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Abstract. This paper investigates stability properties of evoluLionary se­
lection dynamics in normal form games. The analysis is focused Oll ag­
gregate monotonic selection (AMS) dynamics in continuous time. While 
it is already known that virtually only strid equilibria are asymptoti­
cally stable in such selection dynamics, we emphasize asymptotic sta­
bility of sds of population states, more precisely of bounclary faces of 
the mixed-strategy space. Our main result is a characterization of those 
boundary faces which are asymptotically stable in AMS dynamics, and 
we show that every such boundary face contains an essentilll component 
of Nash equilibria, 'and hence a strategiclllly stllble set of Nash equilibria. 

1. INTRODUCTION 

Most applications of non-cooperative game theory build on such so­
lution concepts as Nash equilibrium. As is weIl known by now, the 
rationalistic foundation of this approach is quite demanding. Not only 
is it required that agents are optimizers, but it also presumes a large de­
gree of coordination of different agents' expectations [see e.g.: Tan and 
Werlang, 1988, and Aumann and Brandenburger, 1992). In re­
cent years researchers have investigated alternative foundations of Nash 
equilibrium play. Particularly promising seems the approach taken in 
evolutionary game theory. Instead of asking if agents are rational in 
some epistemologically weIl-defined sense, one asks if evolutionary selec­
tion processes induce a tendency towards (aggregate) Nash equilibrium 
behavior. In other words, one then investigates the validity of Fried­
man's [1953) "as if" paradigm in the context of strategic interaction. 

The best studied setting for such evolutionary dynamics is pairwise 
random matchings in a single but infinitely large population of indi­
viduals. All individuals in the population are, at each instant, "pre­
programmed" to use a certain pure strategy. At each matching, the 
. individuals playa symmetri c and finite two-person game, each individ­
ual using his or her "programmed" strategy. In the so-cal1ed replicator 
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dynamics, players change from currently worse to better strategies at 
rates which are proportional to current payoff differences. It has been 
shown that (Lyapunov ) stability in this dynamics implies (symmetric) 
Nash equilibrium behavior [Bomze, 1986], and that dynamic conver­
gence from an initial population state in which all strategies are in use 
implies that the limit state corresponds to a (symmetric) Nash equilib­
rium [Nachbar, 1990]. Hence, the evolutionary approach lends fairly 
strong support for the Nash equilibrium hypothesis in this setting. 

However, the relevance for economics of these results is limited in 
several ways. First, the special form of the replicator dynamics is not, 
in general, compelling in an economic modelling setting. Accordingly, 
economic theorists have recently worked with broader classes of evolu­
tionary selection dynamics, ineluding the replicator dynamics only as 
a special case. Secondly, many economic applications call for multi­
population, rat her than single-population dynamics. For instance, the 
player roles may be those of "buyers" and "sellers" , each type of indi­
vidual being drawn from his or her "player role population". Moreover , 
in most applications, the game will not be symmetric and may involve 
more than two players. Thus one is lead to study a broader elass of 
evolutionary selection dynamics in n-player games, in which each player 
role is represented by one distinct population - the topic of the present 
paper. 

Just as in the standard replicator dynamics of biological evolution­
ary game theory, the player populations are infinite and individuals are 
randomly drawn to play the game - one individual from each player­
population. Each individual is at each instant "programmed" to a par­
ticular pure strategy available to the player whose role he plays. Hence, 
at each instant every player-population can be divided into as many 
sub-populations as there are pure strategies for the player in question. 
The only constraint imposed on the evolutionary selection mechanism 
is that the induced dynamics be aggregat e monotonic [Samuelson and 
Zhang, 1992]. In such a dynamics, the composition of each population 
moves away from currently worse to currently better strategies in the 
following sense: If one mixed strategy currently earns a higher payoff 
than another, then the direction of the vector of growth rates is eloser 
to the first mixed strategy than to the second. This condition is more 
restrictive than the simpler condition of monotonicity. The latter re­
quires sub-populations associated with currently better pure strategies 
to grow at higher rates than sub-populations associated with currently 
worse pure strategies (see Section 2 below for exact conditions.) 

The aforementioned positive results from the symmetri c setting carry 
over to asymmetric settings. In particular , it is known that every Nash 
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equilibrium constitutes a stationary population state and that all sta­
tionary states which are not Nash equilibria are unstable [Friedman, 
1991, Samuelson and Zhang, 1992]. Moreover, even if a stationary 
state is unstable, but it is a limit point of sorne evolutionary dynamic 
path starting from some initial population state in which all strategies 
in the game are used, then again this state has to be a Nash equilib­
rium. In this sense, all convergent evolutionary selection paths lead to 
(aggregate) behavior meeting the requirements of Nash equilibrium play. 
In sum, the evolutionary approach provides not only a foundation for 
the kind of rationality and coordination of expectations inherent in the 
notion of Nash equilibrium: It even seleet" among Nash equilibria also 
in this general case. 

There is a caveat to these positive results, however. In particular, few 
Nashequilibria are stable in multi-population dynamics - in contrast to 
single-population dynamics in symmetric games. More precisely, only 
strict Nash equilibria are asymptotically stable in the replicator dynam­
ics as applied to n-player normal-form games [Ritzberger and Vo­
gelsberger, 1990, Proposition 1], and virtually only strict equilibria 
are asymptotically stable in aggregat e monotonic selection dynamics in 
such games [Samuelson and Zhang, 1992, Theorem 4 and Corollary 
1]. Consequently, many games posess no (asymptotically) stable equi­
librium at all. Hence, the connection between evolutionary selection in 
n-player games and rational and coordinated play (in the sense of Nash 
equilibrium play) is weaker than it may mst appear. 

However, the present paper brings a positive message which contrasts 
with these negative observations. Rather than focusing on stability prop­
erties of individual population states, or, equivalently, (mixed) strategy 
combinations, we consider stability properties of a certain class of sets 
of population states (strategy combinations), namely those which cor­
respond to boundary faces of the mixed-strategy space of the game.1 

More precisely, a subset of mixed strategy combinations belongs to this 
class if it is the Cartesian product of sets of mixed strategies (one set for 
each player), each of which consists of all mixtures from some subset of 
the player's pure strategy set. In other words, if each player-population 
were to use pure strategies only from some subset of pure strategies, 
then the population state would belong to the boundary face spanned 
by these pure strategies. One extreme end of this spectrum of sets of 
inixed-strategy combinations are all singleton sets. These correspond to 
individual pure-strategy combinations (minimal boundary faces). The 
opposite extreme is the set of all mixed-strategy combinations in the 

1 For an alternative set-valued approach to dynamie stability see: Thomas, 1985. 
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game (the maximal boundary face). 
Dur main result is a full characterization of all boundary faces which 

are (set-wise) asymptotically stable in aggregate monotoni c selection 
dynamics. The characterizing criterion is that the set in question be 
"closed" under a certain correspondence which we call the "better-reply" 
correspondence (in analogy with the well-known best-reply correspon­
dences used in non-cooperative game theory). This "new" correspon­
dence assings to each mixed-strategy combination O' those pure strate­
gies for each player which give that player at least the same payoff as 
he has in 0'. Such pure strategies are thus (weakly) better replies to O' 

than O' itself is. Clearly all (pure) best replies are "better" replies in this 
sense, so the image of any strategy combination under the better-reply 
correspondence always contains the image of the (pure) best-reply cor­
respondence. We call a (product) set of pure strategies elosed under the 
better-reply correspondence if the image under this correspondence of 
every mixed strategy combination with support in the set is contained 
in the set [in analogy with sets "closed under rational behavior" , see: 
Basu and Weibull, 1991]. For instance, a singleton set which consists 
of a striet Nash equilibrium is closed under the better-reply correspon­
dence. There always exist sets which are closed under the better-reply 
correspondence, and there even exists minimal such sets. Moreover , ev­
ery minimal such set is a jized set under the better-reply correspondence 
in the sense that not only does it eontain all the better replies of every 
mixed-strategy combination with support in the set; it contains no pure 
strategy which is not a better reply to any mixed-strategy combination 
with support in the set. 

