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This paper investigates misspecified estimation 
and model selection criteria derived from the "In­
formation Criterion (see Akaike (1973»)" for quali­
tative choice models • Four estimators for the "In­
formation Criterion" are derived for general quali­
tative choice models. Two of these estimators were 
previously derived by Akaike (1973) and Chow 
(1981) for arbitrary likelihood functions. The new 
estimators are derived by taking analytic expecta­
tions of the log likelihood function. A number of 
Monte Carlo experiments are performed using binomi­
nal logit models to investigate the behavior of 
the Information Criterion estimators with realis­
tic sample sizes. The new analytic estimators are 
more accurate than the more general estimators , 
but they do not always perform as weIl in minimiz­
ing prediction or estimation error. Monte Carlo 
results also show that the usual asymptotic distri­
bution properties of the maximum likelihood esti­
mator are poor approximations for sample sizes as 
large as 1,000 observations with only two vari­
ables. 
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1 Introduction 

This paper examines the application of Akaike I s 

"Information Criterion (Akaike (1973»)" for selec­

tion and estimation of misspecified qualitative 

choice models • In addition to their common axio-

matic basis, these topics are related by a simple 

practical consideration. If there is only one 

"true" model, then consideration of more than one 

implies estimation of at least one misspecified 
ilA" 

model. Throughout this paper, the superscript 

denotes Maximum Likelihood Estimate (MLE). Sub-

scripts on expectation operators denote the distri­

bution over which the expectation is taken. Thus 

Ee denotes the expectation with respect to the 

sampling distribution of the MLE o f e. 

The Information Criterion attempts to select 

models which, on average, yield better future pre­

dictions. "Better" means a smaller expected sum of 

the log-likelihood ratios of the true density of 

future observations to the one specified by the 

model. If g (.) is the true density of each of n 

independent future observations (y, ... , Y
N

) = Y 

and f ( • I e) is the density specified by a possibl e 

model, then better predictions by f(. I e) means a 

smaller expectation 
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N 
;:: log(g(y.)/f{y.le» 

i=l 1 1 
;;. O, 

where the expectation is evaluated with respect to 

the true density g{. ). 

(l.l) is just the Kullback-Leibler (1951) infor-

mation measure, or the expected log-likelihood 

ratio, to diseriminate between the two models. 

Bayesians have criticized this Information Cri-

terion on the grounds that it is inadmissable. 

However, Chow (1981) argues that its use can be 

justified (from a Bayesian standpoint) in large 

samples and that the Bayesians have not yet pro-

duced a better alternative. Eq. (1.1) also defines 

a metric on the space of all probability func-

tions, so the Information Criterion can be inter-

preted as seleeting the approximate model whose 

density is closest to the truth. 

" I f e is estimated bye, then the model selection 

criterion (1.1) is estimated by: 

N 
- Ee{Ey ;:: (log g(y

i
) -

i=l 

- log f (y. I e»} . 
1 
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A 

Taking the expectation with respect to e helps 

reduce the variability across researchers using 

independent calibration data sets. 

If two approximate modeIs, fl(ele) and f 2 (-le), 

are being compared, then it is only necessary to 

compute EeEy(log f(yle» since E§Ey(log g} is con­

stant for all approximate models . Therefore, all 

that is needed to implement the model selection 

cri terion (1.2) is a practical method for esti-

mating 

EeEy(log f(yle}). (l. 3) 

Estimators for (1.3) have been derived by Akaike 

(1973) and Chow (1981) both for general likelihood 

functions and the linear mode l. 

These estimators are specialized to qualitative 

choice models in the second section, and two new 

Information Criterion estimators for quali~ative 

choice models are als o derived. The new estimators 

are derived by first evaluating expectations with 

respect to Y in Equation (1.3), so they are called 

Evaluated Information Cri terion (EIC) estimators • 

Computational formulas are given for general quali-



- 5 -

tative ehoiee models and the Multinominal Logi t 

mode l. 

Seetion 3 gives the results of a Monte Carlo study 

on the sampling properties of the various infor­

mation eri terion estimators . 'rhis study also in­

vestigates the sampling distribution of the max­

imum likelihood estimator (MLE) for eorreet and 

misspeeified models . The most striking result is 

that the usual asymptotie normal approximation for 

the MLE is quite poor. For the designs eonsidered 

in this study, these approximation errors over­

whelm the standard error eorreetions for misspeei­

fied models given in Chow (1981) and White (1982). 

Unfortunately, these approximation errors also 

eloud the eomparison between the information eri­

terion estimators • The EIC estimators seem to be 

more aeeurate, and all of the information eri­

terion seleetion rules are more likely to rejeet 

smaller models than likelihood ratio tests at the 

5 or 10 pereent level. The Monte Carlo experi-

ments diseussed in this paper used binominal logit 

models beeause of their low eomputational eost and 

popularity. Experiments were also run using binomi­

naI probit models to ensure that the results are 

not sensitive to ehoiee of funetional form. 
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The Monte Carlo results for the small sample be­

havior of the MLE confirm and extend the study in 

Davidson and MacKinnon (1984). preliminary work 

also indicates that the small 

the MLE deteriorates further 

independent variables and/or 

sample behavior of 

as the number of 

the number of dis-

crete al ternatives increases. Therefore i t would 

appear that many of the published estimates and 

test statistics for qualitative choice models 

should be used cautiously. Much more work is 

needed to delineate where the asymptotic approx­

imations are valid. One promising alternative to 

the likelihood-based techniques is the Bayesian 

approach given by Zellner and Rossi (1984). If the 

numerical integrations they use are feasible, then 

the Bayesian approach avoids small-sample prob­

lems. 
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2 Derivation of Information Criterion 

