A list of Working Papers on
the last pages

No. 75, 1982
THE MOSES MANUAL

Part 1.
HOW TO RUR THE MOSES—-MODEL
by
Fredrik Bergholm

This 1is a preliminary paper. It is
intended for private <circulation,
and should not be quoted or referred
to 1in publications without permis-
sion of the authors. Comments are
welcome.

December, 1982

CONTENTS

Preface

Section

Section

Section

Section

Section

Section

Section

Introduction
How to run the initialization and
how to start the model

Appendix: System commands

How to make new initialization ver-

sions and new experiment versions
How to add new model-variables

Pescription of the function
UPDATEMOSES

In case of trouble...

Printing out the result

Page

20

21

26

36

38

Preface

MOSES is short for "Model for Simulating the Econo-
my of Sweden". Different versions of the model
have been used within the institute for about five
years by now. A number of simulation experiments
have been performed*. The whole model 1is written
in the programming language APL. The present ver-
sion of the model is installed on a computer in
Bergen, Norway. This has come about through cooper-
ation with I@I (Bergen), the industrial institute

for economic research in our neighbouring country.

For some time there has been a demand for a full
documentation of the current version of the model.
"The MOSES Manual" fulfils one part of this re-
quest. Anyone interested in a large-scale simula-
tion model of this kind needs to get acquainted
with the techniques involved in starting up (ini-
tializing) and running the model. Experiments have
shown that the initialization procedure, which con-
structs an initial state of the model economy, is
crucial indeed, for the behaviour of the model.
Part 2 of the MOSES Manual (not included in this

* An earlier version is described in full detail,
in Eliasson (1978, abbreviated in (1981)). 2 new,
updated presentation of the full model plus a
complete bibliography will be presented in Elias-
son (1983).

Documentation on the economic contents of MNMOSES is
complete for an earlier version which is still
gquite accurate as far as the core micro-to-macro
machinery 1is concerned. An important addition is
the individual firm purchasing process, which is
described in this manual, Part 2. The need for a
full, updated documentation, should however be re-
medied in a forthcoming research report, Eliasson
(1983).

paper) has been devoted to describing this initial-

ization process¥*.

This part of the MOSES Manual describes how to
actually run the model. Previously, only a few

persons knew how to handle the machinery. From now

on this should have been remedied. The intention

behind part 1 is that anyone - following the in-
structions - should be able to start up and run
the model.

Part 1 of the manual is mainly a cook-book. The
user can run the model without knowing what it is
all about. To be able to carry out meaningful
analytical experiments, however, one needs a
rather deep understanding of the model and the
initialization itself, which requires a consider-
able and timeconsuming effort on the part of the

user.

* A more detailed description of the micro (firm)
database can be found in Albrecht-Lindberg (1982).

Section 1 Introduction

The model consists of two parts, the model-simula-

tion itself and the initialization procedure.

Before one can start a simulation of the
Swedish economy with the ‘"micro-to-macro
model"” MOSES, one has to initialize a vast

number of variables.

"Initialization" means (mainly) that three

kinds of variables are given values.

(1) Variables for 1976 (the earliest year for
which a complete micro-to-macro data Dbase
exists) needed to start up the model.

(2) Variables needed to determine the future of
certain variables which get their values ir-
respective of what happens during the simula-
tion.

(3) Certain constants.{Some of these are parame-
ters affecting for example the behaviour of

firms.)

Let us see how the initialization and simulation
can be performed on the DEC20-computer in Norway.
We assume that you are sitting 4in front of a
terminal equipped with a key board with APL-sym-
bols. To be able to run the model one needs some
elementary knowledge of APL. On the following
pages we will therefore try to give a mini-lesson
in APL. For more detailed information, see the APL

reference manual.

1.1 The concept workspace and system

commands

An APL workspace consists of functions and vari-
ables. The user enters functions and variables in

the workspace and can save them for future usage.

A system command in the APL language starts with a

right-hand bracket. One needs system commands to
handle APL workspaces. The most frequently used

system commands are:

) LOAD workspace name
) CLEAR
) SAVE

The) LOAD-command loads a previously saved work-
space into the computer memory. Thus all functions
and variables are instantaneously transferred to
computer memory. In APL there is in general no

program reading variables from a data base into

computer memnory. Instead one makes a) LOAD-com-
mand.

Example:

) LOAD PROV

The workspace PROV is 1loaded into the computer
memory. If you wish to look at a variable in the

workspace, Jjust write the name of the variable. If

you want to add a variable just write for example:

a<10.

You have then added a new variable a which has the

value 10.

If you want to save the extended workspace with
new or changed variables (for example) simply

write:
) SAVE

If you just want to erase computer memory and

start all over again write:
) CLEAR

The) CLEAR-command erases the workspace which is
in the memory at that particular moment. The work-
space 1in the library is of course unchanged. Note

that the) SAVE-command destroys the old version

of the workspace in the library.

Example:

We want to look at the workspace containing the
MOSES-model. This workspace lies in the 1library
and is called MOSES.

Perform:

(1)) LOAD MOSES
(2) we look at some variables or functions

(3)) CLEAR

A function 1is a program in APL. How to write and
read functions 1is not described here, see instead

the APL reference manual. To run an old experiment

you don't need to be able to write functions, but
if you wish to make new experiments this is neces-

sary!

The most commonh system commands can be found in
the appendix to the next section. A full descrip-

tion can be found in an APL-manual.

Information about the "login procedure"”, e.g. how

to get in touch with the computer in Norway, can

be received from authorized persons at IUI.