Dur result on dynamic evolutionary stability of sets can now be re­
stated more precisely as follows. H a (product) set of pure strategies 
is closed under the better-reply correspondence, then the associated 
boundary face of mixed strategy combinations is asymptotically stable 
in every aggregate monotonie selection dynamics. Conversely, if a (prod­
uct) set of pure strategies is such that the associated boundary face is 
asymptotically stable in 80me aggregate monotonie selection dynamics, 
then the set is closed under the better-reply correspondence. 

As suggested above, this result has a positive implication for the con­
nection between evolutionary selection and rationality in the sense of 
Nash equilibrium play. It will be shown that any asymptotically stable 
boundary face contains some e88ential component set of Nash equilibria, 
and hence a set which is 8trategically 8table in the sense of Kohlberg 
and Mertens [1986]. Hence, the boundary face spanned byevery (prod­
uct) set of pure strategies which is closed under the better-reply corre­
spondence is asymptotically stable, and, moreover, it contains a set of 
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Nash equilibria which is strategically stable. In summary: Although 
few individual strategy combinations are asymptotically stable in multi­
population evolutionary selection dynamics, there are subsets of strategy 
combinations which are, as sets, asymptotically stable in a broad c1ass , 
of evolutionary selection processes. Moreover, the associated boundary 
faces contain set s of Nash equilibria which meet the stringent rationality 
requirements inherent in the non-cooperative notion of strategic stabil· 
ity. 2 

The material is organized as follows. Section 2 contains notation and 
basic definitions. Section 3 provides, in a unified and sometimes more 
general form, essentially known results on point-wise stability (except 
for Theorem 1 and Proposition 2). All proofs for this section have been 
relegated to an Appendix. In Section 4 we elaborate on a c1ass of cor­
responcences which we call behavior corre.spondences, of which the best­
reply and better-reply correspondences are instances, and we relate sets 
c10sed under such correspondenees to the notions of strict and non-striet 
Nash equilibrium. Our main result is given in Section 5, and illustrated 
by examples in Section 6. A concluding discussion is given in Section 7. 

2. NOTATION AND DEFINITIONS 

Let r be a normal-form game with player set.N = {I, 2, ... , n}, for 
some positive integer n, and with S = x iEN' Si as the set of pure strategy 
combinations s = (SI, S2, ••• , sn), where eaeh set Si consists of Ki pure 
strategies s~, k = 1,2, ... , Ki , available to player i E.N. The set of 
mixed strategies of player i is thus the (Ki -l)-dimensional unit simplex 
Åj = {O'i E ~!; I E~.!.l 0'[ = I}, and Å = XiEN'Åi is the polyhedron of 
mixed strategy eombinations O' = (0'1 , •.• , O'n) in the game. We identify 
each pure strategy s~ E Si with the corresponding unit veetor et E Åi 
(hence Si is the subset of vertiees of Åi). The support of some mixed 
strategy O'i E Åj is denoted by supp(O'j) = {s~ E Sj I 0'[ > O}. The 
mapping u: S ~ ~n will give the payoffs of pure strategy combinations, 
and the (multilinear) expected payoff funetion U: Å ~ ~n is defined in 
the usual manner. 

Let f3 = x iEN'f3i: A ~ S be the pure best-reply correspondence which 
maps mixed strategy combinations to their pure best-reply strategy com­
binations. More precisely, for each player i E .N and strategy combina­
tion O' E Å, 

f3i(O') = {st E Si I Ui(O'-i, s~) ~ Ui(O'-i, Si), \:f Si E Si}. 

2Conversely, every strategically stable set of Nash equilibria is (trivially) contained 
in some (minimal) boundary face which is asymptotically stable in all aggregate 
monotonic selection dynamics. 
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The correspondence assigning mixed best replies is denoted S = XiENSi, 
where 

Si(U) = {Ö'i E ~i I SUpp(Ö'å) C ,8i(U)}. 

lt is well known that both ,8 and S are v..h.c. correspondences on ~. 
A Nash eqv.ilibriv.m is a strategy combination u E t:1 which is a fixed 

point of p. The set of Nash equilibria of a game f will be denoted 

E(f) = {u E ~ I u E ,8(u)}. 

A strict Nash equilibrium is a strategy combination O' E ~ which is 
its unique best reply, i.e. such that {u} = P(u). Clearly every strict 
equilibrium O' E E(r) is pure, so one may view it as a fixed point of ,8 
in S. 

The basic dynamics in evolutionary game theory is the so-called rep Ii­
cator dynamics. Applying it to an n-player game r, it is defined by the 
following (quadratic ) system of ordinary differential equations on the 
polyhedron ~ (time i,ndices suppressed): 

ö-f = uf[Uå(O'-i, sf) - Ui(U)] , "Vk = 1, ... , Kå, "Vi E N 

[see e.g.: Taylor and Jonker, 1978; Zeeman, 1980; Hotbauer and 
Sigmund, 1988; Friedman, 1991; Samuelson and Zbang, 1992]. As 
a consequence åf the Picard-Lindlöf Theorem this system has a unique 
solv.tion u( . , UO): ~ -+ t:1 through every initial state UO E ~, u( t, UO) E 
~ denoting the state at time t E~. Moreover , the polyhedron ~, as 
well as its interior inte ~), is (both positively and negatively ) invariant 
in this dynamics, i.e. if the initial state 0'0 is in ~ (resp. int(~» then 
so is every future and past state 0'( t, 0'0). 

·A regv.lar selection dynamics on ~ is a system of ordinary differential 
equations 

Ö'f = ff(O')O'f, "Vk = 1, ... , Kå, "Vi E N, 
with fi: ~ -+ ~Ki, "V i E N, and f = XiEN fi is such that 

(i) f is Lipschitz continuous on ~, 
(ii) !i(u)· Ui = 0, "V O' E ~, "Vi E N.3 

An aggregate monotonic selection dynamics (AMS) is a regular selec­
tion dynamics such that for all i E N and all O'~, O'~' E ~i 

Ui(O'-it uD > Ui(O'-i, O'i') ===> f;(O')· O'i > fi(U)' O'i' , 

3This definition can be shown to be equivalent to the one given by SamuelsoD and 
Zhang [1992, pp.368]. 
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for all (j E 6. [ef. Samuelson and Zhang, 1992, p.369]. A weaker eon­
dition is to require the ab ove implieation to hold only for pure strategies 
(j~ = s~ E Si and (j~' = s~' E' Si. Such a dynamies is called monotonic. 