Estimators 

As in Chow (1981), the true density will be a 

member of a finite dimensional parametric fami ly 

of densities denoted f(yloO)' Any approxima te 

model is derived by imposing linear restrictions 

on O: 

HO + b = O (2.1 ) 

Al though this is not the most general framework 

where the Information Criterion can be applied, it 

does encompass most of the situations which arise 

in applied econometric work. According to the In-

formation Criterion, the best approximate mode l 

achieves the highest expected information defined 

by Equation (1.3). Define 0* as the parameter of 

the best approximate model satisfying (2.1), i.e.: 

0* = max Ey L(Y,O) such that HO + b = O 

° 
(2.2) 

where L ( • ) is the log-likelihood function corre-

sponding to f(.). 
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Akaike (1973) and White (1982) argue that the 

natural estimator of ° * is the maximum likelihood 

estimator: 

0* = max L(y,(j) sueh that HO + b = O. 

° 
A 

(2.3) 

White (1982) shows that 0* is eonsistent (for 0*) 

and asymptotieally normally distributed. The esti-

mator White provides for the asymptotic eovarianee 

of 0* is wrong (see Chow (1982) and White (1983»), 

and the eorrect estimator requires an estimate of 

the true parameter ° O. Al though these ideas are 

relatively new in ·the eeonometries literature, the 

referenee lists in Akaike (1973) and White (1982) 

are elose to a list of "Who' s who" in modern 

mathematieal statisties . Unlike the elassieal ap-

proaeh, the Information Criterion provides a unify-

ing theoretieal framework for modelling the deei-

sion proeesses required in applied work. The main 

eompetition is the Bayesian framework, whieh is 

frequent ly hampered by eomputational problems and 

the need to speeify prior distributions. 

One issue whieh has not been diseussed in the 

literature is modelling the eorrelation between 

parameter estimates for two different approximate 
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models based on the same data set. Modelling this 

correlation should yield more accurate estimates , 

and the Monte Carlo studies reported in the next 

section confirm this intuition. However, if max-

imum likelihood estimators are used, then model 

selection procedures which account for the corre-

lation between the estimators will always choose 

the larger of the two nested models • This prop-

osition will be proved for multinominal logi"t 

models later in this section. Currently there is 

no formal proof for the general case, but an in-

tuitive sketch is quite easy: 

Suppose 8** is derived by imposing ad-

ditional linear constraints on 8*' From in-

formation theory (see Kullback (1959») 

If .. '" .. denotes maximum likelihood estimates 

from a fixed sample Y, then also 

and this inequality 
,.. 

holds for small neighborhoods around 8* and 

8**. When the difference between the log-
,.. ,.. 

likelihoods at 8* and 8** is small, then the 

correla"tion between 8 * and 8 ** becomes high. 

Therefore taking expectations yields 
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(2.4) 

Finally I if expeetations with respect to Y 

are evaluated at maximum likelihood esti-

mates from the same sample Y, then Kull-

baek's (1959) results imply: 

One solution to this problem is to treati as Chow 

(1981) implieitly does , 8* and 8** as if ,they are 

independent. This can be justified by the need to 

prediet how the seleeted model will perform using 

new independent data sets. Imposing independenee 

yields reasonable seleetion eriteria for nested 

models at the eost of redueed aeeuraey in esti-

mating the basie information measure (Eq. 1.3). It 

may therefore be better to use estimators whieh 

account for eorrelation between approximate model 

parameter estimates when eomparing approximate 

models with the same dimensionality. 

The remainder of this seetion presents derivations 

of the information eriterion estimators used in 

the Monte Carlo study. Formulas for general quali-
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tative choice models are given first, followed by 

the much simpler versions of these estimators for 

the popular Multinominal Logit Model. The deri-

vation of Chow's (1981) estimator will be reviewed 

briefly since it is similar to the derivation of 

the EIC estimators. 

Chow begins by expanding L(Y,8*) in a Taylor 

series expansion around 8 * yielding 

oL(Y,8*) 
= L(Y,8*) + 

(2.5) 

Taking expectations of each term in (2.5) together 

with the first order conditions for Eqs. (2.2) and 

(2.3), Chow derives: 

A 

Eo*EyL(y,8*) 

where 

(2.7) 
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and 8 defines the distribution of Y. 
o 

.All that is needed to compute Chow' s estimator are 

" 
estimators of J(8*,8

0
) and the covariance of 8*. 

Due to a typographical error, the "1/2" factor was 

omitted from Eq. (2.6) in Chow's paper. Akaike's 

(1973) estimator is: 

A " 

E8*EyL(Y,8*) ~ L(Y,8*) - k (2.8) 

where k is the dimension of 8*' This estimator is 

deri ved using a different expansion, and, as Chow 

(1981) points out, incorrectly assumes that: 

A A " 

k = tr(J(8*,8
0

)E(8*-8*)(8*-8
0

)') 

This equali ty only holds i f 8* = 8 • o 

The log-likelihood function of the true model for 

the general qualitative choice model is given by: 

L := 

N J n 
l: l: 

n=l i=l 
Y. ln 

log P. (Z. 18 ) 
ln ln o 

(2.9) 
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where Y. ln is the number of times case n chose 

discrete alternative 

vector of exogenous 

of fixed parameters. 

i (i = l, J n ), Zin is a 
••• I 

attributes, and 0 is a vector o 

P . is the conditionaI prob­-ln 

abilit.y that case n will choose alternative i 

given values for 0 and Zin' A popular choice for 

P. is ln 

P. ln 

exp( Z. 0) 
ln = ----------

J n 
L: exp ( Z . (3 ) 

. l ]n 
]= 

(2.10) 

which generates the Multinominal Logit (ML) model. 