Section 2 How to run the initialization (jan.1982)
and how to start the model

2.1 Overview

We assume that you have logged in and that you
have access to:

1) the APL-language

2) Viorkspaces containing the micro-to-macro model,

which are:

MOSES (=the model itself)

,INIT (=the initialization procedure)

,MACRO (=macro data base, for 1976)

,8176 (=micro data base, for 1976)

,VLISTS (=variable names, initialized variables)
,FUNCTI, ISTART,

MSTART (=miscellaneous workspaces 1in connection

with initialization etc).

One can check that all workspaces needed are in

the (IUI-) library by doing the system command:

) LIB

Then all saved workspaces are listed.

It might also be a good 1idea to perform the
) MAXCORE-command 1in the beginning. This command
is described in an appendix to this section, and

extends maximum available space in the computer

memory.

To start the model do:

- 10 -

) LOAD INIT (step 1)
START NR1 (step 2)
) LOAD MOSES (step 3)
UPDATEMOSES NR2 (step 4)
RUNEXP N (step 5)
) SAVE (step 6)
Step 1+2 = initialization of the model, which

means that start-up variables for 1976

are given values etc.

Step 3+4 = update the MOSES model-code to it's
latest version

Step 5 = run the model.

Step 6 = save the result.

NR1 NR2 and N are chosen numbers.
N = number of years to simulate (run the model)
NR1 = number of initialization version

NR2 = number of experiment version

For a definition of "initializatiomn version" and
"experiment versiom", see the following pages.
This 6-step procedure to run the model will be

explained in more detail below.

In what follows, we will write system commands and

function calls (for example the function START) in

boldface letters, whereas parameters to the func-

tions (for example NR1l, NR2, N above) or workspace-

names (for example INIT) will be written in ordi-
nary letters. Note that there must be at least one

blank between a function call and a Earameterl

- 11 -

2.1.1 "Initialization version"”

Definition:

Instead of changing the original initialization ver-
sion (jan 1982), one puts all changes in a sepa-
rate function. A new initialization version is
made by using the original initialization program
(workspace INIT) and by making a function ISTARTXX
where all changes are defined. XX is the number of
the initialization version. ISTARTXX should be put
into workspace ISTART before doing anything else.

Example:

llake a function ISTART4 where all changes are
defined. Put it into workspace ISTART by using the

system commands lLoad and Save. Then perform:

) LOAD INIT (stepl)
START 4 (step2)

Thus, initialization version 4 has Dbeen run, and
the result is saved (automatically) in workspace
R4.

How to make new initialization versions is describ-
ed in section 3. If you just wish to repeat an
0ld experiment just check that the proper ISTARTXX-

function is stored in the ISTART-workspace.

The reason for this somewhat cumbersome way of
labelling the experiments is that it is extremely
difficult to keep track of changes in a program
(in this case the initialization program START),
if one were allowed to make small modifications
all the time. If one works in the fashion outlined
above, the original initialization code is unchang-
ed, and all modifications thereafter are defined

by small modules called ISTARTXX. To be more spe-~

- 12 -

cific, the original initialization program is un-
changed before a new initialization. During the

initialization, the initialization program is up-

dated* with the changes defined in an ISTARTXX-

module. For more detalils see section 3.

* A program can update another program during ex-
ecution in the APL-language. This 1is a somewhat
unusual feature for a programming language.

- 13 =~

2.1.2 "Experiment version"

Definitions:

Instead of changing the original model (version
1978), one puts changes of the model, for experi-
ment-purposes, in a separate function. A new exper-
iment version is made by using the original model
program (workspace MOSES) and by making a function
MSTARTXX, where all changes connected with the
specific experiment are defined. XX is the number
of the experiment version. MSTARTXX should be put
into workspace MSTART before doing anything else.

Example: (We extend the example given above on the

previous page)

Make a function MSTART8 where experiment-specific

changes are defined. Put it into workspace MSTART.

Then perform:

) LOAD INIT (step 1)
START 4 (step 2)
) LOAD MOSES (step 3)
UPDATEMOSES 8 (step 4)

How to make new experiment versions is described
in section 3. If you 3just wish to repeat an old
experiment, simply check that the proper HSTARTXX-

function is stored in the MSTART-workspace.

Note that each experiment is uniquely determined
by the lines in a MSTARTXX-function, provided that
the same indata is used. Note also that the above
procedure means that one can use a certain set of
indata and make a large number of different experi-
ments with these. Step 2 yields output from ini-
tialization (= input to the model). By varying the

- 14 -

parameter to UPDATEMOSES (in this example 8) one
can achieve different experiments with the same

indata to the model.

One point ought to be clarified in this context.

The word "experiment" in our concept "experiment

version" means that we are experimenting with the
model itself, for example introducing a certain
micro or macro behaviour. One can also make experi-
ments by varying input to the model by using dif-
ferent "initialization versions". Some parameters
produced by the initialization procedure affect
the micro behaviour of firms. So it is equally
natural to keep the MSTARYXX-function constant and
vary the ISTARTXX-functions. The difference Dbe-
tween an ISTARTXX-function and a MSTARTXX-function
is that the former can't change 1lines in the

model.

- 15 -

2.2 Comments on the ©6-step procedure to

start and run the model

Step 1 The initialization program is loaded
into computer memory

Step 2 "START XX" starts the initialization.
ISTARTXX should be stored beforehand 1in
workspace ISTART. The result from the
initialization is stored in workspace
RXX. XX=nunber of initialization ver-
sion. Step 2 takes about 5 minutes. The
monitor prompter resumes the original po-
sition when this step is ready.

Step 3 The model itself is loaded.

Step 4 "UPDATENOSES xx*" updates the model
from the 1978-version to the 1982-ver-
sion and makes experiment-specific chang-
es 1in the model code. MSTARTXX should
have been stored beforehand in workspace
MSTART. XX=number of experiment version.
The monitor prompter resumes the origi-
nal position when this step is ready.