By a straightforward generalization of Theorem 3 in Samuelson and 
Zhang [1992, pp.374] it can be shown that any AMS can be written in 
the form 

ff((j) = Wi((j) [Ui((j-i, st) - Ui((j)], 'V k = 1, ... , K å, 'Vi E N, 

for some (strictly) positive function Wi: 6. ~ R, for every i EN. Since f 
and all Ui are Lipschitz continuous, every "player-specific reparametriza­
tion of time" Wi must be Lipschitz continuous for all i E N. The elass 
of all AMS's is thus given by all Lipschitz continuous "player-specific 
reparametrizations of time" in the replicator dynamics, the lat ter being 
the special case Wie (j) = 1, 'V (j E 6., 'V i E N. 

Given some regular selection dynamies on the polyhedron 6. of mixed 
strategy eombinations, a set A C 6. is called positi'IJely in'IJariant if any 
solution path starting in A remains in A for the entire future, (j(t, (jO) E 
A, 'V (jo E A, 'V t E R+. It is called negati'IJely in'IJariant if any solution 
path in A has been in A for the entire past, (j(t, (jO) E A; 'V (jO E A, 
'Vt E R_. The set A is called in'IJariant if it is both positively and 
negatively invariant. A point (j* E 6. is ealled stationary or a rest point, 
if {(j*} C 6. is an invariant set. 

A elosed invariant set A C 6. is said to be stable (or Lyapuno'IJ "table), 
if the solution curves remain arbitrarily elose to A for all initial states 
sufficient ly elose to A. Formally, a neighbourhood 8 of a elosed set A C 6. 
is an open set eontaining A, and: 

DEFINITION. A closed invariant set A C 6. is "table (or Lyapuno'IJ sta­
ble), if for every neighbourhood 8' of A there exists a neighbourhood 8" 
of A sucb. that (j(t, (jO) E 8' for all (jO E 8" n 6. and all t ~ O. 

A more stringent stability notion is that of asymptotic &tability. . It 
requires on top of (Lyapunov) stability that the set A be a loeal attrac­
tor in the sense that all dynamie paths starting sufficiently close to A 
eonverge to A over time. Formally: 

DEFINITION. A closed invariant set A C 6. is a"ymptotically &table if 
it is stable and there exists some neighbourhood 8 of A sucb. that 
(j(t, (jO) ---+t-oo A, for all (jO E 8 n 6..4 

Sinee any stationary point (j E 6. forms a closed subset {(j} of 6., the 
above definitions also eover stability notions for points. The indueed 

4The notation u(t, UO) -t-oo A is used to mean min. EA lIu(t, UO) - all -t_oo O, 
where" .11 denotes the Euclidean metric. 
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stability criteria for points coincide with the standard definitions [see 
e.g. Hirsch and Smale, 1974, pp.185]. 

If initial states on the boundary of t::. are ignored, then one obtains 
two weaker notions. The first is a global stability criterion: 

DEFINITION. A closed invariant set A C t::. is called globally &table if 
(1(t, (10) --+t-oo A, '1(10 E int(t::.). 

Global stability is less demanding than a globalized version of asymp­
totic stability in two respects: First, trajectories starting on the bound­
ary of t::. need not converge to the globally stable set. Second, the Lya­
punov stability criterion may be violated, because some trajectories may 
start dose to the globally stable set but move far away from it before 
approaching it. The following criterion is a local version of the previous 
definition: 

DEFINITION. A closed invariant set A C t::. is weakly uymptotically 
&table if there exists a neighbourhood O of A such that u(t, (10) --+t-oo 

A, '1(10 E Onint(t::.). 

3. POINT-WISE STABILITY 

From the representation of AMS's it is dear that the set of rest points 
agrees for all AMS's. In particular, ii E ~ is a rest point in some AMS 
if and only if it is a rest point in the replicator dynamics. Moreover, a 
Nash equilibrium is a rest point in any AMS (but not vice versa). 

The first result establishes that a rest point which is not a Nash equi­
librium is not even (Lyapunov) stable [see also: Bomze, 1986, and The­
orem 6 of Samuelson and Zhang, 1992; p.3S0}. Moreover, it reveals a 
connection between Nash equilibria and convergence of trajectories [see 
also: Nachbar, 19901. Call a stationary point ii E ~ reachable, if for 
&ome AMS 

3 (10 E inte ~): (1( t, UO) --+t-oo c;. . 

PROPOSITION 1. (a) If c; E ~ is a stable stationary point in some AMS, 
then ii E E(r). 

(h) H c; E ~ is reachable, then c; E E(r). 

(PROOF: See Appendix.) 

• This result establishes an apparently elose connection between evolu­
tionary selection and rational behavior in the sense of Nash equilibrium 
play. First, whenever a population state is stable with respect to evolu­
tionary forces it constitutes a Nash equilibrium. Second, even if it is not 
stable, but attracts "ome (interior ) dynamic path, then again it will be a 
Nash equilibrium. However, it is known that in multi-population interac­
tions few states are indeed stable. In particular , no interior population 
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state is asymptotically stable in the replicator dynamics [cf. Amann 
and Hotbauer, 1985j Hotbauer and Sigmund, 1988, p.282j Ritz­
berger and Vogelsberger, 1990, Lemma 5]. 

LEMMA 1. If Ö' E int( A), then Ö' is not asymptotically stable in the 
replicator dynamics. 

(PROOF: See Appendix.) 

Each boundary face of A can be thought of as a smaller game of its 
own, derived from r by deleting all unused pure strategies. Moreover , 
the replicator dynamics of these reduced games is just the replicator 
dynamics of r restricted to the corresponding boundary face of A, and 
each boundary face is invariant under the replieator dynamies. As a 
eonsequenee of this, the (relative) interior of each boundary face satisfies 
the requirements of Lemma 1. This shows: 

COROLLARY 1. Any asymptotically stable point in the replicator dy­
namics is a pure strategy combination. 

In other words: No mixed strategy eombination (in which at least one 
player randomizes) is asymptotically stable in the replicator dynamics. 
This evolutionary instability of mixed equilibria parallels the weIl known 
"epistemological" instability of mixed equilibria in the non-cooperative 
approach [van Damme, 1987, p.19j Harsanyi, 1973]: In a mixed equi­
librium some player can choose another mix than the one prescribed by 
the equilibrium, without risking losses of expected payoff, given that the 
other players stay with their equilibrium mix. Hence, if other players 
anticipate this possibility, then they may want to change their strata­
gies, etc. That is to say that mixed equilibria are self-enforcing only with 
respect to themselves, not necessarily even with respect to a neighbour­
hood. 

The observed evolutionary instability of mixed equilibria is an impor­
tant step towards the following characterization of asymptotie stability 
in the replicator dynamies [ef. Ritzberger and Vogelsberger, 1990, 
Proposition 1].s 

THEOREM 1. An equilibrium Ö' E E(r) is asymptotically stable in the 
replicator dynamics if and only if it is a strict equilibrium. 

(PROOF: See Appendix.) 

It is weIl known that the single population replicator dynamics for 
symmetrie two-player games can have asymptotically stable rest points 

'Theorem l is a slight sharpening of Theorem 4 and Corollary l in SamuelsoD and 
Zhang, 1992, pp.377, for the case of the replicator dynamics. 
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which are interior. A typical instance of this occurs when the "Hawk­
Dove" game is played by a single population. This is a 2 x 2 game which 
has three equilibriaj one symmetri c mixed Nash equilibrium and two 
asymmetri c striet equilibria. Hence, the two striet equilibria sit off the 
diagonal of the state space ~ (the unit square). In the two-populations 
replicator dynamics the mixed equilibrium is a saddle point and hence 
unstable. However, the convergent saddle path is the diagonal of ~, 
and it is precisely on this diagonal that the single-population dynamics 
takes place, producing an asymptotically stable and completely mixed 
rest point. 

