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Foreword 

The analyses of production, public sector economics and the development of 

econometric method have a long tradition at the Industrial Institute for 

Economic and Social Research (JUl). This theoretical study by Erik 

Mellander combines these areas in an innovative way. 

The possibilities of estimating efficiency and productivity are analyzed 

for situations when reliable measures of production cannot be constructed. 

This is of ten the case for public services and also for private production with 

heterogeneous product qualities. It is demonstrated for a large dass of 

production technologies that data on output are not required to study 

productivity and efficiency. An econometric model is also developed to 

implement the results empirically. 

This book has been submitted as a Ph.D. thesis at the University of 

Uppsala. It is the 47th doctoraI or licentiate dissertation completed at the 

Institute since its foundation in 1939. JUl would like to thank Peter Englund 

and Bertil HolmIund who acted as thesis advisors and Ernst Berndt for his 

keen interest in, and support of, Mellander's work during his frequent visits to 

the institute. JUl would also like to acknowledge the importance of two of its 

former researchers in the early part of this study, namely, Bengt-Christer 

Ysander, who was Mellander's first thesis advisor and Leif Jansson, who was 

his collaborator in earlier work on related problems. The generous financial 

support from the Bank of Sweden Tercentenary Foundation, the Royal 

Swedish Academy of Sciences and the Sweden-America Foundation is 

gratefully acknowledged. 

Stockholm in March 1993 

Gunnar Eliasson 





MEASURING PRODUCTIVITY AND INEFFICIENCY 
WITHOUT QUANTITATIVE OUTPUT DATA 

Erik Mellander 

Dissertation for the degree of Doctor of PhilO8Ophy, Uppsala University, April, 1993. 

ABSTRACT 

This dissertation investigates the possibilities to estimate the development of 
productivity and inefficiency in the absence of quantitative merumres of the 
production result. 

Chapter I discusses the relevancy of the methods suggested in the thesis and 
puts them into perspective by relating them to other, more traditional, methods. 
The basic assumption in the succeeding chapters - that the production technology is 
homothetic - is considered and the concept of homotheticity is characterized. 

In Chapter II a general method is described which allows a production activity 
to be analyzed by means of input data only. According to duality theory, the input 
cost shares can be completely specified without any information about output if the 
technology is homothetic. It is demonstrated that these cost shares can yield 
information about elasticities of substitution and factor demand and on productivity 
growth. Effects of returns to scale can not be analyzed, however. Finally, the system 
of share equations is generalized to allow for technical and allocative inefficiency and 
it is shown how to compute the effects of these inefficiencies on total cost and input 
demands. 

The purpose of Chapter III is to show that the parameters of the model in the 
preceding chapter can be identified and, hence, econometrically estimated. It is 
assumed that the production technology can be characterized by means of a translog 
cost function and, for simplicity, the attention is confined to the case with (at most) 
three inputs. Both allocative and technical inefficiencies are modeled parametrically. 
It is proved that if the disturbances of the cost share equations are joint normally 
distributed then the information matrix of the Full Information Maximum Likelihood 
estimator has full rank, which implies that the parameters are (locally) identified. 

Chapter IV extends the results to the case when a value measure of output is 
available. This situation is typical of many private service industries. The output 
market is allowed to be noncompetitive, and the potential mark up is assumed to be 
either known or constant. It is shown that if average cost is strictly increasing in the 
volume of output then the given data are equivalent to complete information, 
provided that the markup is known. Accordingly, return to scale can be analyzed 
and, hence, productivity growth can be completely determined. If the markup is 
unknown, the results continue to hold conditionai on the unknown markup. 

Erik Mellander, the Industrial Institute for Economic and Social Research, 
Box 5501, S - 114 85 Stockholm, Sweden. 
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CHAPTER I 

Introduction and sununary 

To try to measure productivity and inefficiency when what is produced (the 

output) cannot be observed may not seem like a very good idea. It is possible, 

however, and the primary purpose of this thesis is to show how it can be done. 

While it is purely theoretical, the analysis here is geared directly towards 

empirical applications. 

Even though the subject of the thesis may be interesting in its own right, 

it is reasonable to ask if it is also relevant. Are there situations when it is 

necessary or desirable to measure productivity and inefficiency without having 

quantitative output data? Af ter all, it is hard to conceive of production 

processes for which no quantitative information can be obtained about the 

production result. And, if such information were available, why would one 

ignore it? 

In this introduction, the emphasis will be on the relevancy issue. Firstly, 

it will be shown that there are indeed circumstances requiring the use of the 

methods suggested in the ensuing chapters. Secondly, it will be argued that in 

many cases it may be desirable to use them, even when it is not strictly 

necessary. However, it should be noted that this rides on the assumption that 

the output volume data are measured with error. While the methodology is 

completely general, in the sense that it can be applied to any production 

activity, applications to service production will be stressed because, as a rule, 

output measurement problems are more severe in service production than in 

goods production. 

First, a few words will be said about the assumptions made in the thesis 
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about the data available for analysis. In this context, the system of national 

accounts will be adduced as an example of a data source which for some types 

of production can make it necessary to measure productivity and inefficiency 

without quantitative output data. Next, the traditional approach to handling 

output data subject to error will be reviewed. The alternative approach 

suggested in this thesis will then be outlined in the last two sections. 

1. Basic assumptions about data 

To focus the analysis on problems associated with output, it is assumed that 

all relevant information is available about the factors of production (the 

inputs) and, furthermore, that it is known that this information contains no 

errors,! The available quantitative information about output, on the other 

hand, is assumed to be defective in some sense and the nature of the defect is 

assumed to be unknown. In a stylized form, these two assumptions describe 

the following very common situation: there are strong reasons to suspect that 

the output measure(s) are inaccurate but information cannot be obtained 

about the precise character of the errors involved. 

The designation defective output data is here taken to include all output 

data sets except those completely free of error. Thus, on the one extreme, 

defective output data may be output data subject to an independently and 

identically distributed random error with zero mean. For simplicity, such 

errors will be denoted white noise, in accordance with the jargon used in the 

1 Of course, there are problems in the con text of input measurement, too. 
There is, however, a large literature dealing with how these problems can be 
handled. See Usher (1980) and Hamermesh (1986), for example, for 
discussions about problems associated with the measurement of capital and 
labor, respecti vely. 
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statistical time series literature. On the other extreme, defective output data 

will simply be non-€xistent output data. 

It should be noted that the possibility of there being non~uantitative 

information about output is not excluded here. Specifically, the usefulness of 

output value data is considered in the final chapter of the thesis where it is 

assumed that, as with input data, the value data are known to contain no 

errors. 

While instances where there is no output information whatsoever are 

very unlikely, it may be that information exists but cannot be used for the 

particular purposes of measuring productivity and inefficiency. This point can 

be illustrated by the treatment of the production of services in the national 

accounts statistics, especially public services but also several types of private 

services, e.g. financial services. By convention, the output of the public sector 

is in the national accounts equalized to the volume of resources used to 

produce it. This implies inter alia that public sector productivity growth is set 

equal to zero a priori and that inefficiency in the form of excessive factor usage 

is assumed not to exist.2 Thus, by construction, these output measures 

incorporate assumptions about the phenomena to be investigated, Le. 

assumptions about productivity and efficiency, and hence obviously cannot be 

used in analyses of these issues. Concerning output measures for private 

services which suffer from similar problems, the most well-known examples are 

given by the banking and insurance industries. For example, in the Swedish 

National Accounts the (volume of) value added in these sectors is estimated 

by assuming that average labor productivity increases by a constant yearly 

rate of 2%. Procedures of this kind are employed in other countries, too. 

When quantitative output data are either non-€xistent or inadequate in 

2 A more extensive discussion of the properties of the public sector output 
measure used in the national accounts can be found in Chapter II. 
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the sense just described, then it is necessary to resort to procedures for 

measuring productivity and efficiency which, like the methods suggested in 

this thesis, do not require any quantitative output information at all. 

However, in general some kind of quantitative output information is available 

in which case it is also possible to use traditional approaches. 

2. The traditional approach: output measurement models 

The traditional approach to handling the problem of defeetive output data is 

to eomplement the structural model used in the analysis - say a production 

function or a cost function - by a measurement model that deseribes the 

relationship between the available output proxy variable(s) and the 

unobserved "true" output. Of course, for this to be ameaningful undertaking 

output data must be neither non-existent nor inadequate in the sense deseribed 

in the previous section. Accordingly, that is assumed here. 