Step 5 The model is run for N years. This takes
about 10 minutes per simulated year. The
monitor prompter resumes the original po-
sition when the run is over.

Step 6 The simulation-result is saved.

During step 2 the program asks whether one wants
to see the input-output matrix or not (described

in part 2 of the manual). Answer, yes Or no.

During step 4 a guestion comes up, where the user
should give the name of the workspace from which
the result of the initialization should be fetched.
The name is Rl if you used initialization version

1, R2 if you used initialization version 2 etc.

IMPORTANT NOTE: If you already, (for example, some
days before) have made the initialization (steps
1+2) you can start with step 3 at once. This might

be a convenient way to work.

- 16 -

The simulation result is not stored automatically.
The user has to make the) SAVE-commahd himself.
(step 6). The name of the simulation result is
SXXVYY, where XX=number of experiment version, and
YY=number of initialization version. S stands for
simulation result and V for version. Ve conclude

by giving two examples of a MOSES-run.

Example 1:

") LOAD INIT

START 1

) LOAD }!NOSES
UPDATEMOSES 7
RUNEXP 10

) SAVE

Initialization version 1 and experiment version 7
are made. The model is run for 10 years. The
result from the initialization is stored in work-
space Rl. The result from the model~simulation is

stored in workspace S7V1.

Example 2:

) LOAD MOSES
UPDATEMOSES 7
RUNEXP 10

) SAVE

The initialization is already made. The same
things as in example 1 are being made. The user is
asked for the name of the workspace where the
result from the initialization is stored (for ex-
ample R1 if initialization version 1 is used). The
result from the simulation is stored in an work-

space called S7V1.

IMPORTANT:
If one wants to look at the contents of a work-
space, one makes the) LOAD-command. There is one

exception, though.

To be able to look at the result of the initializa-
tion, RXX, after having performed steps 1 and 2 in
the 6-step procedure, one has to do the) COPY-

command.

Thus:) COPY Rl must be done to look at workspace
Rl, instead of) LOAD Rl. (If you try to do the
Load-command 1instead, a lot of nonsense will be

printed out, for technical reasons.)

A complete list of variables coming out from ini-
tialization can be found in part 2 of the MNOSES

manual.

2.3 Batch-job

So far we have assumed that the user of the model
makes the commands (the 6-step procedure to start
and run the model) actually sitting in front of
the computer terminal, doing so called time-shar-

ing. This is by no means necessary.

The same commands can Dbe written in a so called

"command-file" beforehand. To perform a run on the

computer in this way is called a batch-job. It is
very convenient because the program can be run
during 1low cost time (for example) during the
night, without anybody at the computer terminal.

The terminal need not even be switched on.

On the DEC20 computer (in Bergen) a batch-job is

done thus:

Make a "command-file" (using the editor on the

DEC 20). In the command-file prov.CTL we have:

monitor-prompter APLSF
* TTY

*)MAXCORE 352

*)LOAD INIT

* START 4

* ves

*)LOAD MOSES

* UPDATEMOSES 8
* R4

* RUNEXP 10

*)SAVE

*)MONITOR

- 19 -

The file could have any name, but the extension
must always be CTL. In this example we called the
file "prov.CTL". A DEC20-monitor command (the com-
mand APLSF)* should start with a monitorprompter
(a helix-shaped symbol) in a commandfile. An APL-

system command should start with an asterisk. lMore
information about batch-jobs can be found in "DEC-

SYSTEM Batch Reference Manual'.

The batch 3job is ordered by doing the DECZ20-com-

mand:
submit prov.CTL

One could add extra instructions to the operator,
by writing things after "slashes", according to a

syntax (see the Batch Ref. Manual).

We found the following extra instructions useful

in practical work:

submit prov.CTL/after:24:00:00/TIME:03:00:00/
restart: YES/PAGE:300

The result from a batch-run 1is stored on a file
called "prov.log". This file contains the output
which would have been typed on the screen if the

job had been done as time-sharing.

A disadvantage with batch-jobs is that if anything
(no matter how trifle) goes wrong during the
model-run, nothing can be done about it. The pro-
gram is simply interrupted. The batch-job has to

be connected and repeated.

* There are different versions of APL, one of
which is APLSF, working on the DEC 20-system.

APPERDIX
Section 2

"System commands"”

) LOAD workspace-name
Loads the workspace into computer memory.

) CLEAR
Clears the computer-memory.

) MAXCORE 352

If one has too 1little space in the computer-
memory, one has to ask for more space. The command
above gives the user maximum available space. One
can choose any number between 6 and 352 (pages). 1
page = 1/2 Kwords.

) usID

This is a question. The computer answers by
telling the user the name of the workspace which
is in the computer-memory right now.

) WS name
Changes the name of workspace to the name written
after WS.

) SAVE
Saves the workspace under current workspace-name.

) FNS
Lists all functions in the current workspace.

) VARS
Lists all variables in the current workspace.

) COPY workspace-name
A copy of the workspace is added to the workspace
one is working with.

The system commands might differ somewhat on dif-
ferent computers. The commands mentioned above are

used on DEC20 in Bergen, Norway.

- 21 -

Section 3 How to make new initialization versions
and new experiment versions

(simulation-variants)

3.1 New initialization versions
Do
) LOAD ISTART (step 1)

This loads the workspace ISTART, where all previ-
ous idinitialization versions are stored (ISTARTI1,
ISTART2...).

Make a function
ISTARTXX (step 2)

XX=number of initialization version.

How to make a function is desribed in the APL

reference manual.

Save the extended work-space ISTART.

) SAVE (step 3)

ISTART1 and ISTART2 on the next page show the
pattern to be followed when making an ISTARTXX-

function.

Comment 1lines in the APL-lanquage start with a
very particular symbol, the so called cap null-
sympbol. It appears frequently in the initializa-
tion-code (see for example section 5) and looks
like an A which is smaller and more smooth than an
ordinary A. For typographical reasons we write

this symbol as a boldface A in the examples below.