For the general qualitative choice model given in 

Eq. (2.9) 

J(0 0) *' o 

2 o log P. (Z. ,0 *) 
= _ E~ L: L: Y. ln :!:.n ___ = 

y ln --·~008' 0-- -

n i 

which can be consistently estimated by replacing 

0
0 

and 0* with any consistent estimators. An esti­

mator for the covariance matrix of 0* is derived 

in the Appendix. 
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The EIC estimators are derived by first taking 

expectations with respect to Y in Eq. 

yielding: 

"-

EO*Ey Lo Lo Y. log P. (G ) 
i ln ln * n 

= E" Lo l~ R P. (G ) log 
G* i n ln o n 

where R = Lo Yin i 

= 

" 
P. (G ) 
ln * 

(1. 3) 

(2.12) 

Unfortunately Go l' S k . un. nown, but it can be re-

" placed by its maximum likelihood estimator, G , 

yielding 

A " 

EG: EG: * Lo L. R P . ( G) log P. (G * ) 
n i n ln ln 

(2.13) 

where As in the derivation of Chow' s 
A 

estimator I the expectation with respect to S can 
A 

be approximated by expanding Q (13) around the true 

values 130 yielding: 
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In the Appendix it is shown that Nl/2(S_~o) has an 

asymptotic Normal distribution with mean O and 

covariance matrix 

lim 
N-+o::> 

where 

-l 
NJ (O O) o' o 

-l 
J (O ° )KS I o' o 

K .. 
1) 

oL(O ) 
= Cov [ o 

00. 
1 

oL(O*) 
"-":-""'--- J , 

j 

oL(O*) 
V = Cov [-00"---1, and 

l
-l 

N J(O*,oo) 

-H' 
]

' -l 
-H 

O 

(2.15a) 

= (2.15b) 

Chow (1981) shows that if the restrictions are 

exc1usion restrictions on a subset of parameters, 

then 

H' = (O I) and: 
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[

J (O ° ) Il *, o 

J 21 (O*,OO) 
'--

J (O ° 12 *, o 

The matrix S in Eq. (2.15b) then becomes: 

S = 
o :J 

(2.16) 

The first and second derivatives of the choice 

probabilities, P in' are computed as part of the 

" 
computation of the maximum likelihood estimates ° 
and 0*. Therefore, all of the Information Crite-

rion estimators given in this section require only 

small additiona1 computational costs. Finally, all 

of the formulas derived in this section remain 

valid for differentiable nonlinear restrictions 

h(O) = O. The only required changes are to rep1ace 

H lO + b by h( O) and interpret H as the matrix of 

" 
first partiaI derivatives evaluated at 0* or 0*" 

The EIC estimator defined by Equations (2.14) and 

" 
(2.15) allows for non-zero correlation between ° 
and ° *. This estimator will be called the depen­

dent EIC, or DEIC, estimator in the remainder of 

this paper. If K:= O, then Equations (2.14) and 
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(2.15) define the independent EIC, or IEIC, esti-

mator. As discussed earlier in this section, the 

DEIC estimator is expected to be more accurate 

than the IEIC. The DEIC is more appropriate for 

comparing approximate models of the same dimen-

sionality. 

Al though the EIC estimators derived above are not 

veryexpensive to compute, they are not as simple 

as Akaike I sestimator (Eq. 2.8) or the standard 

likelihood ratio test at fixed confidence levels . 

Fortunately , these formulas can be simplified for 

the most popular qualitative choice mode l, the 

Multinominal Logit (ML) model. 

The ML model is defined by Eqs. (2.9) and (2.10) 

and the necessary derivatives can be calculated 

from: 

oPin(O) 

O 

where Z 
n 

= L: P. (O)Z. 
i ln ln 

From (2.17) we get 

(2.17) 
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00 
(2.18) 

and 

00 
(2.19) 

which is independent of 0* and identical to 

oL(Oo)/oO! Therefore 

K == V(O*) = V(O ) := J(O O ) = o o' o 
(2.20) 

= 2: R 2: (Z. -Z (O ») P. (O ) ( Z. -Z (O »)' 
n n i ln n o ln o ln n o 

Since V(O) from (2.26) is computed as part of the 
A 

Newton-Raphson algorithm for finding the MLE I ° I 
of °0 there is no extra cornpu'tation required for 

computing an estimate of V in Eq. (2.21). The 

other required matrix, J(o*,oo) is also easy to 

estimate since 

J(o O) *, o = -
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where the last step uses the fact that the opera-

tion Z J' n -+ Z, - Z is idempotent for all 0, Jn n 

Eq. (2.21) is computed as part of the Newton-Raph-

" 
son algorithm for finding the MLE of 0*, 0*" These 

results show that., for ML models, Chow's Infor-

mation Criteria estimator (2.6) can be computed as 

cheaply as the likelihood ratio test statistic 

since only a few additional small matrix manipula-

tions are required. 

Computation of the EIC estimators can also be 

simplified for ML models • I f 0 and 0* are esti-

mated by maximum likelihood, so 

that no extra computations are required to get 
A 

Q(~). To see this identity, consider a simple 

binominal ML model with no repetitions (i.e. I 

Rn = l for all n). For convenience, assume that 0* 

is a scalar derived from 0 via exclusion restric-

tions and that the first alternative is always 

chosen. Then 



since 

and O .-

= 

- 20 -

" N A N" A 

Q( ~) = ): logPln(G*) 
n=l 

l: P ( G ) logP (G) 
n=l In In * 

+ (l-PI (8»)I09(I-P I (8*» .n n 
(2.21) 

= 

A 

logPln(G*) + G*(Z2n-Zln) 

" "- N ologPln(G) oL( G) = 2: = 
oG n=l 

N A 

l: (z -z )(l-P (G»). 
n=l 2n In In 

Similar arguments can be used to prove the proposi-

tion for the general ML model, but the notation is 

considerably more complex. It should als o be noted 

that this equaIity does not hold for other qualita-

tive choice modeis, including Multinominal Probit. 