Theorem 1 says that nothing that is not unambiguously self-enforcing 
with respect to a neighbourhood of itself can be asymptotically stable in 
the replicator dynamics. So what are the dynamic stability properties of 
equilibria which are self-enforcing with respeet to a neighbourhood, but 
not unambiguously so? Such a notion is known as a robust equilibrium 
[Okada, 1983]. A Nash equilibrium ii is called robust, if there exists 
some neighbourhood O of ii such that ii E !J( 0'0), V 0'0 E O n~. In 
other words: While a striet equilibrium is the unique best reply to every 
nearby strategy combination, a robust equilibrium need only be a best 
reply to nearby strategy combinations. 

One mig:Q,t, therefore, expect that for robust equilibria the weaker 
(Lyapunov) stability criterion is satisfied. This tums out to be true. 
However, for this weaker stability notion and robust equilibria no equiv­
alence result is yet known. What we can say is less, but it applies to all 
AMS: 

PROPOSITION 2. Every robust equilibrium is stable in any AMS. More­
over, for every robust equilibrium there exists a neighbourhood O such 
that, in any AMS, O'(t, 0'0) --+t-oo E(r) n O, v 0'0 E O n~. 

(PROOF: See Appendix.) 

Theorem 1 and Proposition 2 reveal an intimate relationship between 
dynamic stability properties and the "robustness" of the best replies 
used in an equilibrium. It is, therefore, not surprising that the connec­
tion between mere Nash equilibrium and evolutionary dynamic stability 
properties is weak. In this sense Proposition 1 is too optimistic. As 
a matter of fact, for a large class of games there are no dynamically 
stable equilibrium point s at all. For instance, many models of strategic 
interaction are formalized as games in extensive form. Any Nash equi­
librium which is mixed or does not reach all information sets of such a 
game is non-striet, and hence not asymptotically stable in the replicator 
dynamics, by Theorem 1. 
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4. SETS CLOSED UNDER SOM E BEHAVIOR CORRESPONDENCE 

Let <P be the cIass of u.h.c. correspondences cp = Xie./lfCPj: ~ -+ S such 
that {3( u) C cp( u) for all u E ~ (weak inclusion). Correspondences cp E <P 
will henceforth be called behavior correspondences. For any correspon­
dence cp: ~ -+ S, and any nonempty set A C ~, cp( A) C S denotes the 
(nonempty) union of all images cp(u) with u E A, i.e. cp(A) = UcreACP(U). 

Let P be the set of all nonempty product sets X C S, i.e. X = 
Xie./lfXi, where 0 =F Xi C Si, 'Vi E N. For any nonempty set Xi C Si, 
let ~i(Xi) be the set of all mixed strategies with support in Xi. For 
any X E P, let ~(X) = Xie./lf~i(Xi)' Basu and Weibull [1991] call 
a set X E P closed 'Under rationai behavior (c'Urb) if it contains all its 
best replies, i.e. if {3( ~(X» C X, and call it tight if {3( ~(X» = X. 
More generally: given any behavior correspondence cp E <P, we here 
call a set X E P closed 'Under cp if cp(~(X» C X and jized 'Under cp 
if cp(~(X» = X.6 Clearly X E P is a c'Urb set if it is closed under 
some behavior correspondence cp E <P, by {3(~(X» C cp(~(X» C X. A 
set X E P is a minimal closed set under cp if it is closed under cp and 
contains no proper subset which is closed under cp. 

The following lemma generalizes some basic properties of curb sets to 
sets which are cIosed under some behavior correspondence. The proof 
follows Basu and Weibull [1991]. 

LEMMA 2. (a) If X E P is a minimal dosed set under cp E <P, then it is 
a nxed set under cp. 

(b) For every cp E <P there exists a minimal dosed set. 
(c) If a singleton set X = {s} is dosed under some cp E <P, then s E S 

is a strict Nash equilibrium. 

PROOF: (a) Suppose X EP is a minimal closed set under cp E t, but 
X =F cp(~(X». Then there is some player i E N such that CPi(~(X» U 
Y; = Xi for some nonempty Y; C Si with Y; n Xi = 0. Let Zi = 
CPj(~(X», and, 'V i =F i, let Zj = Xj' Clearly cp(~(Z» C 1'(~(X» C z, 
so X is not minimal - a contradiction. 

(b) By cp( ~) C S the nonempty collection Q C P of sets X E P which 
are closed under some given cp E <P is finite and partiaJly ordered by set 
inclusion, and hence contains at least one minimal such set. 

(c) If a singleton set X = {s} is closed under <p Et, then 0 =F (J( s) C 
cp(s) C {s}, and so (J(s) = {s}, Le. s E S is a striet Nash equilibrium .• 

6The terminology is motivated. by the fact that a fixed. set for a correspondence is 
the direct generalization of a fixed. point of a function, when the correspondence is 
viewed. as a function from the power setinto itself [d. Berge, 1963, p.1l3]. 
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The next result is a key observation for the subsequent analysis. Es­
sentially it provides a generalization of a propert y of strict equilibria 
which non-strict Nash equilibria lack, and which, in a sense, is the con­
verse of the defining propert y of Nash equilibrium. While a strategy 
combination O' E ~ is defined as a Nash equilibrium whenever it is con­
tained in its set of best replies, {O'} C P( 0'), only strict equilibria have 
the complementary (curb) propert y of containing all their best replies, 
P( 0') C {O'}. In the first case unilateral deviations are non-profitablej 
some may be costly and others costiess. In the second case all unilat­
eral deviations are costly. Not surprisingly, strict equilibria, therefore, 
satisfy all the requirements that the refinement literature has asked for. 
In particular , every strict equilibrium is pure (a vertex of ~) and it is 
the unique best reply not only to itself but (by continuity of the payoff 
function) also tOo all strategycombinations in some neighbourhood of 
itself. Formally, if O' E E(r) is strict, then there is some neighbourhood 
U of O' such that P(U n ~) C {O'}. Hence, such an equilibrium is robust 
to all sufficient ly small perturbations of the players' beliets about each 
others' play. 

The following lemma generalizes this observation, first, from the best­
reply correspondence to all behavior correspondences, and, second, from 
individual strategy combinations to sets of strategy combinations. As a 
special case the result holds for all curb sets. 

LEMMA 3. If X E P is closed under some cp E ~, then there exists a 
neighborhood U of ~(X) such that cp(U n~) eX. 

PROOF: Suppose cp(~(X» C X and there is no neighborhood U of 
~(X) such that cp(Un~) C X. Let Y be the complement of X in S, and 
identify X and Y with the associated sets of vertices of~. Then X and Y 
are disjoint closed subsets of~. By hypothesis, Y is nonempty and there 
exists a sequence {0'1'}~1 from ~ converging to some point 0'0 E ~(X) 
such that cp(O'1') contains some point from Y, for all 7" = 1, 2, ... Since 
cp is u.h.c. and Y is closed, this implies that also cp(O'0) contains some 
point from Y. But Y is disjoint from X and hence cp( 0'0) is not a subset 
of X - a contradiction. • 

The next result establishes basic relationships between sets which are 
closed under some behavior correspondence and the set of Nash equilib­
ria. Recall that the set E(r) C ~ of Nash equilibria of any normal-form 
game r is the union of finitely many, disjoint, closed, and connected sets, 
called connected componenu [Koblberg and Meriens, 1986, Propo­
sition 1]. The following observation is trivially valid for any behavior 
correspondence cp E ~: Every connected component C C E(r) is con­
tained in the boundary face ~(X) spanned by ",ome set X E P which 
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is closed under t.p (just let X = S). Proposition 3(a) below establishes 
the partial converse that for any X E P which is closed under some 
behavior correspondence each eonnected component of Nash equilibria 
is either disjoint from or contained in the boundary face spanned by 
X. Proposition 3(b) shows that every boundary face spanned by a set 
X E P which is closed under some behavior eorrespondence eontains a 
set of Nash equilibria whieh satis:fies some of the strongest known set­
wise refinement eritena, essentiaIity Ivan Damme, 1987, p.266], hyper­
stability, and strategic stability [Kohlberg and Mertens, 1986, p.1022 
and p.1027]. 