Example 1:
V. ISTART1
L1] A TESTI
2] A FREDRIK B
L 3] SYNTHAFIRMS«+ 8 16 18 8
4] A

Example 2:
v ISTART2

{1] A TEST

L2] A JANUARI 1982

3] A FREDRIK B

L4] A

L5 SYNTHoFIRMS« 8 16 18 8

L6 'MARKETSusDATA' MODSUBST 'GAMMA«wGAMMA<«0.5'
L7} 'MARKETSaDATA' MODDEL 'KSI«'

L8] '"MARKETSADATA' MODADD 'NITER«wKSI«0.3'

Note: If you by mistake put 1in an extra blank
somewhere between the '-signs, you could fail to
make the proper changes.

GAMMA, KSI och NITER are three parameters in the
MOSES-model. MARKETSADATA is the name of a sub-
function in the initialization procedure, (a sub-
function to the function START). To be able to
make changes in the initialization one has to get
well acquainted with the initialization program,
wvhich 1is described in part 2. Many parameters
which guide firm-behaviour are given their values
in the sub-function MARKETSADATA which is easy to
read. One can without difficulty change such para-
meters according to the pattern above. The exam-
ples above are explained in detail on the follow-

ing pages.

ISTART1:

No changes in the initialization-program are made.
The line "synthsafirms « 8 16 18 8" 1is compulso-
ry in any ISTARTXX-function. This line means that
there will be 8 synthetic* firms in sector 1, 16
synthetic firms 1in sector 2, 18 in sector 3 and 8
in sector 4. Thus, this line tells how many syn-
thetic firms will be created during the initial-

ization procedure.
ISTART2:

The APL-functions MHODDEL, MODADD and MODSUBST are
used to change lines in the initialization-program.
The changes will take place when the ISTARTXX-
function 1is called, and this happens in the very

beginning of the initialization.

Thus: Line 6, example 2, means that we will
change a line in the sub-fuction MARKETSADATA (see
appendix C, part 2). The text before MHODSUBST (All
textstrings should stand between '-symbols) tells
the name of the function where the changes are to
be made. The text after MODSUBST tells what line
to be changed and defines the new line. The begin-
ning of the o0ld 1line stands Dbefore the “omega-
symbol" (w) and the new line after this symbol.
MODSUBST deletes the o0ld 1line TDPpeginning with
"GAMMA" and puts in the new line: GAMMA <« C.5.
MODADD works 1like MODSUBST, with one exception.
MODADD does not delete the old line. The new line

is put immediately after the o0ld 1line. Line 7

* artificial firms,, which define the difference
between macro data (national accounting) and micro
data (real firms). See Albrecht-Lindberg (1982).

- 24 -

means that we will delete any 1line 1in the sub-

function MARKETSADATA beginning with KSI «.
3.1.1 Summing up

Syntax:

'function-name' MODSUBST 'old line w new line'
'function-name' MODADD 'old line ¢ new line'

'function~name' MODDEL 'line’

Don't take too many letters! This may cause over-

flow during execution. Error: Vorkspace full.

Don't take too few letters! It might be ambiguous

what line you're referring to. Any 1line (in the
function you're looking at) with the same string
of letters (in the beginning or in the middle of
the 1line) might be affected by the MODSUBST-,
MODDEL~ or MODADD-call.*

3.2 New experiment versions
Do:
) LOAD !START (step 1)

This loads the workspace MSTART, where all previ-
ous experiment versions are stored (MSTARTI1,
HSTART2,...). Make a function

MSTARTXX (step 2)

) SAVE (step 3)

On the next page you can see an example of a
MSTART-function. MODSUBST, HODDEL and MODADD are
used in the same way as was done above, 1in connec-

tion with new initialization versions.

* Note: It 1is not allowed to change the function
where you are at the moment. Thus MHODSUBST, MODDEL,
MODADD cannot make changes in the function START.

- 25 -

An example of a MSTART-function:

V MSTART1
113] A
[14 AEXPERIMENT
L]_SJ A*********************
|16] '"INVFIN' MODSUBST 'QDIV<«wQDIV<«0.€ExQTAX'
117 A
v

Mote: A is a symbol starting comment-lines, for
typographical reasons written as a boldface A.

In a sub-function, called INVFIN, in the MOSES-

workspace one line 1s altered.

The new line

QDIV « 0.6 s« QTAX
means that each firm will, 1in this particular
experiment, pay dividends to the household sector

amounting to 60 percent of the corporate tax.

The changes in the MOSES-program take place when
the function UPDATEMOSES 1is called. The MSTART-
function is, namely, called on a line in the func-
tion UPDATEMOSES.

If you wish to check that the changes in the
MOSES~-program have been performed correctly, 1list
the functions you are interested in (in the exam-
ple above the function IRVFIN) after the call of
the function UPDATEMOSES (step 4 in the 6-step
procedure presented 1in section 2). How to read
(list) functions 1is described in the APL refer-

ence manual.

- 26 -

Sectionm 4 How to add new model-~variables

Say that you have a new variable I which you wish
to give as input to the model. The variable I is
to be given a value in the initialization proce-

dure.

It is not enough just to add this variable to the

initialization-program in a ISTARTXX-function, for
example with a "MODADD-line".

You must also add the name of the variable to a
variable-list in workspace VLISTS bTefore making
the initialization. All output-variables from ini-
tialization should be listed in this workspace. If

this 1is not done, the variable I will be deleted

during the initialization procedure, since it is

not mentioned among the output-variables in a
variable-list in workspace VLISTS. Thus, this
system forces the user to mention all new output-

variables from initialization.