In the simples t possible case the true output is equal to the sum of a 

single proxy variable and a white noise error. In this case of a purely 

nonsystematic error there is really no problem and therefore no need to 

formulate the measurement model explicitly.3 A benign interpretation of the 

many studies in which output measurement problems are acknowledged but no 

attempt is made to take them explicitly into account in the analysis is that, 

implicitly, they have assumed this particular measurement model. Implicit 

measurement models are also employed in contexts where output is taken to 

3 If the struetural model is a produetion function then it is obvious that the 
output measurement problem can be neglected; the output measurement error 
will simply be added to the random error in the structural model. If a eost 
function is used, then it must be assumed that the output error is not 
correlated with the error in the cost funetion. 
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be multi-dimensional. In that case, one procedure is to aggregate several 

proxies into an output indicator index. Another technique is to model 

production as a multiple-{mtput process, using one proxy variable for each 

output dimension. 4 

There are very few examples of analyses where the measurement model 

has been formulated explicitly.5 One of the first to appear was the study by 

Spady and Friedlaender (1978) of the American trucking industry where the 

unobserved "true" output was modeled as a function of the traditional output 

measure - ton-miles - and various other characteristics like average shipment 

size, average length of haul, insurance coverage, etc. By substituting this 

function into the structural model (the cost function) Spady and Friedlaender 

were able to estimate the unobserved output variable and the cost function 

simultaneously. Comparing the results of this model with those obtained 

using ton-miles as the output variable they found substantial differences, 

indicating that the systematic measurement error associated with the ton­

miles variable was of considerable practical importance.6 

4 ExamJ?les of studies employing the output indicator index technique are 
Pauly (1978) and Parsons, Gotlieb and Denny (1992). Analyses where 
production is modeled as a multiple-output process have become very popular 
recent ly; see Grosskopf and Valdmanis (1987), Mester (1987), Eakin and 
Kniesner (1988), Gyapong and Gyimah-Brempong (1988) and Bernstein 
(1992). 

5 It may be noticed that the situation is quite different in applied sociology 
and applied psychology. There, the use of explicit measurement models has a 
long tradition and software has been developed for estimation of models 
containing bot h a structural submodeI and a measurement submodel; one 
exarnple is the LISREL program, a description of which can be found in 
Jöreskog and Sörbom (1989). 

6 A related approach has recently been used in studies of the rroduction of 
child care [McKay (1988), Mukerjee, Witte and Hollowell (1990 , Powell and 
Cosgrove (1992)) . While a purely quantitative output measure as been used 
(the number of full-time equivalent children enrolled) an attempt has been 
made to controI for quality differences across day care centers, by means of 
variables reflecting care intensity and staff characteristics. However, the 
relationship between the "true" output - the increase in knowledge, skills and 
cap ab ili t y imparted to each child - and the quantity and quality components 
is not explicitly spelled out in these analyses. 
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Lately, a methodology for formulating measurement models for the 

output of educational institutions has been developed by Hanushek and Taylor 

(1990), and applied by Grosskopf et al. (1991, 1992). The strength of this 

approach lies in the explicit recognition of the fact that achievement test 

scores, which traditionally have been used to measure educational output, are 

to a large extent determined by circumstances exogenous to the producer (the 

school).7 These exogenous influences are taken into account by regressing the 

test scores on previous test results and variables reflecting the socio-economic 

status of the student body, and using the estimated residuals of the regression 

equation as measures of output. While undoubtedly an improvement over old 

practices, this procedure still leaves quite a bit to be desired. For instance, no 

account is made of the effect on the student's capability to assimilate higher 

level education. 

Irrespective of whether the measurement model is implicit or explicit , 

the common problem of the traditional approaches is the maintained hypoth­

esis that the difference between the "true" output and the instrument by 

means of which it is modeled is equal to white noise. Only then is the use of 

output proxy variables ariskless undertaking, in the sense that it will not bias 

the conclusions drawn from the analysis. Being maintained, the white noise 

hypothesis cannot be tested. Quite of ten , it can be seriously questioned, 

however. Consider, for example, the almost universal practice of using 

patient-days as a measure of output in health care studies. Clearly, this 

measure may reflect next to nothing of the change in the present and future 

health status of patients, although this is something that ought to be included 

in any reasonable definition of health care output. Thus, there is no reason to 

believe that the number of patient-days mirrors the true output so closely so 

7 Of course, this insight is not new; it can be found, e.g., in Kiesling (1967). 
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that the two differ merely by a white noise term. Rather, the difference will 

most likely be systematic and perhaps of substantiaI magnitude.8 

3. The alterna.tive a.pproach: imposing oonstraints on the production 

technology 

The fact that the validity of the maintained hypothesis underlying the 

traditional approach of ten can be put into question makes it interesting to 

examine whether it is possible to do without quantitative output measures 

altogether. Obviously, when conditions are such that productivity and 

efficiency can be measured without quantitative information about the 

production result, then disregarding the by presumption defective output 

measure is the right thing to do. Furthermore, it reduces the part of the work 

associated with data collection and eliminates the need to formulate a 

measurement model. The problem, of course, is (i) to derive such conditions 

and (ii) to make sure that they are fulfilled. 

The traditional approaches can give no hint about how to tackle (i) 

because they treat the output measurement problem in isolation, without 

taking the ultimate purpose, Le. the measurement of productivity and 

efficiency, into account . In contrast, the analytical framework proposed here 

8 Strangely enough, these obvious shortcomings of the patient-days measure 
are rarely commented upon. One of the few exceptions is Grosskopf and 
Valdmanis (1987) who defend its use by claiming that their ambition is 
limited to modeling the production of an intermediate good, namely health 
services, rat her than the final good, Le. the change in (present and future) 
health. However, it does not seem very meaningful to consider the production 
of the intermediate good unIess one can feel confident about knowing how it 
affects the production of the final good. 
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makes explicit use of the economic theory of production.9 Specifically, it 

exploits the seminal work of Shephard (1953). Among other things, Shephard 

proved the following three properties for the cost function, which gives the 

minimum total cost of production as a function of the prices of the inputs 

employed and the volume of output produced. First, the cost function 

embodies all the essential information about the production technology. Thus, 

if the producer minimizes the cost of production, the technology that he/she 

employs can be characterized by means of the cost function. Second, the cost 

shares for input i can be obtained by differentiating the logarithm of the cost 

function with respect to the logarithm of the ith input price; this result is 

known as Shephard' s lemma. Finally, for homothetic production technologies 

the cost function can be written as the product of two subfunctions: one 

function of output and one function of the input prices. 

Homotheticity is the basic condition used in the thesis to enable 

productivity and inefficiency measurement without quantitative output data. 

Homothetic technologies can be characterized in two alternative ways. One 

characteristic is that the input cost shares are unaffected by the volume of 

output produced. This follows directly from the last two properties mentioned 

in the preceding paragraph. Homothetic technologies can also be described by 

the fact that the cost-minimizing production plan can be determined by means 

of the following two-step procedure. In the first step inputs are chosen such 

that the cost of producing one uni t of output is minimized. The volume of 

output is then chosen such that profits are maximized, conditional on the 

input choice in the first step. 

9 To the best of my knowledge, the only previous attempt in this spi rit is 
Hulten's (1984) study of the productivity in the public sector. However, 
Hulten's approach differs from the one taken here in that it is based on 
household production theory and presumes that the whole economy can be 
treated as a household. For a discussion of Hulten's model and its relation to 
this study, see Chapter II. 
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Chapter II and Chapter III are based on the first characterization. In 

these analyses it is assumed that there is no information at all about output. 

The derived models are primarily intended for studies of the production · of 

public services. In Chapter IV, the second characterization is used. There it 

is assumed that, in addition to input data, there is information available about 

the value of output, but not about the output quantity or the output price. 

This situation is typical for many types of private services. 

Of course, the homotheticity assumption is merely the starting point of 

the analyses in Chapters II, III, and IV. Further assumptions are necessary in 

order to enable conclusions about productivity and efficiency measurement. 

Both the assumptions and the conclusions will be commented upon in the next 

section. Before that, the possibility to ensure that the homotheticity 

requirement is fulfilled will be discussed. 

In a strict sense, the only way to infer if a technology is homothetic or 

not is to model it as belonging to the more general class of non-homothetic 

technologies, which includes the dass of homothetic technologies as a special 

case. One can then test if the assumption that the technology is homothetic 

amounts to imposing a binding restriction on the non-homothetic technology 

that one started out with. The only problem with this procedure is that it 

requires quantitative information about output. The reason is that in terms of 

the input cost shares, the difference between homothetic and non-homothetic 

technologies is that the cost shares corresponding to the lat ter are not 

independent of the volume of output . Some reflection shows that while it is 

not necessary to have perfeet, error-free, output data in order to perform the 

test, the output proxy variables used (or some function of them) must have 

the propert y that they differ from the true output only by a white noise term. 

Now, from the discussion above it is clear that if this is the case then there is 

no reason not to use the output proxy variables. That is to say, the only 
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situation in which it is possible to test if the homotheticity assumption is 

warranted is the situation in which there is no point in imposing this 

assumption. 

This conclusion can be formulated in an alternative, considerably more 

interesting, way. To this end, assume that a production process is to be 

studied and that there is no a priori information about the production 

technology. Furthermore, assume that it will be possible to obtain output 

proxy variables but that there is no way of determining whether the difference 

between (a function of) these proxy variables and the true output will be 

merely white noise. The question then is: is the assumption that the 

technology is homothetic in some sense more restrictive than the assumption 

that the difference between (a function of) the output proxy variables and the 

true output is white noise? The answer to this question is that it cannot be 

answered. Thus, in this quite realistic situation it is impossible to say that the 

homotheticity assumption is too restrictive. The choice between this 

a{lsumption and the use of proxy variables of unknown quality has to be 

determined by means of other criteria. As pointed out above, the 

homotheticity assumption has the advantage that it requires less data. Of 

course, if proxy variables are easily accessible at low cost then there is no need 

to make a choice; the two approaches can then be regarded as complementary. 