The only computation required beyond cOInputing the 

maximum likelihood estimators is the first block 

of the hessian of Q: 
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~ = 2: Rn L: logP. (8*)r (Z. -z (8 ) )P. (8 ) 
0808 n i ln L ln n o ln o 

( Z. -Z (8 » I l 
Jn n o 

(2.23) 

This section can best be summarized by giving 

explicit formulas for the ~ffi model Information 

Criterion estimators in the case of exclusion re-

strictions on a subset of parameters. using the 

notation of Eq. (2.16), Chow's estimator (Le., 

Eq. 2.6) is: 

(2.24) 

The DEIC estimator is: 

(2.25) 

The IEIC estimator is: 
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(2.26) 

If the DEIC is used to compare nested models and 

where k* is the rank of G*· It is then obvious 

that the DEIC defined in Eq. (2.25) will always 

yield a higher expected information for the larger 

model G*. 
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3 Monte Car10 Resu1ts 

This section describes the results from some Monte 

Carlo experiments on the Binominal ML model. These 

experiments are designed to exarnine the relative 

performance of the Information Criterion esti-

mators derived in the previous section. An impor-

tant by-product is an examination of the sampling 

distribution of the maximum likelihood estimator 

for the binominal logi t mode 1. Since McFadden I s 

(1973) Monte Carlo study, there have been count-

less applications of ML models where it has been 

implicitly assumed that the asymptotic Normal dis-

tribution (e.g. Eq. 2.15) is correct. The results 

described here east considerable doubt on the val-

idi ty of the asymptotic approxi.mation for realis-

tic sample sizes. 

The Binominal ML model is defined by Equations 

(2.9) and (2.10) with J n = 2. The choice probabil­

ity for the first alternative is: 

P. 
ln 

(3.1 ) 
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The true model for all the experiments here has 

two components I and the approximate model re-

stricts the second component of e o to equal zero. 

The independent variables, Zn' for all the experi­

ments are independent draws from a Uniform dis tri-

bution on (-1/2, 1/2).1 These basic variables are 

then transformed to generate different levels of 

correlation between the two components for differ-

ent experiments. During initial trials i t became 

apparent that the MLE is very sensitive to out-

liers in the independent variables. Therefore, 

averages over a number of draws from the under-

lying Uniform distribution were used instead of 

replicating a fixed data set as in Davidson and 

MacKinnon (1984). The Monte Carlo results here 

have a higher variance but give a more realistic 

view of the behavior of the MLE for this partic-

ular data generation process. 

The experiment definitions are given in Table l. 

Each experiment was run for sample sizes: 50, 200, 

500, and 1,000. 100 independent choice variables, 

y I were drawn for each experiment and each sample 

l All random numbers were generated using the stan­
dard APL uniform random variate operator. 
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"I'ab1e 1 Definition of experiments 

~--------"'----~ 

Expt. Correlation Varianee 8 0* Infor- Infor-o 

No. between of Truea mation b mation e of 

eomponents Prob- of True Approxi-

of Z abilities Model mate Model _____ , __ n_", ____ , _____ . _________ , _________ " __ , ___ ~~_ 

l 0.8 .158 5, l 5.76 -.485 -.4872 

2 0.95 .156 5, l 5.94 -.4787 -.4793 

3 0.8 .112 7.8, 1.56 8.98 -.3596 -.3633 

4 0.8 .121 5, 4 7.62 - .384 -.409 

5 0.3 .167 5, l 5.2 -.5068 -.5126 

6 0.8 .248 0.5, 0.1 0.578 -.6898 -.6898 

Notes: a N ---- is r L: P. (O ) ( l-P. (O »)l /N and is This a a 
n=l ln o ln o 

measure of how elose the true probabilities are to 
.5. The maximum value is .25 and the minimum is O. 

b 
l 

1,000 
This is L: E P . ( ° )l ogP . (O ) == Ey L(Y,0o )/N 1,000 n=l i 

ln o ln o 

e 
l 

1,000 
This is 1,OÖO E L: P. (8 )logP. (0*) = Ey L(Y, 8* )/N 

n=l i ln o ln 

size. The six experiments were ehosen to represent 

realistie models with varying degree of misspeeifi-

eation. A more ambitious experimental design would 

elearly be very useful, but the eomputational 

eosts are prohibitive. 
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The most striking result from the Monte Carlo 

experiments is the poor performance of the stan-

dard asymptotic approximation to the distribution 

of the MLE. Percentage biases for parameter esti-

mates and standard error estimates are given in 

Tables 2A and B. These biases decline as the 

sample size increases, but they are still qui te 

large for 1,000 observations. 