There are 6 variable-lists in workspace VLISTS,

and the user can extend 5 of them, namely:

Variabelgrupp 1 (=exogenous variables)
Variabelgrupp 2 (=endogenous variables)
Variabelgrupp 3 (=constants)

Variabelgrupp 4 (=indices, parameters of a

technical nature)

Variabelgrupp 5 (=miscellaneous)

To add the variable I to a variable-list in work-
space VLISTS do:

) LOAD VLISTS (step 1)
Variabelgrupp 1 « variabelgrupp 1, ' I ' (step 2)

) SAVE (step 3)

- 27 -

Note: Ve assumed above that I was an exogenous
variable, and that was why variabelgrupp 1 was
used. The division of variables into 6 groups is
purely for book-keeping purposes. If you put a new
variable in the wrong group, nothing will happen,

but the book-keeping will be messed up.

Bote: The text string between the '-signs 1in step
(2) must begin with a blank!

- 28 -
Section 5 Description of the function UPDATEMOSES

UPDATEMOSES is the function doing changes 1in the
model (workspace MOSES) itself, and is step 4 in

the 6-step procedure presented in section 2.

The function 1is documented below, with the APL-
code itself. It should be noted that this docu-
ments all permanent changes in the model program

since 1978.%

In UPDATEMOSES four functions are called:

1) PREPAREARUN (Fixes Theadlines etc for
printing out simulation-re-
sults)

2) PERMANENTACHANGES** (Permanent changes 1in the

model-program since 1978)

3) MOSESAVARIANTS* * (Larger permanent changes
in the model-program since
1978)

4) MSTARTXX (The experiment version
function)

Note: The MSTART-function should never be used for
permanent changes of the model.

The model-program 1is updated in this fashion, so
as to make it possible to repeat old experiments
from 1978 and onwards. Another reason for this

updating procedure is that the changes are clearly

* For a complete understanding of these changes
one needs, however, the model program itself, the
so called MOSES code, which will be presented in
another part of the MOSES manual.

** The changes in PERMANENTACHANGES are maybe more
permanent then MOSESAVARIANTS, that 1is why they
are separate.

- 29 -

defined, and could be checked up by anyone wishing
to convince himself that the changes have been

properly done.

£11
£213
£33
Cul
£53
L&
L7131
£81
RN |
£1o3d
L1131
L1213
L1331
Ciud
L1513
L1661
£171
£i8il
191
L2017
£211
L2217
[23]
C2u]
Las
[261
L2271

v

<

f
A
8]
A

ATHEY ARE CALLED

- 30 -

Section 5 Description of update MOSES

UPDATEAMOSES NUM

THIS FUNCTION DOES:
(1): PREPARES HEADLINES ETC, FOR PRINT-OUT FROM MOSES-RUN
() MAKES CHANGES IN THE MOSES PROGRAM FROM 1978

PREPAREARUN

PERMANENTACHANGES

MOSESAVARIANTS

AEXPERIMENT~MODULES IN WORKSPACE MSTART.

ATHE CAlLL 'UPDATEMOSES XX ' .

A

ATHIS LINE FETCHES

"GIVE THE NAME OF THE WORKSPACE WITH START-'
"VALUES FROM INITIALIZATION (FOR EXAMPLE RL ETC.)
INITWORKSPACE €[

«)COPY

" INITWORKSPACE

. PREPARE2

& LT DI L IDD

¥

A

L

.

IF YOU WANT MARKET TIME-SERIES RESULTS TO BE

« YCOPY MSTART MSTART ', vNUM
"MBTART ', ¥NUM
INE ABOVE MEANS THAT MSTARTXX IS EXECUTEL.

METARTXX WHERE XX IS THE NUMBER 1IN

INDATA FROM INITIALIZATION...

PRINTED

DURING SIMULATION REMOVE COMMENT ON NEXT LINE. ..

TRACE1

TRACEL

PRINTS OUT TIME-SERIES RESULTS...

ouT

[251
L2613
£2vi

L2e1
L2911
£301

v

- 31 -

Section 5 Description of update MOSES

PERMANENTACHANGES
A PERMANENT' CHANGES IN MOSES:
]
"MARKETACONFRONT® MODADD ' PTwQPURCHG¢QPURCHGXPTL 1 101x(1+(QWG+WGAR
EF)Yy+i00°
ACORRECTION OF DEFLATOR FOR QOVERNMENT 'S PURCHASES
A
"INVFIN' MODSURST 'K1ROOK¢K1BOOKoK1BOOKeKI1ROOK-QUEPRREROOK«OIQREVI.R
HOROOK XK 1ROOK«QINV+K1ROOK
BOOK-VALUE SHOULD NOT EBE UPDATED WITH INFLATION

CHANGES TO VECTOR-FORMAT ON MAX/MIN/OPT-8T0 MADE PERM.
CORRESPONDING FOR MAX/MIN/OPT-IMETO IN FN. INDAPURCHASHARES®

b Qi > Bl » R i

>

"PLANQREVISE' MODSURST 'QIMQ¢0[wn Q@IMG-LINE MOVED AROVE IMSTOS
"PLANGREVISE' MODADD 'QQ«QQu@IMA«0[((RIO)CMARKET; IMULTY QPLANQSAV
E)+(OPTIMSTO-IMSTO)+4xTMIMSTO"
A

EXOAQDWG+
ATHE Z-~-SECTOR IS ORSOLETE AND ISN'T ANY LONGER USELD,
ATHE FOLLOWING LINES DELETE 0OR CHANGE LINES 50 THAT
aTHIS SECTOR IS IGNORED,

"LARDURAMARKET * MODDEL ' ZLAROUR®

"MARKETACONFRONT ' MODSUEBST 'PT¢QaPT¢@PRELPIOM, (CQPROMIINIXI+QDPIN)
17

"HOUSEHOLDAINIT' MODSURST ' INMONEYwINMONEYHH¢QTRANS+QINPAY+QTDIV+
(SUM2 LxQW+L)+{LGXQUWE+U I+ (QINTHENH+ , XRIHXWH+4)

"HOUSEHOLDAINIT® MODSURST "QTWS¢(LGu@TWSe (LGXQWG+Y), SUM2 LxQW=y4 -’
"HOUSEHOLDAINIT® MODSURST "QTI¢QTDIw@TI¢ATOIV+ATRANS+H((+/QTWE) QW
TAXI+QINTH"®

"LUUPDATE " MODSURST 'LFeolFeLU+LG+EUM2 L7

"QRAEXD MODDEL "TXVAZe!