Still, it might be argued that available experience speaks strongly 

against the homotheticity assumption because in studies where it has been 

tested it has mostly been decisively rejected. In the present context, the value 

of this empirical evidence is rather uncertain, however, since almost all of the 

tests come from studies of the manufacturing industry.10 Analyses of 

10 Homotheticity has been test ed in a few studies of service production, e.g. 
Spady and Friedlaender (1978) and Mester (1987), both of which reject it. 
However, the reliability of these tests is contingent on the assumption that the 
proxy variables used differ from the true output merely by white noise. 
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manufacturing are not of primary interest here because, as noted earlier, the 

output measurement problem is presumably much less severe in manufacturing 

than in the service sector. 

More importantly, there is reason to expect the technologies employed in 

the production of services to differ from those utilized in the production of 

goods. If so, the fact that the homotheticity assumption is rejected in 

manufacturing does not necessarily mean that it is invalid with respect to the 

service sector. Indeed, it can be argued that the scope for automatization is 

more limited in the service industry than in the manufacturing industry and 

that this point s in just the opposite direction. Because, compared to 

manufacturing, the possibilities to expand the productive capacity by 

increasing the capital stock (relative to the other factors of production) are 

mostly quite small; expansion of ten takes place by setting up new production 

units, similar to those already existing. Accordingly, ceteris paribus, the input 

cost shares may not change very much when the volume of production goes up 

(or down). Of course, this is just a conjecture; whether it is right or wrong is 

an empirical matter. 
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4. A brief summary of the three studies 

At the cost of some repetition the three studies have been written in the form 

of independent articles that can be studied separately. It should be noted that 

the notation differs slightly between the chapters. 

CHAPTER II: On the econometric analysis of production when there are no 

output data 

Only input data are assumed to be available, in the form of quantities and 

prices. The properties of the input cost shares corresponding to a general 

homothetic cost function are investigated. Productivity measurement is made 

possible by allowing for (disembodied) technical change which, in accordance 

with common practice, is modeled as a function of time. H It is shown that if 

there are constant returns to scale, i.e. if the average cost is independent of the 

volume of output produced, then the growth in (total factor) productivity can 

be inferred merely by means of the system of input cost shares.12 If there are 

non-constant returns to scale then the rate of productivity growth cannot be 

determined, but it will still be possible to infer whether it has increased or 

decreased from one period to another. 

Two types of inefficiencies are considered and modeled parametrically: 

technical inefficiency and allocative inefficiency. Technical inefficiency means 

that the volume of output produced could have been accomplished by means of 

11 Disembodied technical change is that part of technical progress from which 
the producer can benefit effortlessly and costlessly. In contrast, embodied 
technical ch ange can only be assimilated through the acquisition of new capital 
goods. 

12 Technologies exhibiting constant returns constitute a special case of 
homothetic technologies for which the average cost in general varies with the 
volume of output produced. Total factor productivity growth refers to the 
difference between the rate of I;:hange in output and a weighted average of the 
rates of change in all inputs. 
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smaller input quantities than those aetually used. Alloeative inefficieney 

refers to situations where the input proportions are inconsistent with eost 

minimization, given the relative input priees. 

Modeling inefficiencies by means of the system of input eost shares is no 

trivial matter beeause the cost shares are derived under the assumption of eost 

minimization (ef. Seetion 3 above) while at the same time the existenee of 

inefficiencies implies that eosts cannot be minimized. The trick is to model 

the produeer as minimizing cost subjeet to another teehnology and another set 

of input prices than those aetually observed. This yields a generalized system 

of cost shares whieh eontains the eost shares corresponding to eost 

minimization as a special ease. Coneerning alloeative inefficieney, a previously 

used formulation is employed. Teehnieal inefficieney is modeled in a new way, 

however. It is shown that the resulting generalized system of eost shares can 

be used to estimate the inereases in total eosts brought about by the 

inefficiencies, as weIl as their effeets on input utilization. 

CHAPTER III: Identification of technical and allocative inefficiencies 

in the absence of output data 

This ehapter is eoncerned with the econometrie estimation of the model 

developed in Chapter II. To this end, a particular funetional form has to be 

assumed for the cost function. The flexible and well-known translog cost 

funetion is chosen. The analysis is primarily motivated by the need to check 

that all parameters of the model are identified, in particular those intended to 

capture the presenee of technical inefficieney. Since the model is high ly non­

linear, identifieation has to be established by means of a very general eriterion. 

The estimator considered is Full Information Maximum Likelihood, 

derived under the assumption that the disturbanees in the eost share equations 
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are joint normally distributed. Following Rothenberg (1971), identification is 

ascertained by proving that the information matrix has full rank. 

CHAPTER IV: An indirect approach to measuring productivity in private 

services 

In this chapter, the analysis in Chapter II is extended to the case where a 

measure of the value of output is available. Furthermore, imperfect competi­

tion is allowed for on the output market by modeling it as oligopolistic,13 It is 

shown that if average cost is strictly increasing in the volume of output 

produced then the production process can be completely characterized, in spite 

of the presumed lack of quantitative output data,14 This means that, in 

contrast to when only input data are available, it is possible to study scaling 

properties, Le. the dependency of average costs on the volume of production. 

Accordingly, total factor productivity can be measured even in the case of non­

constant returns to scale. This requires, however, that there is either perfect 

competition on the output market or, alternatively, that the markup that the 

sellers can charge over marginal costs is known to the researcher. 

Since it is of ten difficult to obtain information about the markup the 

analysis proceeds to the case when the mark up is unknown but constant. It is 

shown that the results continue to hold, conditional on the unknown markup. 

Implementation of the results is illustrated by means of the translog cost 

function. It is shown that, in addition to yielding estimates of total factor 

productivity growth, the estimated parameters can also be used to compute a 

quantity index and a price index for the unknown output. 

13 Inefficiency measurement is not discussed in this chapter but the results on 
inefficiency obtained in Chapter II and Chapter III can be applied here, too. 

14 Although it is not mentioned in the article, the result holds also if average 
cost is strictly decreasing in the volume of output. 
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CHAPTER II 

On the econometric analysis of production 
when there are no output data 

(with Bengt-Christer Y sander) 

1. Introduction 

For many productive activities it is very difficult to define a relevant output 

measure - and often practically impossible to implement it, once defined. In 

particular, this is the case regarding the rapidly expanding service sector. 

Most services have several quality and quantity dimensions, some of which are 

largely unobservable. For instance, health care not only results in actual 

changes of patients' health status. It also helps prevent future, potential 

illnesses. Obviously, to quantify the lat ter effect is an almost hopeless task. 

The most severe output measurement problems are probably encountered 

in the public sector. In the national accounts system, this has lead to the 

convention that the value of a public service is set equal to the value of the 

resources used to produce it. Volume measures are obtained by weighing the 

inputs by constant, rather than current, prices. Accordingly, the volume of a 

particular service, q say, in year t is defined as 

where xi is the amount used of input i, valued at constant prices.1 This 

accounting practice implies several strong assumptions about the productive 

performance of the public sector, some of which do not seem to have been 

1 In some countries, e.g. the U.S., only labor input is considered. 
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generally recognized. 

Firstly, it implies that the growth in total factor productivity, defined as 

the difference between the growth in real output and the growth of the cost 

share weighted inputs according to, e.g., Jorgenson and Griliches (1967), will 

always be equal to zero. Apart from almost certainly yielding an incorrect 

measure of the prOductivity development in the public sector itself, this will 

also bias calculations of aggregate growth (e.g. GDP), as soon as the size of 

the public sector changes. 

Secondly, it means that the production in the public sector is assumed to 

be efficient in the Sense that there is no slack in the utilization of the various 

factors of production. If such slack were to exist it would be possible to reduce 

the usage of some of the inputs without reducing output but, according to the 

chosen method of rneasurement, any such reduction would decrease the level of 

output. This is in con trast not only with widely held beliefs but also with 

theoretical considerations predicting lower efficiency in the public than in the 

private sector. 

Thirdly, it can readily be seen that a proportionate increase in all inputs 

will increase q by the same proportion, implying that constant returns to 

scale are assumed. In view of the fact that diminishing average costs, i.e. 

increasing returns, is an important motivation for public production, this is 

somewhat unfortunate. 

