our ISIC classi�cation which actually aggregates

the SITC 4-digit industries at a higher level, i.e. the ISIC codes consist of more than

one SITC 4-digit code. We then calculate the share of di�erentiated SITC 4-digit in-

dustries according to Rauch (1999) within our 28 ISIC industries (Share of di�erentiated

industries).

In Table 1 we do �nd a correlation between the dummy Increase in bias and Share

of di�erentiated industries of 0.34.23 The mean Share of di�erentiated industries within

the 23 industries where we do �nd an increasing bias is 0.75 which is much higher than

0.40 within the 5 industries where we do not �nd an increase in the bias. If we draw an

arbitrary cut-o� for di�erentiated versus homogeneous industries at a Share of di�eren-

tiated industries of 0.5 we would see that 17 out of 19 cases are di�erentiated according

to the Rauch classi�cation. Since the size of the SITC 4-digit industries is not accounted

for when subsuming them into the ISIC classi�cation we now concentrate on ISIC codes

where we calculated a clear-cut Share of di�erentiated industries of either 0 or 1. Within

these 15 observations we �nd 12 matches, either between no increase in the bias and

a clear-cut Share of di�erentiated industries of 0 or between increase in the bias an a

clear-cut Share of di�erentiated industries of 1.

3.3.4 Globalization and transport costs

Finally, we provide evidence that the HMR data generating process �ts the data well and

that (3.1) might consistently estimate the distance coe�cient. Figures 13-18 show the

results of relating the estimated distance coe�cient γ̂HMR to actual trade costs. Firstly,

Figures 15 and 17 show that the estimated distance coe�cients are strongly positively

correlated with shipping costs in data recently published by Hummels (2007). Figure 13

does not support this �nding, which we suspect to happen because of the low number of

observations here. Secondly, Figures 14, 16 and 18 shows that the γ̂HMR is also positively

correlated with oil prices, which should be an important determinant of transport costs.

23However, left with 28 industries/observations, the regression results lack in their precision, but can
serve as additional descriptives: Point estimates of regressions (probit, logit or linear probability) of the
dummy which indicates a bias increase on Share of di�erentiated industries give results in our favor
(positive) and are signi�cant at the 10% level.
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Additionally, we note that the OLS estimate of the distance coe�cient is negatively

correlated with these data on transport costs. Once more, this non-intuitive correlation

can be explained because OLS neither controls for the omitted variable of the number of

exporters nor for the omission of zero trade �ows.

4 Conclusions

Globalization has advanced rapidly during the last two decades. In contrast, the in�uence

of distance in empirical estimates of bilateral trade �ows has remained high and has not

declined. In this paper, we use the model by Helpman, Melitz and Rubinstein (2008),

emphasizing zero trade �ows and �rm heterogeneity, to resolve this �distance puzzle�.

Using di�erent trade data sets, the non-linear estimation of HMR leads to declining

distance coe�cients over time. These coe�cients also re�ect the variation in �true trade

costs� as the estimated HMR distance coe�cients are also strongly correlated with the

variation in freight costs and oil prices. When estimating the e�ect of distance on trade

with OLS, we do not only �nd a larger distance coe�cient but also that it increases over

time. Thus, the distance puzzle arises from a growing bias of OLS estimates.

We show how the growing bias of OLS estimates can be explained from the two

sources of bias generated from applying OLS to a gravity estimation when the HMR

model is the data generating process. The upward bias of the OLS estimates implies

that the omitted variable bias (from the number of heterogenous exporting �rms) must

dominate the sample selection bias (due to the omission of zero trade �ows). When

relating globalization to a fall of the true distance coe�cient, both the downward bias

from sample selection from omitting zero trade �ows and the upward bias from omitting

the number and size of exporting �rms will decrease with increasing globalization (in

absolute value). Since we �nd that the bias of OLS increases over time, the distance

puzzle must arise because globalization had a weaker impact on the omitted variable bias

from the number of heterogenous exporters.

On a �nal note, the gravity equation is perhaps the most widely used tool in empirical

work using aggregate international trade data. While �rm-level data is becoming more

frequent, applying gravity equations on aggregate trade data will also remain common

in the future when various policy issues are investigated. In this paper, we have shown

how taking sample selection and exporter �rm heterogeneity into account is crucial for

understanding the e�ect of distance on international trade when aggregate trade data is

used. Then, we showed the usefulness of a linear approximation of the HMR estimator.