PROPOSITION 3. (a) H X E P is closed under some behavior correspon­
dence t.p E .p and e is a connected component of Nash equilibria, then 
either e c ~(X) or e n ~(X) = 0. 

(b) H X E P is closed under some t.p E .p, tben ~(X) contains an essen­
tial connected component of Nasb equilibria and, bence, a byperstable 
set and a strategically stable set of Nasb equilibria. 

PROOF: (a) Suppose X E P is closed under t.p E .p, and let e c E(r) 
be a eonneeted eomponent of Nash equilibria such that e n ~(X) =F 0. 
By Lemma 3 there exists a neighborhood U of ~(X) such that t.p(U n 
~) c X. Suppose e is not a subset of ~(X). Then there exists some 
(jO E e n U whieh does not belong to ~(X). But /3( (jO) C t.p( (jO) C X, 
so (jo fl. /3(0'0), a eontradiction to (jo being a Nash equilibrium. 

(b) If X E P is closed under t.p E .p, then it is closed under /3 E .p, by 
/3(~(X» C t.p(~(X» C X. Thus for all (j E ~(X) and all i E N' 

By continuity (and the maximum theorem) there exists a neighbour­
hood O of the game r = (S, te) under consideration in the space of 
normal form games r' = (S, v) such that the above implieation holds 
for all games in O. Consequently, for all games r' = (S, v) E O one 
has ,8v(~(X» C X, i.e. X E P is also closed under the best reply 
eorrespondence /3v of the game r'. The reduced game rx = (X, te), 
where players are restrieted to the strategy spaces Xj, V i E N', has 
an essential eomponent of Nash equilibria ex C E(rx) [d. Kohlberg 
and Mertens, 1986, Proposition l]. In other words: For every e > O 
there exists a neighbourhood Ok of rx = (X, te) such that for every 
r~ = (X, v) E Ok there exists some (j' E E(r~) within distance e from 
ex c a(x) (in the HausdorfFmetric). Then 

01: = {r' = (S, v) E O I rx = (X, v) E 0x} 
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defines a neighbourhood of r = (S, u), and any r' = (S, v) E oe has 
some 0"' E E(rx) within distanee e from ex. But, since r' E o, 
,Bv(~(X)) C X and so 0"' E E(r'). Moreover, ,Bu(~(X» C X implies 
ex C E(r), so ex is an essential eomponent for the game r. Every es­
sential eomponent eontains a hyperstable set, and every hyperstable set 
eontains a strategieally stable set by standard arguments (ef. Kohlberg 
and Mertens, 1986, p.1022J .• 

An important role in the analysis below will be played by the "better­
reply" correspondence "'I = XieN''''Ii: ~ ~ S, defined by 

Evidently "'I is u.h.e. and ,Bi ( 0") C "'Ii ( 0") for all players i E N and strategy 
eombinations O" E ~, so "'I is a behavior eorrespondenee. In other words: 
"'Ii assigns to each strategy eombination O" E ~ those pure strategies 
Si which give at least the same payoff as O"i. Such strategies Si are 
thus (weakly) better replies to O" than O" i is. Moreover , "'Ii ( 0") always 
eontains some pure strategy from the support of O"i. In particular, if 
O" is a Nash equilibrium, then "'Ii(O") contains the whole support of O"i, 
and ideed one then has "'I ( 0") = ,B( 0"). As a eonsequenee, a singleton 
set X = {s} is closed under "'I if and only if S E S is a striet Nash 
equilibrium. More generally, this is true for all behavior eorrespondenees 
the images of which are (weakly) contained in the images of the "better­
reply" eorrespondenee: 

COROLLARY 2. If cp E ~ is sucb that cp(O") C "'1(0"), VO" E ~, then a 
singleton set X = {s} E P is closed under cp if and only if s E S is a 
strict equilibrium. 

PROOF: Lemma 2(e) covers the "only if" part. H O" e ~ is a striet Nash 
equilibrium, then O" = s is pure and ,B( s) = "'I( s) = {s}. Thus cp( s) = {s} 
for all cp e ~ which satisfy <p(s) C "'I(s), V s e S .• 

Figure 1 illustrates when closedness under "'I has cutting power. It 
shows a 2-player game with three strategies for each player. The game 
has three equilibria, one of which (in the lower right corner) is striet. 
Whether the set X = {sI, si} x {s~, sH will be closed under "'I depends 
on the parameter x. H x is negative, then the set X is closed under "'I. 
H x is non-negative, it is not. However, for all x < 2 the set X is closed 
under the best-reply eorrespondenee ,B. 

5. ASYMPTOTICALLY STABLE SETS 

We are now in a position to state our mam result on evolutionary 
attractors. It establishes the equivalence between a pure strategy set 
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X E P being closed under "'( and the assodated boundary face A(X) C A 
being asymptotically stable in any aggregat e monotonic selection dy­
namics (AMS). In view of Lemma 2(b) this implies that a set X E P 
is fixed under "'( if and only if the assodated boundary face A(X) is a 
minimal asymptotically stable boundary face of the polyhedron A. 

THEOREM 2. If a set X E P is closed under "'(, tben A(X) is asymptot­
ically stable in any AMS. If X E P is sucb tbat A(X) is asymptotically 
stable in some AMS, tben X is closed under "'(. 

PROOF: Suppose first "'(A(X» C X. Then there is some neighborhood 
B of A(X) such that "'(B n A) c X, by Lemma 3. There exists some 
e > ° such that B contains the" e-slice" B( e) = {O' E A I infc7E.:1(x) 110'­
iTlI < e}. For any player i E.N, let Yi be the complement to Xi in Si' H 
Yi is empty, O'i(t, 0'0) E Ai(Xi ) = Aj, V 0'0 E A, Vt. Otherwise, for every 
s~ E Yi and O' E B(c)nA, with O' fl. A(X), we have Ui(O'-i, s~) < Ui(O'), 
since "'( B( e) n A) eX. But this implies 

iT~ = Wi(O')O'~ [Ui(O'-i, s~) - Ui(O')] < ° 
for all O' E B( e) n A with O'f > O. Hence O'f( t, 0'0) ---+t-oo 0, V 0'0 E 
B(e) n A, implying O'i(t, 0'0) ---+'-00 Ai(Xi). In order to establish the 
Lyapunov stability propert y of A(X): For any neighborhood B', let 
the neighborhood Bli be an e' -slice B( e') C B', and apply the above 
argument. This proves the "only if" part. 