Finally, the additive formulation amounts to assuming that all inputs 

are perfect substitutes. However, given this technological propert y a cost­

minimizing producer would of course only use the cheapest input. Hence, it 

must be implicitly assumed that public producers ignore the effects of relative 

prices on total costs. Although this seems to agree quite weIl with common 

opinion it would be preferable to regard it as an hypothesis to be tested rather 

than as a maintained hypothesis. 
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In this theoretical paper we show that given (time series) input data, 

three of these four issues, namely productivity growth, efficiency in 

production, and sensitivity to changes in relative input prices, are amenable to 

econometric analys is even in the absence of output measures. There is thus no 

need to arbitrarily determine them a priori. Moreover, although we cannot 

explicitly study properties concerning returns to scale, our approach allows for 

the possibility of variable returns.2 

Our results are completely general in the sense that they can be applied 

to any production activity, Le. not only to those in the public sector. Within 

the private sector, the production of banking services is an example of an 

interesting object of study. In the national accounts, value measures of the 

output in the banking sector are obtained by adding the bank's service charges 

and the net proceeds from their len ding operations. To construct volume 

measures of output, various ad hoc assumptions are made. In the Swedish 

national accounts, e.g., it is assumed that the banking industry every year 

experiences a 2% increase in average labor productivity.3 Similar procedures 

are employed in other eountries, too. Our approach makes it possible to 

investigate the empirical validity of such assumptions. 

In contrast to the method that we are going to propose, analyses of 

production activities for which there are no reliable output measures tradition­

ally have employed proxy variables, intended to mirror the unknown output. 

2 Of course, this is not to say that one should not make efforts to search for 
appropriate and operationaloutput measures. Such data enable more elabo­
rate analyses and the measurement of returns to scale. The purpose of this 
paper is merely to show how much information one can obtain about the 
production process in situations where either no output data are available or it 
is impossible to assess the quality of existing data. 

3 As far as we know, no empirical support exists for the particular choice of 
2%. It is interesting to note that in an attempt to measure average labor 
productivity in American banks over the period 1927-1979, Rhoades and 
White (1984) could not find any indication of growth in average labor 
productivity since the mid 1950's. . 
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Attempts have also been made to take several dimensions of output into 

account simultaneously, either by aggregating several proxies into an output 

indicator index or by modeling production as multiple-output processes. Still, 

studies of this kind can always be criticized for failing to account for such 

basically unobservable output dimensions as the one exemplified in the first 

paragraph above. Since, by their very nature, such characteristics cannot be 

explicitly incorporated into the analysis the only way to escape this criticism 

is to find some method of avoiding the measurement of output altogether, as 

we do in this paper. To our knowledge, the only previous attempt in this vein 

is Hulten's (1984) study of productivity changes in the public sectoT. 

Inspired by household production theory, Hulten models the whole 

economy as a "household", maximizing a utility function in an aggregate 

private sector good, directly available for consumption, and an aggregate 

public sector commodity, which is produced by the community for internal 

consumption. The production process yielding the public sector commodity is 

assumed to exhibit constant returns to scale. Productivity changes are further 

presumed to be Hicks-neutral and are modeled by an exponential time trend. 

Duality theory can then be used to express the price of the public sector 

commodity in terms of the prices of the factors of production and a time 

index. Hulten demonstrates that this result in turn makes the ratio of the 

"household" budget shares for the private and public sector outputs a function 

of the price of the private sector good, the factor prices and the time index. 

By means of this equation the rate of public sector productivity growth can be 

estimated without an explicit measure of the public sector output. 

In addition to the rat her restrictive assumptions about the production 

technology a serious problem with Hulten's approach is the maintained, and 

therefore untestable, hypothesis that the householdjcommunity analogue is 

indeed valid, which is far from obvious. Our method is based only on standard 
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neoclassical production theory and, hence, can be applied to the public sector 

without any such assumption. Moreover, in contrast to Hulten, we do not 

have to presume the availability of any other information than input data for 

the particular production process studied. 

Given on ly input data, production or profit functions are infeasible as 

instruments of analysis, since in studies based on these the level of output is 

endogenously determined. This leaves a cost function analysis, where the 

output level is treated as predetermined, as the only practical alternative.4 

Output predeterminacy alone will not make it possible to analyze the 

production process by means of input data only. Both the cost function and 

the input demands which can be derived from it will always be dependent on 

the level of output. However, if the production technology is homothetic, Le if 

the proportions in which the factors of production are employed are unaffected 

by the scale of operation, then the shares of the various inputs in total cost 

will be independent of the output level. The input cost shares will thus be the 

endogenous variables in our analysis. 

The propert y that the input cost shares of a homothetic technology are 

invariant to the level of output has long been recognized in the econometrics 

literature. The extent to which these cost shares can yield information about 

the production process has not been thoroughly investigated, however. In this 

paper we perform such an investigation, based on a homothetic cost function 

formulated in general terms. 

The paper unfolds as follows. In Section 2, some weIl known implica­

tions of homotheticity are briefly stated. Estimation of the effects of non-

4 The treatment of output as a predetermined variable does not necessarily 
imply that the output level is exogenous to the producer. It can be justified 
even if the output decision is taken by the producer himself, provided that the 
problem of minimizing unit costs can be separated from the problem of choos­
ing the level of output. This independence condition is fulfiIled by the 
homothetic technologies that we will consider here. 



22 

neutral technical change on input requirements, total costs, and on total factor 

productivity is taken up in Section 3. In Section 4 we consider the fact that 

the theoretical derivation of the input cost shares assumes that production 

costs are minimized. We demonstrate how the dual representation can be 

generalized to allow for the existence of technical inefficiency (overutilization 

of inputs) and allocative inefficiency (inoptimal factor proportions), implying 

higher than minimum costs. Moreover, we show that this generalized system 

of cost shares can be used to estimat e the increases in total costs brought 

about by the inefficiencies, as weIl as their effects on input utilization. As far 

as we know, the fact that this is possible even when there are no data on 

output has not been demonstrated earlier. Formulas for comparing price and 

substitution elasticities, and the estimated effects of technical change, when 

there are inefficiencies in production with the corresponding measures under 

cost minimization are also given. Concluding comments are given in Section 5. 

2. The meaning of homotheticity 

We assume that information is available about the quantities used of the 

different factors of production and their respective prices, but that there are 

no data on output. To simplify the discussion, we will in this section dis­

regard technical ch ange and potential inefficiencies in production. For the 

time being we thus assume a static technology and cost-minimizing producers. 

Let the minimum cost function be C = C(y,w), where y is the 

unknown output (y> O) and w denotes the vector of (strictly positive) input 
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prices, 111 = (W1, ••. , wn).5 The cost function must fulfill certain regularity 

conditions which, e.g., can be formulated as in Diewert (1971, pp. 489-90). To 

be regular, G = G(y,w) should be non-decreasing in bot h y and 111, and be 

Jinearly homogeneous and concave in 111. If these conditions are all satisfied, 

the cost function will describe all econornically relevant aspects of the 

production technology. In addition, it will be assumed here that G = G(y,lI1} 

is twice differentiable with respect to each of its arguments. 

As shown by Shephard (1953, pp. 45-47), if the production technology is 

homothetic then the cost function is separable y and w, according to 

G = G(y,w} = f(yJ- g(w} , (1) 

where f is a monotonically increasing function of y. By means of restrictions 

on f(y} the homothetic technology can be speciaJized into a homogeneous 

technology. In particular, linear homogeneity, i.e. constant returns to scale, 

requires that f be equal to the identity function. It can be shown that given 

an appropriate definition of f(y}, the function g(w} equals the cost of 

producing one unit of output, i.e. G(I,II1}. 

It is the function g(w} that we will be interested in. As separate identi­

fication of f(y} and g(lI1} requires some kind of normalizing restriction we 

will assume that g(l) = 1. 6 

5 As pointed out to us by Rolf Färe, the results in the following are valid not 
only for single output technologies, but for multiple output technologies as 
well. We could thus replace the scalar y by an m vector 11 = (Yl, ... ,Ym) of 
outputs. However, since we have postulated the non-€xistence of output data 
the distinction between these two cases becomes rat her subtie so, for 
simplicity, we treat output as ascalar quantity. 

6 This is a convenient normaJization in applied work where the elements of 111 
are of ten price indices rat her than (absolute) price leveis. The normalization 
will then ensure that the base-year for the unit cost index, i.e. g(w} = G(I,II1}, 
is the same as the base year for the input price indices. 



24 

By Shephartf s lemma the produceris input demands are given by: 

Xj = xJy,lO) = f(y)J}g(IIJ), ow:-
l 

i = 1, ... ,n. 

In accordance with (1) and (2) the input cost shares can be written 

w .. Og(lIJ) 
( .l l (J1jji 

Sj = Sj 10/ = g( IIJ) l , i = l, ... ,n. 

(2) 

(3) 

In contrast to the input demands, the cost shares are independent of the 

level of output, y. It is thus possible to estimate the system (3), and hence 

the function g(IO), without having to take the level of output into account. 

This obviously solves our main problem, Le. that of eliminating the unknown 

entity y from the analysis. 