"LARDURAUPDATE® MODSUBST ‘RU&RU+QuRU+RU+QCHRU« (LU+LU+LG+EUME L) -R
U

"DOMESTICARESULT® MODDEL 'QPZe

‘FINALGPQGSAM ' MODDEL "aMZe’

"FINALGPQSAM'™ MODDEL "QUHKZe'

£311
£321
£331
C343
L3251
L3481
L3713
L3l

- 32 -

Section 5 Description of update MOSES

'FINALGPASAM' MODDEL ' QLIVZe

"INVFIN' MODSURST ‘QUTAX¢(SUQCTAXe(SUM2 QTAX) '

'YACOUNTRYATOTAL® MODDEL 'CTACHKZ¢'

'DOMESTICARESULT' MODDEL ‘QSZe

"INDIRECTATAXES' MODSUEST ' QVATAXew@VATAXe (TXVAZXQPURCHG+ASPINKT,
IN; I+, xNH) , 0"

'YAINDUSTRYATOTAL' MODSUBST "LTDT¢elTOTeLB+SUMZ L
#

VARIANTS¢VARIANTS, © PERMANENT CHANGES 1980-81

C1a
£21
£33

£11
£21
L3
Lyl
RN
L&l

£1l

L2l

v

[31

LW

.
o
L

£13
£23

£i3
£ad
£33
[l
£5
L&l
£73

I B

Y

v

v

- 33 -

Section 5 Description of update MOSES

MOSESAVARIANTS
NEGAIMSTO
INDAPURCHASHARES
POSITIVEANETAWORTH

PREPAREARUN

LOEPNREENUM

DAaTUM

DHEURe %% EXPERIMENT ', vNUM
[IPWe120

£ IMAXCORE 352¢

AaMAXTHMUM CORE IN COMPUTER-MEMORY. ..

PREPARE?2 : .

A THIS LINE GIVES THE WORKSPACE A NEW NAME,
n FOR EXAMPLE S3V7

P ‘

OWETIIE S, CyNUMY "V L TNITWORKSPACE
DSCReDSUR, © L ISTART= ', LITHITUORKSPACE
DECREDGOER, © | s’ ‘

DATUM, TG

TS5€OTS

TIMESTAMP«(TWO TSL11), "~ (TWO TSL21), "~ (TWO TSEL3I1), " 'L, {TWO TS
CW1d, "7, (TWO TSE5D)

RESULTETWO NUMBER

TO REPRESENT ANY NUMBER WITH TWO INTEGER PLACES.
A FRACTIONAL PART I8 ROUNDED, BIGGER THAN 29 GETS TRUNCATED,
a AND SMALLER THAN 10 GETS LEADING ZEROES,

ALWAYS " (NUMBERz0)A(0=ppNUMBER) * _
RESULT« 24700, v 0. 5+NUMRER

L1131
C2l
£37]

L1l
£21
L3l
ful
L5
L&
L7l
£81
N
£i03
Ci1d

L1213

£13]
L
L1571
[161

L1731
£i81l
£191
L201
£211

L2217

¥

v

v

- 34 -~

Section 5 Description of update MOSES

NEGATMSTO

A ALLOWS INPUT--GOODS INVENTORIES TO HAVE LEVELS BELOW ZERO
ENS 1=11p PLANQREVISE' MODFNP 'SHORTAGE«QO[@SHORTAGE«QX'
VARIANTS«YARIANTS, © NEG-IMSTOS

POSITIVEANETAWORTH

A FROM 81-02-02 A COMEBINATION WITH "NULLIFYANEGANW'
A

a TO MAKE SURE EBORROWING DO NOT EXCEED ASSETS,

A AND TO , THOUGH IN QUITE A CRUDE WAY , ADJUST

A NEW-RORROWING TO THE DEBT/EQUITY-RATIO

A STEP 1: GARW = REDCHBW(=,13)xRUW

A 2: QABW REDUCED IF 0.1<(NW/AYZ0.3

A 3: QARW =0 IF 0.12(NW/A)

A b: FIRMS ARE NULLIFIED THE 6'TH QUARTER WITH N0
A

"INVFIN' MODADD "QDESCHEW (00QDESCHRWLTHOJ¢REDCHEBWXBWLTHO« (QDESCH
BUW > REDCHBWXRW) /1 pBUWT'
"INVFIN' MODADD " QDESCHKZ2e (RWuQDESCHRWe (BWACHECK ((BW+GDESCHRUW) +(
K1+ (K2+QDESCHK2)Y+K3))) xQDESCHRUW'
A
"INVFINAADJUSTMENTS ' MODADD ‘s NW ISeoRADEBAD+H(NW<0)'
TINVFINAADJUSTMENTS' MODADD " BADOREALLYARBADCRAD=6"
"INVFINAADJUSTMENTS ' MODADD "REALLYw: (02 {(+/REALLYABADN /"' NULLIF
YANW REALLYARAD * '
A
"NULLIFY'® MODADD "SHRINK ' AMANeSHRINK ‘' "RAD® "¢
"NULLIFY' MODADD "SHRINK ' '@W' 'oSHRINK ' 'REALLYARADC '
A
VARTIANTSVARIANTS, ' POS-NET-WORTH-ELSE~-NULLIFY °
fA

- 35 -

Section 5 Description of update MOSES

V INDAPURCHASHARES

[13 A PURCHASING-SHARE INDIVIDUALIZED IN THE FOLLOWING WAY

£21 a I/70-MATRIX ENDOGENOUS IN VOLUME TERMS

£33 a PURCHASING SHARE: (SUM I=1...10 I0LX IJ)>+(8UM I=1,..13 10CX I

£ f PURCH,-8SHARES ARE INDIVIDUAL FOR MKT X=1...4

[51 A THE RELATION (IOEX I +(IOLX J3); I.0e01,101,1#; 18

L6131 a FIXED THOUGH........