Second, assume X is not closed under "'( E 4>. Then there is some pure 
strategy combination s EX, player i E .N and pure strategy s~ fl. Xi 
such that Ui(S-i, s~) > Ui(S), since otherwise Ui(S-i, sD - Ui(S) < 0, 
V s E X, Vi E.N and V si E Si, which would imply Ui(O'-i, S~)-Ui(O') < 
0, V (1' E A(X), V i E .N and V s~ E Så! which is equivalent to X being 
closed under "'(. Let s* = (S-i, s~), and let X* E P be defined by 
Xj = {Sj}, Vj :/= i, and Xi = {Si, sn, i.e. A(X*) is the one-dimensional 
boundary face (or edge) spanned by the two pure-strategy combinations 
S and s*. Moreover , Ui( s*) - Ui( s) ~ 0, and, since Ui is linear in Si, 

Ui«(1'-i, s~) - Ui «(1') ~ 0, V (1' E A(X*). Clearly A(X*) is invariant 
under any AMS. Hence, for any initial state (1'0 E A(X*) the solution 
path through (1'0 has iTf ~ 0, in any AMS, implying that (1'(t, (1'0) does 
not approach A(X) as t -+ 00. The two boundary faces A(X*) and 
A(X) ha ving the point ii = S in common implies that A(X) is not 
asymptotically stable. • 

Applying Proposition 3(b), Theorem 2 implies that any asymptoti­
cally stable boundary face contains some set of Nash equilibria whicb. 
is essential and hence contains a strategically stable set in the sense of 
Kohlberg and Mertens [1986J. 
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COROLLARY 3. If X E P is sucb that ~(X) is asymptotically stable in 
some AMS, then ~(X) contains an essential component of Nash equi­
libria and thus also a strategically stable set. 

It should be mentioned that the last indusion, that ~(X) contains a 
strategically stable set, is also an immediate implication of Theorem 3 
in Swinkels [1992]. This Theorem states that, if a set A C ~ is (l) 
asymptotically stable in some myopi c adjustment dynamics (induding 
all AMS) and has (2) a basin of attraetion which contains a convex 
neighborhood of A, then A contains a strategically stable subset. 

The minimal sets in the dass P are evidently the singleton sets which 
contain only one pure strategy profile. Theorem 2 has the implication 
that these are asymptotically stable in all AMS if and only if they are 
striet equilibria. Moreover, one can show that if a mixed strategy profile 
(where at least one player randomizes) is asymptotically stable in some 
AMS, then this propert y can be destroyed by choosing some other AMS. 

COROLLARY 4. (aJ A strict equilibrium is asymptotically stable in any 
AMS. If a pure strategy combination is asymptotically stable in some 
AMS, then it is a strict equilibrium. 

(b J For every rest point ii E ~ whicb is not a pure strategy combi­
nation there is an AMS in whicb ii is not asymptotically stable. 

PROOF: (a) This daim follows directly from Theorem 2. 
(b) Suppose ii E ~ is not a vertex of ~. Then jj belongs to the (rel­

ative) interior of some boundary face of ~ with positive dimension. By 
Lemma l it is then not asymptotically stable in the replicator dynam­
ics .• 

6. EXAMPLES 

Reconsider the payoff bi-matrix in Figure 1. We have already noted . 
that the product set X = {sL sD x {s~, sn E P is not closed under. 
the better-reply correspondence "y, for x >0. Hence, for such payoff 
values ~(X) is not asymptotically stable in any AMS. Figures 2 and 3 
illustrate some computer simulations of solution paths to the replicator 
dynamics starting near ~(X) and converging to the strict equilibrium 
s = (sf, s~). Here x = 1.9, so X is closed under p. In the diagram 
Pi resp. qj denote the population shares using the j-th pure strategy, 
for j = l, 2, 3, for player roles l resp. 2: Note that the restriction of 
this game to mixed-strategy profiles in the boundary face ~(X) is, by 
itself, a constant-sum game with value 1 - x /2 < 1, whenever x > O. H 
we would let x be negative, then X would be closed under "y, and the 
constant-sum "subgame" would have its own domain of attraction, just 
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like a striet equilibrium. (In fact, the game would then be a kind of 
generalized co-ordination game.) 

The payoff bi-matrix in Figure 4 has been obtained from the payoff 
bi-matrix in Figure 1 by deletion of the second player's third strategy. 
The payoff x is taken to be any number between O and 2. This new 
game illustrates the possibility that a boundary face of the polyhedron 
of mixed strategy pro:6.les may attract the whole interior of the poly­
hedron, i.e. be globally "table, without being asymptotically stable. To 
see this, first note that the first player's third strategy is strictly domi­
nated (by mixing the first two strategies with equal probability ). Hence, 
by Theorem 2 of Samuelson and Zhang [1992], the population state 
converges to the boundary face spanned by X = {sI, si} X 52 E P, 
the set of rationalizable strategies [Bernheim, 1984, Pearce, 1984] or, 
equivalently, the maximal elosed set under f3 in this game, from any in­
terior initial state, and under any AMS. However, X is not closed under 
the better-reply correspondence 'Y. For example, near the vertex where 
player 1 uses strategy st and player 2 uses strategy si, both strategies 
si and s~ are better replies for player 1. (And likewise near the vertex 
where 1 plays strategy si and 2 plays strategy s~.) 

To see that ~(X) is not asymptotically (or Lyapunov) stable, let 
s = (sI, si) and set s* = (s~, sno On the edge connecting these two 
vertices, player 1 's payoff increases from -x to O. Hence, solution curves 
through any point on this edge, in any AMS, converge to s* (d. the proof 
of Theorem 2). By continuity, solution curves starting in the interior, 
but elose to 8, will move far away from ~(X) before they approach this 
boundary face. Figure 5 shows a computer simulation of the replica­
tor dynamics with x = 1.95. Although the value of the constant sum 
"subgame" is as low as 0.025, it attracts all interior solution paths. 

The payoff bi-matrix in Figure 6 examplifies the possibility that a 
product set of pure strategies which is not closed under the best-reply 
correspondence f3 (nor, a fortiori, under the better-reply correspondence 
'Y) may nevertheless be globally "table, i.e. have the whole interior of the 
polyhedron ~ of mixed-strategy combinations as its domain of attrac­
tion, in all AMS dynamics. To see this, first note that, in any game, for 
any player i e N, strategies st, s~ e Si, state tT E int(~), and regular 
dynamics, one has 

Applying this to strategies si, s~ e 51 in the game of Figure ,6 one sees 
that, along any interior solution curve to any AMS, the ratio tTf!tTl 
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decreases monotonically over time towards zero, and likewise for O"~ / O"i • 

In particular, for any 0"0 E int(.6.) there exists some time T > O such that, 
for all t > T, each of these two ratios remain smaller than 1/2 forever. 
However, this implies that both O"t and O"~ increase monotonically from 
time T onwards. For at any interior state O" we have 

and likewise for ål Hence, both ut(t) and ö-~(t) are (strictly) positive 
for all t > T. 

Since the ratio O"~(t)/O"Ht) converges to zero over time, and O"~(t) is 
bounded, we have O"~(t) --+t-oo O, for i = 1, 2. Thus, all interior 
solution paths O"(t, 0"0) are convergent. Moreover, ifthe limit state Ö' E .6. 
has Ö'~ < 1, then Ö'i > O and hence there is some e > O such that 
ut ~ e(1 - O"t )O"t along any interior solution path arter some time T as 
above. Consequently, O"t converges to 1. In sum, every interior solution 
path to an AMS is convergent, and the limit state belongs to the closed 
set 

A = {O" E .6. I O"~ = O"~ = O, O"~ = 1 and/or O"~ = I}. 