It is clear, however, that the system (3) cannot provide a full description 

of the production technology as it does not yield information about the 

function f(y).7 In contrast, the system (2) of input demands contains all the 

information available in the original cost function, since the input demands 

multiplied by the factor prices add up to C(y,IO), by Euler's theorem. This 

difference in informational content between the two systems is explained by 

the fact that whereas the system (2) is of full rank (Le. n) the rank of the 

system (3) of cost shares is only n-l, which can easily be seen by noting that 

both sides of (3) sum identically to one. As a consequence, one of the share 

equations must be dropped when the system is estimated. 8 This, in turn, 

implies that if the functional form chosen for C is flexible symmetry has to be 

7 Given an estimate g*(IO) of g(lIJ) an estimate of f(y) can be obtained by 
means of the ratio uJ xl g* (10) where uJ x is observed total cost. The form of 
the function f and the value of y cannot be inferred, however, exc~pt in the 
special case when there are constant returns to scale, implying that /(y) = y. 

8 If the estimation method is maximum likelihood and the stochastic disturb­
ance terms are additively appended to the equations (3) the estimation results 
will be invariant to the choice of the left out equation, cf. Barten (1969) . 
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imposed a priori to ascertain identification of the function g (1Il). 

The information loss incurred by studying the system of input cost 

shares only concerns the scaling properties of the technology, however. Factor 

substitution and the price responsiveness of input demands can still be 

studied. Using the results of Uzawa (1962), the Allen partiai elasticities of 

substitution [Allen (1959)] can be expressed in terms of the input cost shares 

and the factor prices according to 

(4) 

white the price elasticities can be calculated as 

(5) 

The homotheticity assumption can of course be questioned. In a static 

environment - Le. in the absence of technical ch ange - it implies that the 

cost-minimizing input mix is determined by relative input prices only, which is 

of ten a restrictive assumption. As a consequence, with constant relative prices 

the expansion path will be linear [cf. Färe (1974)]. This may not be consistent 

with the of ten noted tendency to increase the capital intensity at larger scales 

of operation.9 

Homotheticity has been decisively rejected in many applied production 

studies. It can be argued, however, that the homotheticity assumption is 

easier to defend in the context of service production than in the production of 

9 Changing the scale of operation generally takes some time, during which 
relative input prices may ch ange, too. Thus, an observed increase in the 
capital intensity during an output expansion need not necessarily be 
inconsistent with homotheticity. 
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goods, because services are more difficult to routinize, making the scope for 

automatization more limited. Compared to for example manufacturing, the 

possibilities to expand the productive capacity by increasing thecapital stock 

relative to the other inputs are of ten quite small; expansion of ten takes place 
( 

by setting up additional production units, similar to those already existing. 

Accordingly, ceteris paribus, the input cost shares may not change very much 

when the volume of production is increased (or decreased). Although this 

argument should be used with caution the homotheticity assumption appears 

to be more applicable where it is more needed, Le. in service production where 

no reliable output measures are available. In the case of government services, 

homotheticity may, moreover, reflect centralized decision making which tends 

to treat establishments of different size - e.g. schools - all alike,lo / 

3. Technical change and total fa.ctor productivity 

In accordance with common practice, we assume that technical change (of a 

disembodied nature) can be modeled by means of a time index, t. ll The cost 

function can then be formulated according to 

c = C(y,tIJ,t) = f(y,t}- g(lII, t) . (6) 

This formulation encompasses three types of technical change: non-neutral 

10 It should be not ed that there is no obvious conflict between centralized 
decision making and cost minimization. If the central decisions take the form 
of requirements on the input mix, conditioned upon a given set of factor 
prices, they may have precisely the effect of imposing a homotheticity 
constraint on the production possibilities facing the loeal producers. As long 
as the central decrees are optimally adjusted to changes in the relative input 
prices, costs will be minimized, albeit subject to a homotheticity restriction. 

11 See, for example, Binswanger (1974), Berndt and Khaled (1979), Nadiri and 
Schankerman (1980) and Parsons, Gotlieb and Denny (1992) . 
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technical change, neutral and scale-independent technical change and, finally, 

neutral technical change which affects the scaling properties of the technology. 

Technical change is said to be non-neutral or (Hicks-)neutral depending 

on whether it affects or does not affect the marginal rates of substitution 

between inputs, respectively. It will be shown that the effects of non-neutral 

technical change and neutral and scale-independent technical change an be 

estimated by means of input data only. These two forms of technical change 

can be captured by the function g(). However, like scaling properties in 

general, ch anges in returns to scale induced by technical change cannot be 

measured without output data. For this reason we will consider the following 

restricted form of (6) 

c = C(y,w,t) = f(y)- g(w, t) . (6') 

For empirical purposes the substitution of (6') for (6) is probably of little 

importance. In fact, the restricted form (6') is almost invariably used in 

applied studies, because of the practical diffjculties encountered in attempts to 

(simultaneously) obtain estimates of all three forms of technical change.12 It is 

fair to say, we believe, that compared to the homotheticity assumption, the 

assumption that technical change does not affect returns to scale is very weak. 

Given (6') the system of input cost shares becomes 

w .. 8g (w,t) 
l ---uw; 

Si = Si (w,t) = g(lI1, tY . (7) 

We begin by considering the effect of technical ch ange on the cost shares, 

the input demands and on total costs. We then use the connection between 

12 None of the four studies mentioned in the previous footnote report succesful 
attempts to estimate the effects of all the three forms of technical change. 
Binswanger (1974) and Berndt and Khaled (1979) impose the constraint (6') a 
priori, while Nadiri and Schankerman (1980) and Parsons, Gotlieb and Denny 
(1992) start with (6) but fail to obtain significant estimates of the effects of 
technical change on the returns to scale. 
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technical change and total factor productivity to investigate what conclusions 

can be drawn about the rate of total factor productivity growth. 

3.1 Effects on input cost shares, input demands, and total costs 

By including the time index, the input cost shares are allowed to shift over 

time not only in response to changes in relative factor prices but also because 

of exogenously determined technological developments. In the following, we 

will use the letter T to denote a relative time derivative. Accordingly, the 

relative effects of technical change on the cost shares - Le. the Binswanger 

(1974) measures of the biases in technical ch ange - will be written 

T :: OSi ("',t) l 
s· 

l at s . (lII,t) 
l 

i = l, .... ,n. (8) 

If T S i < o technical ch ange is characterized as relatively factor i-saving 

and if T Si > O it is said to be relatively factor i-using. In the presence of 

non-neutral technical change T Si f. O for at least one i = 1, ... ,n, thereby 

indicating that that technical affects the relative development of the input 

cost shares over time. If technical change is neutral then T Si = O V i. 13 

If technical change is Hicks-neutral the partial derivatives aS dill, tJ/ at 

will be identically zero for all i and the system (7) will degenerate to the 

static technology system (3). The cost shares thus cannot be used to test the 

hypothesis that the technology has not been undergoing any form of technical 

change - if (7) is not found to be statistically superior to the static system (3) 

the technology might still have been subject to neutral technical change. 

It should be noted though that the fact that the cost shares are invariant 

13 It has been shown by Blackorby, Lovell, and Thursby (1976) that for 
homothetic technologies the definitions of neutral and non-neutra1 technical 
ch ange in terms of the marginal rates of substition and in terms of the effects 
on the input cost shares are equivalent. 
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to neutral technkal change does not imply that it is useless to try to capture 

input neutral effects of technical change by means of these same cost shares. 

It is possible to construct models of technical change which have the properties 

that they (i) affect the input cost shares, Le. are non-neutral and (ii) can be 

specialized to the Hicks-neutral case and which (iii) can be completely 

determined by the cost shares.14 As an example, consider the following Cobb­

Douglas cost function: 

For 'Y = O technical ch:ange is neutral. The input cost shares are 

Byestimating one of the share equations we can obtain measures of bot h the 

neutral and the non-neutral components of technical change, provided that 

both are non-zero.15 

The effects of technical change on input demands can also be estimated, 

in spite of the fact that the input demands are dependent upon the level of 

output. Since 

i = 1, ... ,n, (9) 

the rate of change in the demand for input Xj can be expressed in terms of 

only the input prices and the time index according to 

[ {}Q (111,0] -1 . 
~ , z=l, ... ,n. (10) 

14 We are grateful to Jacques Mairesse and Ishaq Nadiri for inspiring us to 
consider this issue. 

15 That the parameters are identified follows from the fact that the partiai 
derivatives of SI with respect to a, (J and 'Y are linearly independent. 
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Finally, it can be shown that the effect of technical change on total costs 

is given by the effects on the input demands weighted by the corresponding 

cost shares, Le. 

r :: {}C{YitIlJ,t) -. 1 = E s .' r . 16 
C C{y,lIJ,t) i=1 l Zi 

(11) 

3.2 Total f&etor produetivity 

The effects of technical change on the rate of total factor produetivity can be 

analyzed by means of a general duality result derived by Ohta (1974) . Let 

t/J(x,t} denote the produetion function to which the eost funetion (6') is dual. 

The primal rate of total factor productivity can then be defined according to 

_ {}t/J( x, t) l 
r t/J = --or- 'ifJ(x, t) . 