£L73 A NOTE: IF FN. *ADDFIRMx* SHOULD BE USED, CHANGE LINES

[81 A Q¢ AND @@«

£91 a

L1010 & FROM FRED 0OCT-80

£113 =

I ‘TARGASEARCH' MOLSUEBST 'QEXPPNET+oQEXPPNETQEXPP-SHAREX (QEXPPIM+,
xIO)CMARKETI”

€131 ‘MAXIMSTO® MODSURST 'Re(RIOwRe((RIOD)CMARKET;1 MULT? SHAREIMULT?Y R
EFQIMSTO x IMRIG'

Ciuld "MINIMSTO' MODSURST "Re(RIMeRe((RIDIMARKET; 1 MULTY? SHARE)IMULT?
REFGIMETO x IMSMALL'S

£151 "OPTIMSTO' MOLSURST '"Re(RIM oRe((QIOIIMARKET; 1 MULT? SHARE)IMULT?
REFQIMSTO x IMSMALL+IMBETAXIMBIG-IMSMALL'

L1461 "PLANQREVISE '™ MODSURST "'MAT€(8ID) oMATe(RIO)IMARKET ;1 MULTY SHARE'

C171 ‘PLANQREVISE' MODSURST " IMSTO€oIMSTOeMAXIMSTOLIMSTO+QIMA-MAT MULT
7 Q8’ :

£i81 "PLANQREVISE' MODSURST "QIMA«0T ((0I0w@IMA«0[(MAT MULT? QPLANGSAVE
YH(OPTIMSTO-IMSTO) +UxTHIMSTO"

£i91 "FINALQPQSAM' MODSURST 'QVA+wQVA+QVAX1+QDIVA+ 1+ (QaxQAP-SHAREX ((QPD

OMx1-TXVAR)+. xI0) IMARKET 1) +Qva’
L2010 & WE ALS0D SHRINK VAR, #SHARE®* IN NULLIFY
211 =
£221 VARIANTS«VARIANTS, * INDIVIDUAL-PURCHASING-SHARES

- 36 -

Section 6 In case of trouble...

Here are some tricky situations in connection with

the running of the model:

1) Error during simulation. Not the model
itself.

Make the system command
) sI.
You can then see in what function the simulation

was interrupted.

If you are interrupted in a '"print-out"-function
(not the model itself) you can usually continue
the simulation by doing:*
->L_]LC+1

This means that you skip the line where you were
interrupted. This can damage the printing out of
results 1in some tables, but not the simulation
itself.

2) Error during simulation. The model

itself.

If you are interrupted in a function belonging to
the model itself, this is usually due to one firm
(out of 147) behaving in a perverse way (getting
production volume less or equal to zero or somne-
thing like that).

You must then either change some lines in the
model or some lines in the initialization. Due to

the character of the problem it may take anything

* In front of LC should be an APL-symbol which is
an empty square. For typographical reasons this is
written as | |.

- 37 -

from a couple of hours to weeks to correct this
error, since one has to get well acquainted with
the model-code 1itself to understand why things
have gone wrong. (A quick solution may be to nulli-
fy (=delete) this firm in the beginning of the

simulation, but this is not the best solution.)

3) Error during initialization

Usually due to some technicalities when using the
functions IMODADD, NMODSUBST, etc... See section 3.

4) Editing an APL-function

While making changes in an APL-function one might
sometimes wind up in a situation where it is impos-—
sible to get a new line-nunmber, when pressing the
RETURN-key. This comes about if one is writing an

expression with in, and for some reason Jjust has
given one apostrophe. One must write both a left-
hand apostrophe and a right-hand apostrophe to get

a newv line-number.

- 38 -

Section 7 Printing out the result

The result is, as mentioned previously, stored in
a workspace called SXXVYY, where XX is the number
of the experiment version, and YY is the number of

the initialization version.

A function PRINT should be used to print out the

result.

The result 1is a number of tables with different

names.

To print out a table perform:

PRINT 'name of table'.

The names of the tables, available after a run,

are shown if one performs the function call:

ALLREPORTS

Example:

We wish to print out the table called
YEARLYAINDUSTRYATOTAL.

Perform:

PRINT 'YEARLY4INDUSTRYsTOTAL'

You then get yearly performance of some main econ-

omic indicators.

This result 1is printed out on the screen and on a
printer connected in series with the terminal,
after each simulated year. Deleted firms (bankrupt-

cy) are also printed out during simulation.

LITERATURE

"The APL Reference Manual": For example:

APLSF programmer's reference manual, DEC
system 10, DEC-10-LPLSA-A-D, 1976.

Batch Reference Manual, DEC system 20,
DEC-20-OBRMA-A-D, 1978.

Albrecht~-Lindberg, The Micro Initialization of
MOSES, IUI, 1982, Working Paper No. 72.

Eliasson, G, A Micro-to-Macro Model of the Swedish

Economy, 1IUI Conference reports, Stockholm
1978.