White (1982 and 1983) and Chow (1981 and 1982) 

have both claimed that it is important to correct 

the usual maximum likelihood standard error esti-

mates for model misspecification. using the nota-

tion from Equation (2.16) the incorrect asymptotic 

variance of 0* is 

(3.2) 

while the correct formula is: 

( 3 .3) 

Numeric values of these estimators are given in 

Table 3 .Al though the "correet" formula performs 

slightly better in larger samples, the differences 
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Tab1e 2a Percentage bia.s of MLE of 9 o 

Expt. Sample Size 

No. 50 200 500 

1 92, 85.54 -2.75, 24.1 2.59, 

2 -16.79, 147.05 -7.86, 42.12 -7.86, 

3 8.94, 34.72 -1.76, 9.21 -2.35, 

.4 -5.82, 35.52 -3.03, 8.22 -2.73, 

5 2.79, 69.71 -2.17, 19.63 -1.16, 

[6 -39.08, 335.37 -6.88, 82.92 -16.40, 

1,000 

17.04 -2.36, 15.86 

42.12 -6.19, 31.57 

13.25 -1. 71, 7.47 

7.47 -2.65, 5.98 

12.81 -.96, 11. 74 

95.81 -17.91, 134.65 

Tab1e 2b Percentage bias of standard error estiBate MLE of 

Expt. Sample Size 

NO. 50 200 500 1,000 

l -.09, 8.38 1. 81, 11. 73 -6.83, 12.00 -5.76, 12.06 

2 -.58, 4.66 6.42, 8.57 4.92, 10.02 6.87, 12.55 

3 -13.56, -14.14 -5.39, 9.75 -6.84, -.62 -2.94, -2.65 

j4 -11.45, -6.87 -9.15, 2.42 -7.53, - -7.01, 8.57 

5 -10.60, .65 6.73, 12.2 -9.91, 18 -14.63, 17.04 

16 2.07, -.85 .57, 23.0 10.87, 25 5.80, 10.71 
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"l'ab1e 3 Percentage bias in standard error estimates for MLE of 

approximate DKMle1 9* 

Expt. 

No. 
---~ 

l 

2 

3 

4 

5 

6 

("correet", "incorrect") 

>-,'" 

Sample Size 

50 200 500 1,000 

-8.18, -7.35 -7.35, -7.14 -11.65, - . - . 6, 

-17.28, -16.65 -9.77, -9.66 -12.13, -12.13 -16.83, 

-16.42, -14.46 .96, 1.53 -4.96, -4.53 3.55, 

-5.86, -l. 39 -13.88, -Il. 65 -4.75, -2.51 -9.50, 

-11.91, -10.60 8.29, 8.82 -8.30, -8.04 -15.24, 

-5.89, -4. 8, -2.42 .97, 1.04 l. 96, 

"l'ab1e 4a MSE of information criterion estima­

tors for experiment 1 . (. 100) 

Estimator Sample Size 

50 200 500 1,000 
-,-"'---~_. 

Chow 7.91 4.11 2.77 1.92 

DEIC 7.26 4.02 2.75 1.91 

IEIC 7.78 4.09 2.76 1.91 

.Akaike 8.11 4.13 2.78 1.92 

-16.25 

-16.86 

3. 901 
I 

-7.50 

-15.03 

2.01 
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Estimator 

Chow 

DEIC 

IEIC 

Akaike 

Tab1e 4c 

Estimator 

Chow 

DEIC 

IEIC 

Akaike 

Tab1e 4d 
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MSE of information criterion estima­

tors for experiment 2 (. 100) 

._--
Sample Size 

50 200 500 1,000 
~----.-------

8.31 4.22 2.82 1.94 

7.65 4.14 2.80 1.93 

8.18 4.20 2.81 1.94 

8.49 4.25 2.83 1.94 

MSE of information criterion estima­

tors for experiment 3 (. 100) 

Sample Size 

50 200 500 1,000 

7.77 3.76 2.61 1.63 

7.48 3.72 2.60 1.63 

8.21 3.82 2.62 1.64 

7.95 3.79 2.61 1.63 

MSE of information criterion estima­

tors for experiment 4 (. 100) 

------~,----

Estimator 

50 

Chow 7.03 

DEIC 6.65 

IEIC 7.28 

Akaike 7.25 

200 

4.45 

4.38 

4.45 

4.47 

Sample Size 

500 

2.61 

2.60 

2.62 

2.62 

1, 000 

1.82 

1.81 

1.82 

1.82 
~----'-'---
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Estimator 

Chow 

DEIC 

IEIC 

Akaike 

".rab1e 4f 
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MSB of inforRliltion cri terion estiJaa.­

tors for experiment 5 (. 100 ) 

Sample Size 

50 200 500 1,000 
""-"'-,-~"---~ 

7.56 3.42 2.56 1.83 

6.88 3.34 2.54 1.82 

7.34 3.41 2.55 1.82 

7.77 3.45 2.57 1.83 

MSB of inforRliltion criterion estiJaa.­

tors for experiment 6 (. 100 ) 

-----"-~---,-,-,--------_._-----------

Estimator Sample Size 

50 200 500 1,000 

Chow 1.98 .75 .37 .26 

DEIC 1. 75 .72 .36 .26 

IEIC 1. 92 .74 .37 .26 

Akaike 2.64 .86 .41 .27 
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HSB of estimates of first parameter of 

EJ) for experiment 1 
o 

--~~_._---------~----_._~~------------

Selection Rule Sample Size 

50 200 500 1,000 
--------------------
Likelihood Ratio 

5 % 2.41 1.31 .92 .70 

Likelihood Ratio 
10 % 2.43 1.33 .88 .65 

Chow 2.38 1.22 .81 .56 

DEIC 2.39 1.16 .77 .54 

IEIC 2.41 1.22 .81 .56 

Akaike 2.41 1.34 .87 .61 

"l'ab1e Sb HSB of estimates of first parameter of 

EJ) for experiment 2 o 

-----
Selection Rule Sample Size 

50 200 500 1,000 

Likelihood Ratio 
5 % 3.65 1.71 1.37 1.12 

Likelihood Ratio 
10 % 3.83 1.89 1.36 1.11 

Chow 4.26 2.00 1.37 1.01 

DEIC 4.61 2.02 1.30 .93 

IEIC 4.10 2.00 1.38 1.01 

Akaike 3.89 1.95 1.37 1.07 
-~-_ .. 
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'l'ab1e Se HSB of estimates of first parameter of 

e for experiment 3 
o 

Selection Rule Sample Size 

50 200 500 1,000 
"---"._--~-~-~~-----". 