As this estimator is much simpler to apply than the non-linear estimator of HMR, we

suggest that the linear approximation could be fruitfully used in many other research

questions.
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Figure 1: The HMR Model, where (i) illustrates the number of exporting �rms of a Pareto

distribution Njg(a) with productivity higher than marginal exporter's productivity 1/aij , which
is illustrated in (ii), while (iii) shows the zero-pro�t condition for export sales πij and the home

sales πjj function over the �rm-speci�c input coe�cient.
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imports from j to i. HMR is given by E [mij − ωij |dij ] with distance coe�cient γ. Heck-
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∗
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∗
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by downward bias in the �gure. ωij controls for the omitted variable due to �rm heterogeneity.
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Figure 4: Comparing estimates of linear approximation of HMR with OLS for original

HMR data.
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Figure 5: Comparing estimates of HMR with OLS for CEPII data.
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Figure 6: Comparing estimates of linear approximation of HMR with OLS for CEPII

data.
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Figure 7: Comparing estimates of HMR with OLS for industry-level data (averaged).
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Figure 8: Comparing estimates of linear approximation of HMR with OLS for industry-

level data (averaged).
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Figure 10: Comparing estimates of Heckman with OLS for CEPII data.
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Distance coefficients by year and freight costs for HMR data

HMR, OLS, and trade costs:

Figure 13: HMR, OLS and freight costs for original HMR data.
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Figure 14: HMR, OLS and oil prices for original HMR data.
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Distance coefficients by year and freight costs for CEPII data

HMR, OLS, and trade costs:

Figure 15: HMR, OLS and freight costs for CEPII data.
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Figure 16: HMR, OLS and oil prices for CEPII data.
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Figure 17: HMR, OLS and freight costs for industry-level data (averaged).
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Figure 18: HMR, OLS and oil prices for industry-level data (averaged).
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ISIC Code Industry Increase in bias Share of di�erentiated

industries

311 Food yes 0.28

313 Beverage yes 0.2

314 Tobacco no 0

321 Textiles yes 0.68

322 Wearing apparel yes 0.96

323 Leather yes 0.88

324 Footwear yes 1

331 Wood and cork no 0.7

332 Furniture no 1

341 Paper yes 0.18

342 Printing yes 1

351 Industrial chemicals no 0.19

352 Chemical products yes 0.92

353 Petroleum re�neries no 0.13

354 Products of petroleum and coal yes 0

355 Rubber products yes 1

356 Plastic products yes 1

361 Pottery, china and earthenware yes 1

362 Glass yes 1

369 Non-metallic mineral yes 0.8

371 Iron and steel yes 0.33

372 Non-ferrous metal yes 0

381 Fabricated metal yes 1

382 Machinery yes 1

383 Electrical machinery yes 1

384 Transport equipment yes 1

385 Scienti�c equipment yes 1

390 Other manufacturing yes 0.92

Table 1: 28 ISIC Rev. 2 manufacturing industries, where yes corresponds to a dummy which

is equal to 1 if we do �nd an increase in the bias γ̂OLS − γ̂HMR from Figures 12a-12d. Share of

di�erentiated industries is the share of di�erentiated SITC 4-digit industries according to Rauch

(1999) within the ISIC industry.
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A Appendix

A.1 Proof of Proposition 1

Proof: Rewrite (2.10) as mij = β′Xij + ωij + uij and z
∗
ij in (2.16) as z∗ij = ϕ∗′Xij + η∗ij

where β≡ (β0, λj, χi,−γ)′, and ϕ∗=
(
γ∗0 , ξ

∗
j , ζ
∗
i ,−γ∗

)′
,−κ∗. Let, β̂OLS denote the OLS

estimator of β ignoring the sample selection and omitted variable corrections. We then

obtain:

E
(
β̂OLS

)
= β +

[
XijX

′
ij

]−1
XijE

[
ωij + uij

∣∣z∗ij > 0
]
, (A.1)

where we have exploited that the Xij variables contain only geography information and

are therefore deterministic. To evaluate (A.1), examine the conditional expectations

E
[
ωij
∣∣z∗ij > 0

]
and E

[
uij
∣∣z∗ij > 0

]
. Using formula (16.36) on p. 549 in Cameron and

Trivedi (2005), we �rst obtain:

E
[
uij
∣∣z∗ij > 0

]
= cov

(
uij, η

∗
ij

)
E
[
η∗ij|η∗ij > ϕ∗′Xij − κ∗φij

]
(A.2)

= corr (uij, uij + νij)
σu
ση

φ (ϕ∗′Xij − κ∗φij)
Φ (ϕ∗′Xij − κ∗φij)

≡ βuηη̄ij > 0,

where βuη = corr (uij, uij + νij)σu/ση and η̄ij =
φ(ϕ∗′Xij−κ∗φij)

Φ(ϕ∗′Xij−κ∗φij)
. Further, we have as-

sumed that uij and η∗ij are bivariate normally distributed. Note that this implies that

uij = cov(uij, η
∗
ij) η∗ij/σ

2
η + %ij, where %ij is independent of η∗ij and has zero mean.