What Ohta has shown is that the following dual relationship hold s 

(12) 

where r C is given by (11) and 

e = {}C(~, lIJ,t) y 
cy - y C(y,lIJ,t) . (13) 

The first factor in (12), the negative of the rate of change in total cost, is 

the dual representation of technical change. The second factor, the inverse of 

the elasticity of total cost with respect to output, is the dual form of the rate 

of return to scale. Returns to scale are increasing if eCy < 1, constant if 

eCy = 1, and decreasing if eCy > 1. It can be shown that for a homothetic 

16 We note in passing that 

r = r - r 
Si zi C i = 1, ... ,n. 

Henee, technical change may be input i-using even if it has the effect of 
diminishing the use of all n inputs. 
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technology ee will always be strictly positive, see e.g. Flnsund (1975). 
y 

Using (11) and applying (13) to (6') we get 

(14) 

Because of the occurrence of y in the last factor of (14), it is obvious 

that, in general, the system of input cost shares does not provide all the 

information needed to calculate an estimate of the rate of total factor 

productivity. However, since we know that eey will be strictly positive the 

sign of (14) will be equal to the sign of the first factor on the right hand side, 

Le. the dual rate of technical ch ange. Accordingly, the question of whether 

total factor productivity is increasing or decreasing can always be answered by 

means of the first factor in (14), which can be obtained from the estimation of 

the system of eos t shares. 

If, furthermore, the technology is homogeneous then the rate of return to 

scale will be independent of the level of y and so the last factor in (14) will be 

equal to a constant, instead of being a function of y. In that case it will be 

possible to construct an index of total factor productivity growth because T 1/1 

is determined up to a constant of proportionality. If, finally, the technology is 

linearly homogeneous, i.e. characterized by constant returns to scale, then ee 
y 

will be equal to uni ty and the negative of T e will be identical with the rate of 

ch ange in total factor productivity. 

The conclusions that can be drawn about productivity growth when only 

input data are available will thus depend on how restrictive assumptions we 

are willing to make concerning returns to scale. Thus, while the homotheticity 

assumption always allows us to determine the sign of the productivity growth 

rate we need to assume constant returns to scale to be able to obtain a 

complete characterization of the growth in total factor productivity. 
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4. Deviations from cost minimization 

By definition, G(y,w,t) denotes the smallest total cost attainable in time 

period t for input vectors yielding at least the output y. If costs are not 

minimized, estimation of the system of cost shares may yield biased estimates 

of price and substitution elasticities and of the effects of technical change on 

the production process. These considerations are of particular importance 

concerning public sector applications, as there are theoretical arguments for 

questioning cost minimization as the primary objective of public producers.17 

Deviations from minimum costs - which, of course, must always be 

positive - are commonly taken to arise because of inefficient producer 

behavior, but there may be other reasons as weIl.18 We will not try to 

discriminate between different sources of inefficiency, however. Following the 

literature in this field, we will be content with merely examining in what ways 

the existence of inefficiencies can be modeled and, secondly, how their effects 

on total costs and input demands can be estimated. AIso in line with the 

literature, we will henceforth sometimes speak of the degree of efficiency 

instead of inefficiency. The degree of efficiency should be interpreted here as a 

(truncated) fractional measure such that a degree of efficiency in the open 

interval ]O,1[ implies a certain amount of inefficiency, whereas a degree of 

efficiency equal to one means (fully) efficient. 

We have chosen to model inefficiency parametrically, which makes it 

possible to implement our results with a wide variety of flexible functional 

forms. Two types of inefficiency are considered: technical inefficiency, 

17 These arguments are summarized in Byrnes, Grosskopf and Hayes (1986). 

18 Another cause may be regulatory constraints, see for example Atkinson and 
Halvorsen (1984, 1986). AIso, if the exogenously given demand is highly 
variable it may be impossible to avoid some slack in off-peak periods in order 
to be able to cope with the peaks, cf. Fuss and McFadden (1978). 
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concerning overutilization of inputs, and allocative or price inefficiency, 

referring to situations where the factor proportions are inconsistent with cost 

minimization, given the relative input prices. 

Among the various concepts of input efficiency we are thus disregarding 

scale inefficiency.19 The reason is, of course, that the presumed lack of output 

data makes it impossible to analyze scaling properties. However, the 

invariance of the cost shares with respect to the scale of production means that 

scale inefficiency will not introduce any bias in the conclusions that we 

actually are able draw by means of the system of input cost shares. It should 

also be noted that from the perspective of an individual producer, scale 

efficiency is not a well defined concept in the sense that it is not always 

consistent with cost minimization. The potential inconsistency arises when 

the level of output is exogenously given to the producer and the optimal scale, 

11* say, Le. the scale for which the dual scale elasticity (ec)-1 is equal to 

uni ty, is greater than the exogenously given level of output, y. In that case an 

adjustment towards scale efficiency will increase total costs, since C(y,lII,t) is 

non-decreasing in y; d. Section 2. In the following we will take the 

perspective of the individual firm. Thus, we will consider a producer which is 

both technically and allocatively efficient to be overall efficient and identify 

minimum total costs with the total costs incurred in the context of the so 

defined overall efficiency. 

19 For discussions of the various concepts of productive efficiency, see F0rsund 
and Hjalmarsson (1974, 1979) and Färe, Grosskopf, and LovelI (1985). In 
addition to technical, allocative, and scale efficiency Färe te al. consider yet 
another input efficiency concept, namely that of (absenee of) congestion. 
However, congestion can only arise when the technology is characterized by 
weak disposability of inputs (WDI) , implying that an increase in the 
utilization of some input(s) may in some cases decrease the amount of output. 
Since free disposability of inputs (FDI) - increases in input can never decrease 
output - is one of the regularity conditions which have to be fulfilled to 
ascertain a dual representation of a production technology [cf. Diewert (1971)], 
WDI technologies, and thus congestion, are of no interest in our context. 
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We will begin by discussing how the system of cost-minimizing shares 

can be generalized to take allocative inefficiency into account, given that the 

production process is technically efficient. We then show that the resulting 

cost shares are invariant with respect to radial technical inefficiency, the 

technical inefficiency counterpart to neutral technical change. Next, we 

demonstrate that it is possible to formulate a cost share system which captures 

the combined effect of both allocative and technical inefficiency, but which 

cannot unambiguously distinguish between the two. We establish, however, 

that under weak conditions a well defined decomposition of the combined 

effect into radial technical inefficiency and allocative inefficiency can be 

obtained by means of the first specification, Le. the one allowing explicitly for 

allocative and implicitly for radial technical inefficiency. Finally , we show 

how the computations of the price and substitution elasticities are affected by 

deviations from cost minimization and, similarly, how the various measures of 

technical change should be calculated. 

4.1 Allocative inefficiency 

As is well known, the first order conditions for cost minimization require that 

the inputs be chosen such that the ratio of their marginal productivity values, 

or shadow prices, be equal to the ratio of their (actual) prices. Since the 

marginal rates of technical substitution are equal to the corresponding rat ios 

of marginal productivity values, this requirement can equivalently be 

expressed as requiring equality between 

a'I/J( i ,tJI ax. w~ 
____ ..::.1 =-2. 

a1/J( i ,tJI aXj w~ 
and 

W. 
l 

W. 
J 

for all i:f. j, where, as before, 1/J() denotes the production function to which 

the cost function G() is dual, i = (il"'" in) is the (hypothetical) point at 
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which the marginal products are evaluated and w~ is the shadow price of 
l 

input i. Using WO and w to normalize, the production process can be 
n n 

defined as allocatively efficient if w~/wo = w./w for i = 1, ... ,n-1. 
l n l n 

A simple, yet quite powerful, specification by means of which deviations 

from allocative efficiency can be studied is the following one, originally 

propos ed by Lau and Yotopoulos (1971) and introduced in a dual, time series 

context by Toda (1976, 1977) .20 The shadow prices are assumed to be 

proportional to the factor prices actually observed, according to 

O o w. = A. w. , 
l l l 

A. > O , 
l 

i = 1, ... ,n, (15) 

where A ~ is an input-specific proportionality constant to be estimated.21 (The 
l 

reason why we have attached the o to the proportionality constant will 

become clear in Section 4.2.) Since the first order conditions only concern 

relative prices the following normalization rule can be imposed without loss of 

generality 

(16) 

cf., for example. Atkinson and Halvorsen (1984) . 

The realized cost shares - as opposed to the cost minimizing shares -

can be derived as follows. The producerIs choice of input levels can be 

regarded as the result of minimizing total shadow costs, E.n w? x., with 
1=1 1 l 

respect to the x., i = 1, ... n. Using (6 1) and (15) - (16) the minimum total 
l 

shadow costs can be expressed in terms of the actually observed input prices 

20 Toda considered the two input case. The generalization to the n input 
case which we use in the following is due to Atkinson and Halvorsen (1984). 