Likelihood Ratio 
5 % 3.85 1.69 1.23 .80 

Likelihood Ratio 
10 % 3.90 1.69 1.15 .78 

Chow 3.91 1.59 1.08 .72 

DEIC 4.00 1.57 1.01 .69 

IEIC 3.94 1.59 1.08 .72 

Akaike 3.95 1.68 1.12 .74 -_ .. --------~ 

"l"ab1e Sd HSB of estimates of first parameter of 

e for experiment 4 o 

Selection Rule Sample Size 

50 200 500 1,000 
----"------_._,----- "-----------
Like1ihood Ratio 

5 % 3.66 1.54 .89 .61 

Like1ihood Ratio 
10 % 3.47 1.52 .85 .61 

Chow 3.11 1.40 .85 .61 

DEIC 3.03 1. 38 .85 .61 

IEIC 3.11 1.40 .85 .61 

Akaike 3.35 1.46 .85 .61 
-------_._----------~ 
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HSB of estimates of first parameter of 

a for experiment S 
o 

--~--"-----------" 

Selection Rule Sample Size 

50 200 500 1,000 

Likelihood Ratio 
5 % 1.81 .73 .54 .40 

Likelihood Ratio 
10 % 1.82 .72 .54 .40 

Chow 1.82 .71 .53 .40 

DEIC 1.82 .71 .53 .40 

IEIC 1.82 .71 .53 .40 

Akaike 1.82 .71 .54 .40 

Tab1e Sf HSB of estimates of first parameter of 

a for experiment 6 
o 

Selection Rule Sample Size 

50 200 500 1,000 
'm' ______ ._ 

Likelihood Ratio 
5 % 1.36 .56 .35 .27 

Likelihood Ratio 
10 % 1.38 .56 .37 .31 

Chow 1.62 .64 .45 .36 

DEIC 1.73 .70 .48 .36 

IEIC 1.61 .64 .45 .36 

Akaike 1.48 .55 .39 .32 
-_._------_. 



"rab1e 6a 

- 34 -

R 
1mB of prediction of ( L Z 9 ) IR for 

n=1 n o 
experi1llent 1 • 100 

Se1ection Ru1e Sample Size 

Like1ihood 
5 % 

Like1ihood 
10 % 

Chow 

DEIC 

IEIC 

Akaike 

"rab1e 6b 

50 200 500 1,000 

Ratio 
9.41 2.73 1.55 .86 

Ratio 
9.82 2.75 1.48 .79 

9.99 2.71 1.24 .77 

9.96 2.62 1.21 .75 

10.00 2.71 1.24 .77 

9.88 2.74 1.44 .77 
-._----,"'--,---" 

R 
ImE of prediction of ( L Zn9o) IR for 

n-1 
experi1llent 2 • 100 

' .. _------_" ____ 0 __ -

Se1ection Ru1e Sample Size 

50 200 500 1,000 
.. _-------

Like1ihood Ratio 
5 % 9.94 2.43 1.23 .84 

Like1ihood Ratio 
10 % 10.53 2.56 1.33 .82 

Chow 10.73 2.59 1.32 .78 

DEIC 11.01 2.68 1.24 .76 

IEIC 10.73 2.59 1.32 .78 

Akaike 10.59 2.54 1. 34 .81 
"----"',-,. 
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N 
MSE of prediction of ( 1: Z 9 ) IN for 

n=l n o 
experiment 3 • 100 

Se1ection Ru1e Sample Size 

50 200 500 1,000 
--",,-,---,-~_._-----,-------~-~-,------

Like1ihood 
5 % 

Like1ihood 
10 % 

Chow 

DEIC 

IEIC 

Akaike 

'I"able 6d 

Ratio 
14.65 3.52 1.82 .98 

Ratio 
14.78 3.43 1.77 .95 

15.55 3.35 1.63 .91 

16.19 3.14 1.60 .90 

15.58 3.35 1.63 .91 

14.91 3.40 1.69 .92 

N 
MSE of prediction of ( 1: Zn90) IN for 

n=1 
experiment 4 • 100 

" '"-------,-"_._--,---------
Selection Rule Sample Size 

50 200 500 1,000 

Like1ihood Ratio 
5 % 18.40 3.95 1.63 1.01 

Like1ihood Ratio 
10 % 18.20 3.95 1.61 1.01 

Chow 17.62 3.71 1.61 1.01 

DEIC 17.55 3.67 1.61 1.01 

IEIC 17.62 3.71 1.61 1.01 

Akaike 18.09 3.79 1.61 1.01 
,------'"-------------
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I!I 
MSE of prediction of ( 1: Z 9 ) fR for 

n=1 n o 
experiment 5 • 100 

"----,--~~.<,--
"~----

Selection Rule Sample Size 

50 200 500 1,000 
"'-----~-,-, 

Likelihood Ratio 
5 % 9.84 3.06 1.30 .75 

Likelihood Ratio 
~o~ 9.~a 2.~~ l.l~ .73 
DEIC 9.89 2.41 1.13 .73 

IEIC 9.75 2.52 1.12 .73 

,Akaike 9.98 2.91 1.13 .73 
---~'-~-'--------------' 