Hence, E
[
uij
∣∣η∗ij > ϕ∗′Xij − κ∗φij

]
= cov(uij, η

∗
ij) 1/σ2

ηE
[
η∗ij
∣∣η∗ij > ϕ∗′Xij − κ∗φij

]
and

cov
(
uij, η

∗
ij

)
= corr (uij, uij + νij)σuση. To proceed, use a linear approximation of ωij =

ln
[(
Z∗ij
)δ − 1

]
for z∗ij > 0.We can then write ωij = ln

[(
Z∗ij
)δ − 1

]
= ln

[
exp

(
δz∗ijl

)
− 1
]
≈

δz∗ij > 0, where δ = ση
k−ε+1
ε−1

is de�ned as above.24 We then obtain:

E
[
ωij
∣∣z∗ij > 0

]
, (A.3)

= E
[
δz∗ij

∣∣z∗ij > 0
]

= δE
[
{E
[
z∗ij |Xij

]
+ η∗ij}

∣∣z∗ij > 0
]

= δE
[
z∗ij |Xij

]
+ δE

[
η∗ij
∣∣z∗ij > 0

]
,

= δE
[
γ∗0 + ξ∗j + ζ∗i − γ∗dij − κ∗φij |Xij

]
+ δE

[
η∗ij
∣∣z∗ij > 0

]
,

= δ
[
γ∗0 + ξ∗j + ζ∗i − γd∗ij − κ∗φij +

_
η
∗
ij

]
,

= δϕ∗′Xij + δη̄∗ij.

Noting that [X′X]−1 X′Xϕ∗δ = ϕ∗δ, we obtain:

E
(
β̂OLS

)
= β + ϕ∗δ +

[
XijX

′
ij

]−1
Xijδη̄

∗
ij +

[
XijX

′
ij

]−1
Xijβuηη̄

∗
ij T 0. (A.4)

24It can be shown that this approximation works very well in the range of ωij from [0.5,∞] and
estimated values of δ around 1.
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Since country dummies in Xij are not correlated by construction and distance is hardly

correlated with country dummies the matrix X′X can be viewed as diagonal. But then:

E
(
−γ̂OLS

)
= −γ − γδ +

∑
i

∑
j dij∑

i

∑
j (dij)

2 [δ + βuη] η̄
∗
ij, (A.5)

and hence

Bias( γ̂OLS) = γδ −
∑

i

∑
j dij∑

i

∑
j (dij)

2 [δ + βuη] η̄
∗
ij.

�

A.2 Proof of Proposition 2

Proof: From (2.22), we have Bias(γ̂OLS) = γδ − Ξ [δ + βuη] η̄
∗
ij. Thus, it follows that

∂Bias(γ̂OLS)
∂t

= δ ∂γ
∂t
− Ξ [δ + βuη]

∂η̄∗ij
∂t

. The change of the omitted variable bias over time is

simply given by:
∂ (δγ)

∂t
= δ

∂γ

∂t
< 0.

The sign of the change of the sample selection bias depends on the sign of

∂η̄∗ij
∂t

=

∂

(
φ(z∗ij)
Φ(z∗ij)

)
∂t

(A.6)

=
1

Φ(z∗ij)
2

[(
φ′
(
z∗ij
)
· Φ
(
z∗ij
)
− φ

(
z∗ij
)2
)] ∂z∗ij

∂t

=

−z∗ijφ (z∗ij)
Φ
(
z∗ij
) −

(
φ
(
z∗ij
)

Φ
(
z∗ij
))2

 ∂z∗ij
∂t

=
[
−z∗ij η̄∗ij −

(
η̄∗ij
)2
] ∂z∗ij
∂t

= −η̄∗ij
[
z∗ij + η̄∗ij

] ∂z∗ij
∂t

.

Note that
∂z∗ij
∂t

= −dij
∂γ (t)

∂t
> 0.

The derivative of the mills ratio
∂η̄∗ij
∂z∗ij

= −η̄∗ij
[
z∗ij + η̄∗ij

]
is negative. This can be shown by

noting that

E
[
η∗ij
∣∣η∗ij > −ϕ′X] =

φ (ϕ′X)

Φ (ϕ′X)
=

φ (−ϕ′X)

1− Φ (−ϕ′X)
, (A.7)

and using the result derived in Sampford (1953) and also given in Theorem 19.2 on page

876 in Greene (2012), that for φ (x) / (1− Φ (x)) the derivative with respect to x is given
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by
φ (x)

1− Φ (x)

[
φ (x)

1− Φ (x)
− x
]
, (A.8)

and bounded between zero and one. Using the equality given in equation (A.7), we may

write this as:
φ (ϕ′X)

Φ (ϕ′X)

[
φ (ϕ′X)

Φ (ϕ′X)
+ ϕ′X

]
= η̄ij [zij + η̄ij] . (A.9)

Hence, this expression di�ers from our derivative of η̄∗ij only by the multiplication with

−1. Hence, the derivative of η̄∗ij with respect to z∗ij is bounded between −1 and 0. But

then
∂η̄∗ij
∂t

= ∂
[
φ
(
z∗ij
)
/Φ
(
z∗ij
)]
/∂t < 0. The change in the bias for OLS is therefore

ambiguous, depending on whether the change in the sample selection bias or the change

in the omitted variable bias is larger:

∂Bias(γ̂OLS)

∂t
= δ

∂γ

∂t
− Ξ [δ + βuη]

∂η̄∗ij
∂t
T 0. (A.10)

�
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