The game being symmetri c, any symmetric initial state (Le. with 0"1(0) = 
0"2(0» induces symmetric solution curves. Figure 7(a) shows computer 
simulations of such solutions in one player's mixed-strategy simplex [a 
similar diagram for single-population dynamics is given in Nachbar, 
1990, Fig.l]. Figure 7(b) shows projections of some asymmetric solution 
curves. 

Note that while the global attractor in the game in Figure 4 is ~ set 
closed under {3 (for x < 2), the global attractor A C .6. in the game 
of Figure 6 is a subset of the boundary face spanned by the product 
set X = {sI, sD x {s~, s~}, which is not closed under {3. Hence, it is 
not the case that global stability of a boundary face implies that the 
corresponding product set of pure strategies is closed under the best­
reply correspondence {3. For such a purpose, the images under {3 (and, 
a fortiori, under "Y) are too large. 

At this stage of our research we do not know whether the local converse 
holds, viz. whether closure under {3 implies weak asymptotic stability. 
But computer simulations suggest that this is not the case, at least 
when there are three or more players (and hence the set of rationaliz­
able strategies differs from the set of iteratively strictly undominated 
strategies ). 

For example, consider the three-player 3 x 2 x 2 game of Figure 8 
(player 1 chooses tri-matrix, player 2 row, and player 3 column). For 
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any fixed pure strategy of the first player, players 2 and 3 face a sym­
metric 2 x 2 game. When player 1 uses her first strategy (sI), the first 
strategies of players 2 and 3 (s~ and sI, respectively) are strictly domi­
nant. However, if players 2 and 3 would use those strategies, then player 
1 's best reply is to switch to her second strategy. But when player 1 uses 
her second strategy (s~), the second strategies of players 2 and 3 (s~ and 
si) are strictly dominant, and if they would use these, player 1 's best 
reply is her first strategy. When player 1 uses her third strategy (s~), 
finally, players 2 and 3 face a game of pure coordination. 

It is not difficult to show that the first player's third strategy is never 
a best reply. Hence, the product set X = {st, s~} X S2 X S3 E P ob­
tained by taking all players ' first two strategies constitutes a curb set, 
Le. it is elosed under {J. In fact, this is the maximal fixed set under {J, 
or, equivalently, the set of rationalizable strategies in the game. But 
one can show that the exeluded strategy, sf, is not strictly dominated. 
(Though s~ is never a best reply against a mixed strategy combination, 
it is optimal against a correlated strategy of players 2 and 3 with sup­
port (s~, s1) U (s~, si) C S-l') Hence, it is a priori possible that the 
population share using strategy sf does not tend to zero along some 
interior solution paths. H this is the case even for (interior) trajectories 
starting arbitrarily elose to the boundary face spanned by X, we have 
established that a set elosed under {J need not be weakly asymptotically 
stable. 

Indeed, computer simulations produce precisely such trajectories, see 
Figure 9 for an example. Since players 2 and 3 always earn identical 
payoffs, the diagonal (12 = (13 is invariant (i.e. if the population shares 
initially are the same, they will remain so forever). The diagram shows a 
solution cttrve for which initially (11 (O) = (0.05, 0.90, 0.05), and (12(0) = 
(13(0) = (0.15, 0.85), plotted in three-dimensional space with (1t on the 
"horizontal" axis, C1~ on the vertical axis, and (1~ = (11 on the" depth" 
axis. The boundary face spanned by X is the sloping square. As one sees 
in this diagram, after a few initial rounds the solution curve swirls out 
towards a perpetual motion near the edges of the polyhedron, recurrently 
moving virtually as far away from the face spanned by X as it is possible. 
The only trajectory that can be shown to converge to the boundary 
face spanned by X is a trajectory that starts in {(1 E ~ I (1~ = (11 = 
1/2, (1t = (1f) and remains in this set forever, eventually converging to 
the exact niid-point of the face spanned by X, a Nash equilibrium. 

7. CONCLUSIONS 

The support lent by standard evolutionary game theory to the Nash 
equilibrium paradigm in non-cooperative game theory is largely spuri-
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ous. For although all Lyapunov stable states in any aggregate mono­
tonic selection dynamics consitute Nash equilibria, and the limit point 
of any convergent aggregate monotoni c selection path is a Nash equi­
librium, virtually only strict equilibria are asymptotically stable in such 
selection dynamics. In extensive form games, all Nash equilibria whose 
paths do not reach all information sets of the game are non-strict, and 
hence virtually no state is asymptotically stable in aggregate monotoni c 
selection dynamics (operating on the normal form of the game). 

In the present study, we contrast this weak point-wise connection be­
tween evolutionary selection and Nash equilibrium behavior with a fairly 
strong set-wise connection. More specifically, we show that if a (prod­
uct) subset of pure-strategy combinations (one pure-strategy subset for 
each player) is closed under a certain correspondence which we call the 
better-reply correspondence, then the associated boundary face of the 
space of mixed strategy combinations is set-wise asymptotically stable. 
In other words, if initially only few individuals use (pure) strategies 
which are not in the (product) subset in question, then all these popula­
tion shares will converge to zero over time, in any aggregate monotonic 
selection dynamics. In this sense, such subsets of pure strategies are 
robust to the forces of evolutionary selection. Conversely, if a bound­
ary face of the space of mixed-strategy combinations is asymptotically 
stable in some aggregat e monotoni c selection dynamics, then it is closed 
under the better-reply correspondence. In this sense, closedness under 
the better-reply corresondence characterizes set-wise asymptotic stabil­
ity. Every game possesses at least one (product) set of strategies which 
is closed under the better-reply correspondence, and there always exists 
at least one minimal such set. 

The set-wise connection between evolutionary selection and Nash equi­
librium behavior is that every asymptotically stable boundary face of the 
space of mixed-strategy combinations contains an ellentiaI component 
of Nash equilibria. That is: It contains a closed and connected set of 
Nash equilibria such that every nearby normal-form game (in the space 
of normal form games over the same set of pure strategies) has a nearby 
Nash equilibrium.. This is one of the most stringent set-wise refinements 
in the non-cooperative game theory literature, implying the perhaps 
more well-known set-wise reHnement of Itrategic Itabilit71 in the sense of 
~ohlberg and Mertens [1986]. 

In sum.: (1) Every normal-form game possesses at least one boundary 
face which is asymptotically stable. (2) Such boundary faces are char­
acterized by closure under the better-reply correspondence. (3) Every 
such boundary face contains a set of Nash equilibria meeting the most 
stringent demands imposed by non-cooperative game theory. As far as 
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one bases evolutionary predictions on (set-wise) asymptotic stability of 
(product) subsets of pure-strategy combinations, the predictive power 
of evolutionary explanations thus depends on the cutting power of the 
better-reply correspondence. In some games, this cutting power is low, 
in others high. Moreover , the attractor contained in an asymptotically 
stable boundary face may be significantly smaller than the full boundary 
face. In this last case, evolutionary explanations may have more predic­
itve power than our present approach reveals. Note, however, that the 
present method is always able to identify the smallest boundary face con­
taining a set which is an attractor in (all) aggregat e monotonic selection 
dynamics. 