Tab1e 6f Jll 
MSE of prediction of ( 1: Z 9 ) fR for 

n=1 n o 
experiment 6 • 100 

---,-~~--~---, 

Selection Rule Sample Size 

50 200 500 1,000 

Likelihood Ratio 
5 % 5.13 1.18 .50 .40 

Likelihood Ratio 
10 % 5.45 1.24 .52 .41 

Chow 6.22 1.51 .62 .43 

DEIC 6.04 1.63 .67 .45 

IEIC 6.12 1.49 .62 .43 

Akaike 5.70 1.37 .56 .43 
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Percentage rejection of approximate 

mode1 for experiment 1 

Selection Rule Sample Size 

50 200 500 1,000 
----------~----------------------------------------

Likelihood Ratio 
5 % 12 18 37 66 

Likelihood Ratio 
10 % 19 28 50 79 

Chow 41 56 86 93 

DElC 100 100 100 100 

IElC 37 56 86 93 

Akaike 23 35 61 87 

Tab1e 7b Percentage rejection of approximate 

mode1 for experiment 2 

Se1ection Rule Sample Size 

50 200 500 1,000 
---------,-'" 
Likelihood Ratio 

5 % 11 9 13 26 

Likelihood Ratio 
10 % 16 19 27 39 

Chow 40 39 44 67 

DElC 100 100 100 100 

IElC 33 39 43 67 

Akaike 20 23 32 49 
._~--,---------~, 
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Percentage rejection of approximate 

mode1 for experi.Jnent 3 

Selection Rule Sample Size 

50 200 500 1,000 

Likelihood Ratio 
5 % 13 26 62 86 

Likelihood Ratio 
10 % 21 44 73 89 

Chow 50 66 85 96 

DEIC 100 100 100 100 

IEIC 47 66 85 96 

Akaike 28 49 78 94 
------,-------~' ----,-------------

"f'ab1e 7d Percentage rejection of approximate 

mode1 for experiment 4 

--~-----,------' --,-',~ 

Selection Rule Sample Size 

50 200 500 1, 000 
-,----,--,--,-----,-, 
Likelihood Ratio 

5 % 48 93 99 100 

Likelihood Ratio 
10 % 59 94 100 100 

Chow 82 99 100 

DEIC 100 100 100 100 

IEIC 82 99 100 100 

Akaike 68 96 100 100 
--,-------,------,-----,---,------,------
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Percentage rejection of approximate 

mode1 for experiment 5 

Selection Rule Sample Size 

Likelihood 
5 % 

Likelihood 
10 % 

Chow 

DEIC 

IEIC 

Akaike 

'l'ab1e 7f 

50 200 500 1,000 

Ratio 
23 44 84 98 

Ratio 
34 56 94 100 

58 85 99 100 

100 100 100 100 

54 84 99 100 

40 65 96 100 

Percentage rejection of approximate 

mode1 for experiment 6 

Selection Rule Sample Size 

50 200 500 1,000 

Likelihood Ratio 
5 % 6 l 2 7 

Likelihood Ratio 
10 % 9 4 5 15 

Chow 35 28 28 38 

DEIC 100 100 100 100 

IEIC 28 26 28 38 

Akaike 16 6 9 22 
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between the estimators are swamped by the magni­

tude of their common biases . 

The Information Criterion estimators are derived 

by using the same asymptotic approximations as the 

MLE. Therefore, it is not surprising that the poor 

performance of these asymptotic approximations 

clouds cornparisons between the estimators • Tables 

4a-f show the MSE of the various Information Crite­

rion estimators for the approximate models across 

the experiments. As expected, the DEIC has uniform­

ly lower MSEs, and the difference between the 

estimators declines as the sample size increases. 

Chow' s estimator is comparable to the IEIC, and 

Akaike I s estimator is inferior to the others. 

The purpose of estimating the Information Crite­

rion is to generat e model selection procedures. 

Better estimators will usually yield better model 

selection criterion. The DEIC, which is generally 

the best estimator for sample sizes greater than 

200, always rejects the smaller model. This selec­

tion rule is in sharp contrast to the usual likeli­

hood ratio test rules, and it generally performs 

better. It could be argued that this study is 

unfair since all the approximate models are mis-
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specified. In practical applications all mode Is 

are misspecified, and the experiments run here do 

cover arealistic range of misspecifications. 

Tables 5-7 compare the behavior of the selection 

rules based on the various Information Criterion 

estimators. For the sake of comparison, these 

tables also include the standard likelihood ratio 

selection rule: reject if the likelihood ratio 

test statistic for the parameter restrictions on 

e* is significant at the 5 or 10 percent level. 

Tables 5a-f give the MSEs for estimating the first 

parameter of e . o For each Monte Carlo repetition 

either ° or 0* was used according to which model 
o 

is selected as correct. Tables 6a-f show the MSEs 

for predicting the average value of z e . n o This 

quantity is inversely related to the predicted 

demand for alternative l, but is much faster to 

compute. There is sometimes a tradeoff between 

prediction and estimation accuracy. Comparing 

Tables 5 and 6, there are cases where the best 

selection rule for prediction is the worst rule 

for estimation, and vice versa. Tables 7a-f give 

the percentage rejection of the approximate model 

for the various selection rules. As expected, the 

DEIC always rejects the approximate model. Chow' s 
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and the IEIC are the second most likely to reject, 

followed by Akaike's rule and the likelihood ratio 

tests. 