Eliasson, G, Experiments with Fiscal Policy Parame-
ters on a Micro-to-Macro Model of the Swedish
Economy, Reprint from Robert H. Haveman and

Kevin Hollenbeck, eds., Microeconomic Simula-

tion Models for Public Policy Analysis,
vol. 2, pp.49-95, 1980.

Eliasson, G, (forthcoming), The firm and financial

markets in the 8Swedish Micro-to~Macro Model
(MOSES), IUI, 1983.

WORKING PAPERS (Missing numbers indicate publication else-
where)

1976

l. Corporate and Personal Taxation and the Growing Firm
by Ulf Jakobsson

7. A Micro Macro Interactive Simulation Model of the Swedish
Economy.
Preliminary model specification
by Gunnar Eliasson in collaboration with Gdsta Olavi

8. Estimation and Analysis with a WDI Production Function
by Goran Friksson, Ulf Jakobsson and Leif Jansson

1977

11. A Comparative Study of Complete Systems of Demand
Functions
by N Anders Klevmarken

12. The Linear Expenditure System and Demand for Housing
under Rent Control
by Per Hogberg and N Anders Klevmarken

14. Rates of Depreciation of Human Capital Due to Nonuse
by Siv Gustafsson

15. Pay Differentials between Government and Private Sector

Employees in Sweden
by Siv Gustafsson

1979
20. A Putty-Clay Model of Demand Uncertainty and Investment
by James W, Albrecht and Albert G. Hart

1980

25. On Unexplained Price Differences
by Bo Axell

26. The West European Steel Industry - Structure and
Competitiveness in Historical Perspective
by Ro Carlsson

27. Crises, Inflation and Relative Prices in Sweden 1913-1977
by M&rtha Josefsson and Johan Ortengren

33.

34,

1981

35.

36.

37.

38.

40.

41,

42.

43,

by,

45,

47.

43,

-2 -

The Nemand for Energy in Swedish Manufacturing
by Joyce M, Dargay

Imperfect Information Equilibrium, Existence, Configuration
and Stability
by Ro Axell

Value Added Tax: Experience in Sweden
by Gd&ran Normann

Fnergi, stabilitet och tillvixt i svensk ekonomi (Energy,
Stability and Growth in the Swedish Economy)
by Bengt-Christer Ysander

Picking Winners or Railing out Losers? A study of the
Swedish state holding company and its role in the new
Swedish industrial policy

by Gunnar Eliasson and Bengt-Christer Ysander

Utility in Local Government Budgeting
by Bengt-Christer Ysander

Wage Earners Funds and Rational Expectations
by Ro Axell

A Vintage Model for the Swedish Iron and Steel Industry
by Leif Jansson

The Structure of the Isac Model
by Leif Jansson, Tomas Nordstrém and Bengt-Christer
Ysander

An Econometric Model of Local Government and Budgeting
by Bengt-Christer Ysander

Local Authorities, Economic Stability and the Efficiency of
Fiscal Policy
by Tomas Nordstrdm and Bengt-Christer Ysander

Growth, Exit and Entry of Firms
by Gdoran FEriksson

Qil Prices and Fconomic Stability. The Macroeconomic
Impact of Oil Price Shocks on the Swedish Economy
by Bengt-Christer Ysander

An Examination of the Impact of Changes in the Prices of
Fuels and Primary Metals on Nordic Countries Using a
World Econometric Model

by K. S. Sarma

50.

51.

52.

53.

54.

55.

56.

58.

59.

1982

60.

61.

63.

64.

-3 -

Flexibility in BRudget Policy. Changing Problems
and Requirements of Public Rudgeting
by A. Robinson and B.-C. Ysander

On Price Elasticities in Foreign Trade
by Fva Christina Horwitz

Swedish Export Performance 1963-1979. A Constant Market
Shares Analysis
by Eva Christina Horwitz

Overshooting and Asymmetries in the Transmission
of Foreign Price Shocks to the Swedish Economy
by Hans Genberg

Public Budgets in Sweden. A Brief Account of Budget
Structure and Budgeting Procedure
by Rengt-Christer Ysander

Arbetsmarknad och strukturomvandling i de nordiska
landerna
av Rertil Holmlund

Central Contro! of the Local Government Sector in Sweden
by Richard Murray

Industrial Subsidies in Sweden: Macro-economic Effects and
an International Comparison
by Ro Carlisson

Longitudinal Lessons from the Panel Study of Income
Nynamics
by Greg J. Nuncan and James N. Morgan

Stabilization and Growth Policy with Uncertain Oil Prices:
Some Rules of Thumb
by Mark Sharefkin

Var stdr den nationalekonomiska centralteorin idag?
av Bo Axell

General Search Market Equilibrium
by James W. Albrecht and Bo Axell

The Structure and Working of the Isac Model
by Leif Jansson, Thomas Nordstrém and Bengt-Christer
Ysander

65.

67.

68.

69.

70.

71.

72.

73.

74,

75.

-4 -

Comparative Advantage and Development Policy Twenty
Years Later
by Anne O. Krueger

Computable Multi-Country Models of Production
and Trade
by James M. Henderson

Payroll Taxes and Wage Inflation: The Swedish Experiences
by Rertil Holmlund (Revised, September 1982).

Relative Competitiveness of Foreign Subsidiary Operations
of a Multinational Company 1962-77
by Anders Grufman

Optimization under nonlinear constraints
by Leif Jansson and Erik Mellander

Technology, Pricing and Investment in Telecommunications
by Tomas Pousette

The Micro Initialization of MOSES
by James W Albrecht and Thomas Lindberg

Measuring the Duration of Unemployment: A Note
by Anders Bjoérklund

On the Optimal Rate of Structural Adjustment
by Gunnar Eliasson

The MOSES Manual
by Fredrik Rergholm