21 It is of course possible to model deviations from allocative efficiency in other 
ways, too. Eakin and Kniesner (1988) have proposed an additive, rather 
multiplicative, relation between the shadow prices and the actual input prices. 
The specification (15) is, however, by far, the one most commonly used. 
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according to 

C(y,,,,o,t) = f(y) . g(",o,t) , (17) 

where 

~ - ( ~ ~)' - (' ~ , ~ )' II} - w1 , .... , w - "lw1 , .... ,,, lW l' w . n n- n- n 

It is obvious that C(Y,II}~,t) fulfills the regularity conditions cited in Section 2 

when the input price vector is taken to be II}~. Hence, C(Y,II}~,t) is a proper 

dual representation of some underlying production technology, given the price 

vector II}~. Application of Shephard's lemma to (17) yields the input levels 

which minimize total shadow costs, the x. 's, as 
l 

XAi=aC(Y'oIl}~,t)= II y,). ag("!...~,t), . 1 
Jl, / v Z = , ... ,n. 

arA. w.) arA. w.) 
l l l l 

(18) 

Using (18), the realized total cost, Ca, can be written 

n n a ( ~ 
Ca:: E w.x. = f(y) • E w. g II} , t) 

i=l l l i=l l a(A~w.) 
l l 

(19) 

which differs from C(y,.,o,t) because the partial derivatives are weighted by 

the actual input prices, the w. 's, rather than by the shadow prices, the w~ 's. 
l l 

It can be shown that Ca ~ C, at least as long as g(lIJ,t) is concave in 1IJ.22 If 

A~ = 1 for all i then Ca, C(Y,II}~,t), and C(y,lIJ,t) are all identically equal. 
l 

The system of cost shares to be estimated will thus be 

ag(lI}~ , t) 
A w. 

w.' X. l a(\~ ) a l l "i Wi s. :: -- = ___ ~_L.:....:.!~~....L __ , 

l Ca ~ W ag(lI} ,t) 
k= 1 k a( ~ ) A. w. 

l l 

i = 1, ... ,n. (20) 

22 Toda considered the two input case. The generalization to the n input 
case which we use in the following is due to Atkinson and Halvorsen (1984). 



37 

In the estimation, the positivity constraints on the >. ~ 's 
l 

constitute a potential estimation problem. To ascertain that the 

[cf. (15)) 

>. ~ 's stay 
1. 

positive they can be defined in terms of a transformation function, according 

to >. ~ :: cp({J.) where {J. is an unrestricted parameter and cp a function 
l l l 

whose image is equal to the set of positive real numbers. For instance, cp 

might be an exponential function as suggested by Lau (1978). 

Testing allocative efficiency means testing the hypothesis that all the 

>. ~ 's are equal to unity, in which case (20) is identically equal to the system 
l 

of cost minimizing shares. Fig. 1 illustrates the test in the two input case. 

~ 
y 

1 

--::::::::::----- l' 

Figure l. Farrell measures of allocative, technical, and overall efficiency 

To be capable of illustrating both allocative and technical inefficiency the 

diagram is drawn in the space of inputjoutput-eoefficients. Thus, all points 

lying on or to the northeast of the isoquant II' correspond to the same volume 

of output. The isocost shown by a solid line corresponds to the factor prices 

actually observed, Le. 101 and 102 , Since we are here assuming that the 
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producer is technically efficient, production must be taldng p.lace somewhere 

along the isoquant II'. The producer will minimize costs by operating at the 

point E. Assume, however, that production is actually taking place at the 

point M. With the input prices at the observed levels this point is obviously 

not allocatively efficient. However, M would have been an allocatively 

efficient location had the isocost been given not by the solid but by the dotted 

line. The slope, (1', of this lat ter isoeost equals the ratio of the shadow prices 

since, given that production occurs at M, this is the relative price 

corresponding to cost minimization. The hypothesis to be tested is thus 

whether the slope of the hypothetical isoeost, (1', is significantly different from 

v, the slope of the actual isoeost. In the two input case this simply means 

testing if A~ = 1 since, in accordance with (16), A~ = 1 a priori. 

Farrell (1957) proposed ascalar measure of the degree of price efficiency. 

In terms of Fig. 1, Farrell's measure of allocative efficiency (AE) is defined as 

AE == OZ . 
OM 

This ratio is equal to the relation between the costs which would have resulted 

at the efficient point, E, (corresponding to OZ) and the total costs incurred at 

the actual point of production, M. Thus, AE can be computed according to 

AE = .Q = __ g_(tn_,_t} __ _ 

Ca E ~. ågr,,?, t} 
k=l å(A?W.} 

l l 

(21) 

The denominator in the last equality is equal to the denominator of the 

realized cost shares (20) and, thus, can be directly obtained from the 

estimation of that system. The numerator is also easy to obtain; due to the 

linear homogeneity of g(.} in input prices g(w,t} can be computed simply by 

setting all the A? 's in the denominator of (21) equal to one. Notice that 
l 
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changes in the relative input prices and in the time index will cause AE to 

vary over time, yielding estimates of the degree of allocative efficiency for each 

point of observation. 

From (21) it is clear that once the AE measures have been computed 

we can easily estimate the relative increase in total costs caused by the 

misallocation of inputs, in spite of the fact that we have no measure of output. 

The relative increase (Ca - CJ/C is simply equal to (1 - AE}/AE. Finally, 

for later reference, we note that the cost-minimizing input demands can be 

expressed in terms of the x. 's, according to 
l 

åg{lIJ, t) ow. 
x. = Xi . ____ ~l~--

l åg(lIJ<> , t) 

å(>'? w.) 
l l 

4.2. Allocative and technical inefficiency 

(22) 

We now relax the assumption of technical efficiency. In general terms, a 

producer is defined as technically inefficient if, at a given level of production, 

he/she can reduce the utilization of any input and still produce the same 

amount of output. In Fig. 1 above, technical inefficiency is illustrated by the 

point B, which cannot be technically efficient as it is not on the efficient 

production surface II'. 

Farrell (op. cit.) has proposed a simple measure of the degree of technical 

efficiency (TE). In terms of the diagram, it is defined as 

TE = OM. 
OB 

A convenient interpretation of this measure is obtained by considering the 

difference 1 - TE which, by definition, belongs to the open interval ]0,1] . 

For the given level of output, 1 - TE shows the potential relative decrease in 
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the input utilization when the factor proportions are held constant, Le. when 

the relative reduction is constrained to be the same for all inputs. Since TE 

is defined relative to the factor ray through the origin and the observed point 

it is a radial measure of technical efficiency. Like the Farrell measure of 

allocative efficiency (A E), TE can also be expressed in terms of total costs. 

The ratio OM/OB is equal to the total costs associated with the technically 

efficient (but allocatively inefficient) point M, divided by the total costs 

incurred at B, the point actually observed. Denoting the total costs actually 

observed by C·, the degree of technical inefficiency can be formulated 

according to 

Ca 
TE= _ . 23 

c+ 
(23) 

An appealing propert y of the technical efficiency measure TE is that it 

does not affect the Farrell measure of of allocative efficiency, AE. This is 

easily seen in Fig. l . Different degrees of technical efficiency correspond to 

different locations on the dashed ray through the origin, on or above the 

isoquant II'. But for all these points the degree of allocative efficiency is the 

same, namely OZ/ OM. This means that degrees of allocative and technical 

efficiency can be independently computed. The degree of overall efficiency 

(OE) is simply given by 

OE= TEx AE= Q, 
C· 

where the last equality follows from (21) and (23). 

(24) 

Unfortunately, it is not possible to estimate TE directly by means of 

the system of cost shares. The reason is that the radial specification of 

technical inefficiency is input neutral and hence, like neutral technical change, 

23 Farrell defined TE for a constant returns technology. The extension to 
more general technologies is due to F0rsund and Hjalmarsson (1974, 1979). 



41 

has no effeet on the input eost shares.24 This is easily shown formally, as 

follows. Leti. denote the demand for input i in the context of both 
l 

alloeative and technical ineffieieney. Defining the i. in terms of the 
l 

technically efficient (but alloeatively inefficient) input demands given by (18), 

we must have 

i . :: (1 + ()-i., (~ O, i = 1, .. . ,n, 
l l 

(25) 

where ( represents the common degree of overutilization, implying that 

TE= (1 + (t1 • (26) 

Further, denote the total eosts aetually ineurred in the context of bot h 

alloeative and teehnical inefficieney by C· . Then, by definition, 

n 

c+:: E w.i . = (1 + () ·Ca . 
i= 1 l l 

. (27) 

Together with (25) , (27) implies that the eost shares (w . i . )fC· are equal to 
l l 

the eost shares prevailing in the context of alloeative inefficieney only, Le. the 

s~ . Notice that this result implies that, in addition to alloeative inefficieney, 
l 

the system (20) also implicitly allows for radial teehnieal inefficieney.25 

However, to be able to take technical inefficieney explicitly into aeeount 

we have to let it affect the input usage in a non-radial fashion, Le. allow the 

24 This statement is not ineonsistent with the demonstration in Seetion 3.1 
that there are eonditions when the effects of neutral teehnieal ch ange can be 
estimated, in spite of the faet that the eost shares are invariant to neutral 
technical ehange. What was shown there was that the share equations can 
generate estimates of neutral teehnical change provided that neutral and non­
neutral teehnical ehange oeeur simultaneously. While, in principle, a similar 
statement eould be made about teehnical inefficieney, a simultaneous analysis 
of both radial and non-radial teehnieal inefficieney would not be meaningful. 