Since in general aggregate monotoni c selection dynamics can be rather 
complicated, the approach via closedness under behavior correspon­
dences provides a powerful tool for the analyses of evolutionary selection. 
It allows the researeher to identify attractors without having to study 
the dynamics explicitely. On top of this shortcut it also provides an in­
sight into the relation between evolutionary dynamics and rationalistic 
solution concepts. In this sense, it is a formalization of Friedman's 
[1953] "as if" approach. 

The results obtained so far, however, raise several further issues. For 
example, can this approach be generalized to a wider dass of selection . 
dynamics? Can similar methods be used to identify boundary faces 
which meet weaker stability criteria, such as (set-wise) Lyapunov stabil­
ity or (set-wise) weak asymptotic stability? H so, what is therelationship 
to closedness under the be"t-replll correspondence, or, more generally, 
closedness under other behavior correspondences, the images of which 
are contained in the images of the better-reply correspondence? At this 
stage of our research we can, with minor exceptions, only guess about 
the answers to these and related questions (see discussion of examples in 
Section 6). Hence, there are important avenues open for further research 
on the fundamental issue of how the rationalistic economics paradigm, 
or some modification thereof, can be justified on grounds of evolutionary 
selection. 

ApPENDIX 

PROOF OF PROPOSITION 1: (a) Suppose ii E A is a rest point and 
ii r/. E(r). From the propert y that ii is a rest point it follows that 
Ui(ii_i, sf) = Ui(ii) for all sf E supp(iii). Since ii r/. E(r) there exists 
some i E N and sf r/. SUpp(iii) such that Ui(ii_i, sf) > Ui(ii). By 
continuity of the payoff function there exists a neighbourhood U of ii 
such that Ui(O'-i, sf) > Ui(O') for all O' E U n A. Hence, ut > o for all 
AMS and all O' E U n int(A), so ii is unstable. 
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(b) Assume that Ö" E ~ is reachable from UO E int(~). Again we 
have that Ö' is a rest point implies Ui(Ö'-i, s~) = Ui(Ö'), 'tf s~ E SUpp{Ö'i). 
Suppose there exists i E N and st ft SUpp(Ö'i) such that 

Ui(Ö'-i, sf) - Ui(Ö') = e, 

for some e > O. By continuity of Uj and u(t, UO) ---+t-oo Ö' there exists 
some T ~ O such that 

Ui(U-i(t, UO), sf) - Ui(u(t, UD» >~, 'tf t ~ T. 

Let Wj(u) denote the shift factor for player i in the underlying AMS. 
Since Wi is continuous and positive, and ~ is compact, 36 > O: Wie u) > 
6, 'tf u E ~. Consequently, for all t ~ T: 

'Ie( 0) 6e k( 0) Ui t, u >"2 Ui t, u ==> 

L L 6e(t - T) 
u;(t, UD) > u;{T, uO)exp{ 2 }, 

where ur{T, UO) > O, because int(~) is positively invariant in any AMS. 
But this would imply that ur(t, UD) ---+'-00 +00, a contradiction. 
Thus, for all st ft SUpp{Ö'i) and all i E N one has Ui(Ö'-i, s~) < Ui{Ö'), 
so Ö' E E{r). I 
PROOF OF 'LEMMA 1: Let b: ~ -+ RM, M = EiENKi, be the right 
hand side of the replicator equation on~. Clearly b induces avector 
field b on~. Let Ö' E int{~) be a rest point and consider, instead of the 
vector field b, the modified vector field ( on inte ~) defined by 

Clearly, P{ u) > O on the interior of ~, so multiplying b by P{ u) -1 does 
not alter the solution curves in int{~) (it is merely a reparametrization 
of time). In particular, the differential equation Ö' = ((u) has the same 
rest points and the same qualitative stability properties in inte ~) as the 
replicator equation. 

Observe that to take partial derivatives which remain in the simplex 
we have to use directional derivatives. The directional derivative of a 
differentiable function g: int{~i) -+ R at some point Ui E int(Ai) in the 
direction towards a vertex s~ of ~i is 

l: Og{Ui) 
Og{Ui, Si) = o l: - Ui . grad{g(Ui». 

Ui 
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Application to b and ( gives, 'r:/ i E N, k = 1, ... , K;: 

8bf(0', sf) = (1- 20'f)[Ui(0'-i, sf) - Ui(O')], and, 

8(l(0', sf) = P(0')-1[8bf(0', sf) - ~i;j 8P(0', sf)] = 

= P(0')-1[8bf(0', st) - (1 - 0'; Ki)(Ui(O'-i, st) - Ui(O'»] = 
= P(O')-l(Ki - 2)[Ui(0'_i, sf) - Ui(O')] 0': . 

Hence, the modified vector field (is divergence free on inte A): 

Kö 

div(O') = L L 8(;(0', sf) = O. 
iEN k=l 

Assume that li E inte A) is an asymptotically stable rest point of the 
replicator dynamics. Then it is an asymptotically stable rest point of 
if = «0'). Denote by &(t, 0'0) a solution to il = (0'), with &(0,0'°) = 
0'0 E int(A). Let U C int(A) be a (relative) neighbourhood of li such 
that 0'0 E U => &(t,O'°) --+t-oo li E U. Assign to U a volume V = 
Ju du #- O and set V(O) = V. Define 

U(t) = {o' E A 10' = &(t, 0'0), 0'0 E U}. 

Then by Liouville's theorem [see e.g. Hofbauer and Sigmund, 1988, 
pp.170, 281] the volume Vet) ofU(t) is given by 

Vet) = f div(cO')dO' = O. 
}U(t) 

But then V( t) = constant = V(O) :f: O, 'r:/t E R+. On the other hand, 
limt_ooU(t) = {lil by the assumption of asymptotic stability and the 
construction of U. The lat ter, however, implies limt_oo Vet) = O, i.e. a 
contradiction to continuity of Vet) .• 

PROOF OF THEOREM 1: 7 (i) First assume that li E E(r) is asymptot­
ically stable. By Corollary 1 it must then be pure and by Corollary 4( a) 
it must be a strict equilibrium. 

(ii) H li E E(r) is striet, then it is asymptotically stable by Corollary 
4(a) .• 

7This result was firat proved by Ritzberger and Vogelsberger [1990]. Here it 
follows from stronger results proved in Sections 4 and 5. Note that the results in 
Sections 4 and 5 do not rely on Theorem 1. 
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PROOF OF PROPOSITION 2: Assume that there exists a neighbourhood 
O of (j such that (j E jj( 0'0), V 0'0 E O n~. Choose O' c O to be a 
convex neighbourhood of (j such that (j~ > O => O'~ > O, V O' E O', 
V k = 1, ... , Ki, Vi EN. Define the function Vii': O' n ~ -+ ~+ by 

Kö 

Vii'(O') = - L L(j~ln(O':) ~ o, 
iE.N k=l 

which is continuously differentiable on O'. By Jensen's inequality, O' -::j:. (j 
implies 

so O' = (j is the unique minimum of Vii" 
Taking the time derivative of Vii' yields 

where Wi(O'), Vi E N, are the player-specific shift factors from the un­
derlying AMS. Hence, Vii' is a local Lyapunov function, implying that (j 
is a stable rest point for any AMS. 

Moreover , from (j E jj( 0'), V O' E O' n ~, it follows that Vii'( 0') = O 
implies O' E jj( 0') , and hence O' E E(r). Thus Vii'( 0') < O for all O' E 
O' n ~ which satisfy O' ~ E(r). Therefore, O'(t, 0'0) --+t-oo E(r) n O', 
V 0'0 E O' n ~, as required. • 
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