The only clear conclusion from Tables 5 and 6 is 

that more study is needed before choosing the 

"best" prediction cri terion. It does appear that 

the Information Criterion selection rules per form 

better for the larger sample sizes used in these 

experiments. Chow's criterion and the IEIC perform 

reasonably weIl in most of the experiments. Chow's 

criterion also has the advantage of being easier 

to compute. The main exception to these con­

clusions is experiment 6, where the likelihood 

ratio test at the 5 percent level dominates all 

others. This experimental design has the worst 

behavior of the MLEs (see Tables 2) and also con­

tains the least information. Only when the sample 

size reaches 1,000 is it possible to reject the 

hypothesis that 8
0 

:: O using the likelihood ratio 

test at the 10 percent level. 

Finally, many of the experiments described in this 

section were replicated for the Multinominal 

Probit model. This model does not allow any of the 

computational simplifications derived for the ML 
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model in Sectian 2. Nevertheless, the results were 

essentially identical to those given here for the 

ML model. 
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4 Conc1usioDS 

This study has a number of implications for ap­

plied econometricians. As usual, the positive im­

plications are very tentative, and the negative 

implications are much clearer. The usual asympto­

tic approximation to the sampling behavior of the 

MLE for ML models can be very poor even in "large " 

samples. Previous Monte Carlo studies (McFadden 

(1973) and Domeneich and McFadden (1975») used 

dichotomous independent variables which yield much 

better small sample behavior. The designs consider­

ed here and in Davidson and MacKinnon (1984) have 

continuous 

nevertheless 

number of 

independent variables, 

small, simple models . 

discrete alternative 

but they are 

Increas ing the 

and independent 

variables will only make the small sample behavior 

worse for a fixed sample size. Therefore the Monte 

Carlo results given in Section 3 raise consider­

able doubts regarding the quality of the esti­

mation and testing procedures in most applied work 

with Multinominal Logit and Probit models. 

This paper also shows that the Information Crite­

rion is a promising theoretical basis for model-
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ling actual econometric practice. The estimation 

and mode l selection procedures generated by the 

Information Criterion appear to be good, computa­

tionally simple, alternatives to current standard 

practices. The more tradi tional 

testing procedures for qualitative 

specification 

choice models 

are also easy to compute, and they also suffer 

from the same small sample problems noted above. 

Unlike the Information Criterion, these specifica­

tion tests cannot be used for comparing non-nested 

modeis, and they only provide pairwise comparisons 

for nested models. Much more work needs to be done 

to determine the best selection procedures for 

qualitative choice models . 

cedure is chosen it will 

Once a particular pro­

also be necessary to 

deri ve the sampling distribution of the implied 

sequential estimation procedures. 
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APPElllDIX 
,. 

Covariance Estimator for MLE p 

An estimator for the covariance matrix of f) will 

be derived fol1owing Si1vey (1959). Since 0 is a 

maximum 1ike1ihood estimator we have 

(A. l ) 

Simi1ar1y oL(0*)/o0 can be expanded about 0* to 

yie1d 

( ~ " is the MLE of the 1agrange mul tip1ier for the 

constraint in Eq. (2.3).) 

Subtraction of the first order condi tions for the 

program in Eq. (2.2) from (A.2) yie1ds 
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2 
L( Go) -l o 

~GoG'-
+ 0(1) O O 

-l 
02L (G*) 

O -N oG08'-- + 0(1) -H 

O -HI O 

= (A.3 ) 
oG 

O 

The asymptotic distribution of times the 

right hand side of (A.3) is Normal by the Central 

Limit Theorem with mean zero and covariance matrix 

J(G ,G ) 
o o 

lim N 
-l Kl 

N..,.co 

O 

oL(G ) 
where Kij = COV [--o-e: 

aL (G *) 
and V = COV [ oG-~l. 

K O 

V O (A.4 ) 

O O 

oL(G* ) 
---J oG· . 

J 

= 
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Solving (A. 3) yields an asymptotic Normal distri-

bution 
1/2 A 1/2 A 

for N (0-~o) and N ('A-'A) with mean O 

and covariance matrix 

-1 -1 -1 
NJ (G G) J (G G )KS I J (G G )KQ o' o o' o o' o 

lim ' -1 N-lSVS' N-lSVQ (A. Sa) SK J (Go,Go ) 
N+co 

Q'K'J-l(Go,G
o

) N-lQ'VS' N-lQ'VQ 

where 

l:· :] ~ = (A.Sb) 

·-1 -l 
J(G G ) *, o -H 

O 

= 

Estimates of K,V,J(G ,G ) and J(G*,G ) for qualita-o o o 

ti ve choice models can be obtained by evaluating 

the fol10wing formulas at e and e *: 
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ologP, (e ) ologP, (e*) 
K = 2:: Rn (~ e ln o p in (e o) -~8 ~n -- ) -

n l 

ologP, (e) ologPkn(e*) 
- (2:: PJ'n(e

o
) __ ~~~o_ )(2: P (e) 

oe kn o e j k 
= 

(A.6a) 

oL(e ) ologP, (e ) 
(since E(--~-) implies 2: p, (e ) ~~_J_n_~_ = o) 

oe j Jn o oe 

ologP 
- L Pjn(eo ) ----o-e-~~----­

j 

where Rn = 

- 2:: R
n 

L P, ( e ) 
n i ln o 

L y, • 
i ln 

2 
o log P, (8*) ln 

·oeoe' 

These formulas can be easily derived from 

(A.6b) 

(A.6c) 
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and 

E Y. Y. = 6 .. R P. + R (R -l)P. P. 1n Jn 1J n 1n n n 1n Jn 

:= l if i = j 

6 .. 
1J 

= O if i if::. j 

The hessian of Q can be evaluated from: 

= K 

o 2p . (0 ) 
1n o 

(from Eq. 2.21a) 

(A.7a) 

(A. 7b) 

(A. 7 c) 
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