25 Since the system (7) of input eost shares is a special ease of the system (20), 
this invarianee propert y implies that in the presenee of radial teehnical 
inefficieney estimation of the system (7) is still valid, and will yield unbiased 
estimates, although the assumption of eost minimization is violated. 
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degree of overutilization to vary among the inputs.26 To this end we will derive 

a system of input eost shares which takes the eombined effeets of technical and 

allocative inefficieney, Le. overall inefficieney, into account and which includes 

the system (20) as a special case. 

Unfortunately, in the system of cost shares allowing for overall 

inefficieney it is not possible to separate allocative from technical inefficiency 

in an unambiguous way. The reason is that the introduction of input-specifie 

degrees of overutilization removes the independenee between the measures of 

technical and allocative efficieney, which is eharacteristic of the Farrell 

seheme, cf. Kopp (1981).27 Provided, however, that we make the assumption 

that the production technology satisfies strong free disposability of inputs 

(SFDI) the system allowing for overall inefficiency can be combined with the 

system (20) to yield a Farrell decomposition of the overall inefficiency in 

aecordanee with (21), (23) and (24). SFDI implies that when production is 

taking place at a technically efficient point an increase in the utilization of 

some input(s) will always result in some, however small, increase in output . 

As noted by Kopp (op. cit.), most of the functional forms employedin 

econometric production studies satisfy SFDI. Among them are the eES and 

the translogj cf. Fåre and Lovell (1978) and Kopp and Diewert (1982), 

respectively.28 The condition of SFDI ascertains that a given degree of overall 

26 Non-radial specifications of technical inefficiency have been considered by 
Fåre (1975) and by Fåre and Lovell (1978). 

27 This propert y does not seem to have been generally recognized in the 
literature. For instance, in the empirical application of a model allowing for 
both allocative and non-radial technical inefficiency, Lovell and Sickles (1983) 
use an estimation method which treats these two types of inefficieney as if 
they were independent. 

28 Notice that the condition of SFDI is slightly more restrictive than that of 
free disposability of inputs (FDI), which is fulfilled by all technologies which 
have a dual representation (cf. footnote 19). An example of a flexible 
functional form which does not satisfy SFDI globally is the Generalized 
Leontief. In particular , its special case the (ordinary) Leontief technology fails 
SFDI everywhere. 
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efficiency can always be equivalently decomposed into either non-radial 

technical inefficiency and allocative inefficiency or radial technical inefficiency 

and allocative inefficiency (although the measures of allocative inefficiency will 

differ in the two cases). This propert y is illustrated in Fig. 2. 

I 

~----I' 

o~------------------------~ 

Figure 2. Equivalent decompositions of overall efficiency 

The isoquant and the points B, M, and E have been reproduced from 

Fig. 1. We now make the thought experiment that the producer operating at 

the point B moves to the efficient point, E. This movement, illustrated by 

the solid arrow, can be considered as the sum of two vectors, representing 

movements towards technical and allocative efficiency, respectively. In 

principle, the sum can be decomposed in an infinite number of ways. The 

vector corresponding to the adjustment towards technical efficiency must, 

however, result in a point on the boldly drawn part of the isoquant whose 

endpoints coincide with the points M' and Mil. This is so because, by 

definition, technical inefficiency corresponds to overutilization of inputs. The 

movement to a technically efficient point thus can not involve an increase in 
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the use of any input. 

The dashed vectors illustrate the special case in which the adjustment 

towards technical efficieney is radial, Le. when (25) holds. The adjustment 

yielding technical efficiency is represented by the vector from B to M, 

whereas the other vector is equivalent to the movement from M to E, Le. 

the movement for allocative efficieney. Of the dotted vectors the one pointing 

due south, to M', corresponds to a non-radial adjustment towards technical 

efficiency where the amount of input 2 is held constant while decreasing the 

use of input 1. By elimination, the other vector must then show the 

movement yielding allocative efficiency. 

We now proceed to derive a system of input eost shares allowing for both 

allocative inefficiency and non-radial teehnical inefficiency. We begin by 

assuming that the input demands (25) can be equivalently represented 

according to 

where 

x. = f(yJ- åg(~*, t) + f(Y)·/l., /lj ~ O i = 1, ... ,n, 
l å(>'. w.) l 

l l 

* (* * ) tO = >.lWl '····,>. lW l' w n- n- n 

(28) 

The last term on the RHS represents the excessive usage of input i. For 

simplicity, the /lj'S are here taken to be parametrical constants.29 The 

excessive input usage is thus assumed to vary between the inputs and to 

change with the scale of operation. In particular, if returns to scale are 

constant then the the overutilization is proportional to the level of output. 

29 As parameters, the /lj'S may not be identified for all kinds of functional 
forms. However, regarding, e.g., the CES and translog functional forms, 
which we know satisfy SFDI, identification is always possible. Chapter III 
considers identification in the context of a translog cost function. 
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Notice that, in general, the first term on the RRS of (28) is not equal to 

xi' given by (18). This is indieated by the use of the superindex * on the 

>..'s instead of the <> used in Seetion 4.1. As diseussed above, the reason why 
l 

the >.~ and the >. ~ differ is that the shadow prices associated with radial 
l l 

technical inefficieney are distinet from the shadow prices associated with non­

radial teehnical inefficieney. The partial derivative og(IIJ*,tJ/o(>,~w.) may 
l l 

thus be either greater or smaller than the partial derivative Og(IIP,tJ/ 0(>' ~ w.) 
l l 

whieh, together with f(y), determines i. aeeording to (18). This means 
l 

that in addition to being non-negative the /l . must also fulfill the condition 
l 

/l. > Og(~<>, t) _ Og(~* , t), 
l 0(>'. w.) 0(>' . w.) 

l l l l 

i = 1, ... ,n, (29) 

in order to ensure that the inequalities xi ~ ii' i = 1, .. . ,n, hold. 

The specifieation (28) is just one among several possible ways to aeeount 

for non-neutral teehnical inefficieney. We have ehosen this particular specifi­

eation beeause it is simple and beeause it leads to input cost shares whieh are 

independent of y. In the lat ter respeet it differs from related specifieations, 

for example the one used by Lovell and Sickles (1983), which amounts to 

substituting /l. for f(y)· /l . in (28). Lovell and Sickles' approeh yields a 
l l 

model in whieh teehhnical inefficieney declines in relative terms when 

produetion is inereased. Our formulation does not have this somewhat 

unappealing property. 

Up to a eonstant of integration, the eost funetion eorresponding to (28) 

is 

c == f(y}- g (w*,t) + f(y}-I" 111* , (30) 

where the prime in the last term denotes transposition. It is straightforward 

to show that for the price veetor 111* the eos t funetion C is regular. Thus, 
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c can safely be considered to be the dual representation of some production 

technology and the application of Shephard's lemma to (30), yielding (28), is 

justified. The total costs actually observed are not given by (30), however. In 

accordance with the definition given in (27) the total costs actually observed 

can be expressed as 

(31) 

If all the I\'s are equal to zero (and, hence, A~ = A~ for k = 1, .. . ,n) then 

(31) reduces to (19), the total cost realized in the context of allocative 

inefficiency only. Given (28) and (31) the observed input costs shares can be 

written 

W . • åg(II/*, t) + W.Jl. 
w . . x. 1 å(A~w.) l l 

s; :_1_ 1 = l l 

l C· E w . [å9(1I/*, tl + 11..] 
k =l k å(A~W. ) r k 

l l 

i = 1, .. . ,n. (32) 

In the estimation of (32), the A ~ 's should be subjected to the same 
l 

constraints as the those imposed on the A ~ 's in the estimation of the system 
l 

(20).30 Concerning the Jl.'s the non-negativity restrictions in (28) pose no 
l 

problem; they can be implemented by means of the same method as the one 

employed to ensure positive values on the A ~ 's and the A ~ 's. The 
l l 

inequality constraints (29) are more difficult to impose, however. The 

simplest way to proceed is probably to ignore them in a first round estimation. 

Should a comparison with the estimates obtained from the estimation of (20) 

reveal that any of the Jl. 's violate (29) for some observations, then the lower 
l 

bound for these parameters can be raised above zero according to Jli ~ Jl~ + Ki 

30 For cIarity, it should be pointed out that "estirnation of (20)" is equivalent 
to "estirnation of (32) subject to the constraint Iti = O for i = 1, ... ,n". We 
use the former expression for the obvious reason that it is shorter and simpler. 
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where J.t! is the first round estimate and K.. a suitably chosen positive 
l l 

number. It is not certain that the second-round estimates will satisfy (29) 

either but the inequality can always be made to hold by repeating the 

procedure.31 

When both the systems (20) and (32) have been estimated a likelihood 

ratio test can be performed of the null hypothesis Ho: J.ti = 0, i = 1, ... ,n. 

The test of Ho corresponds to a weak test of technical efficiency - the test is 

weak in the sense that the system under the null, Le. (20), is consistent both 

with technical efficiency and radial technical inefficiency. Rejection of Ho 

implies, however, that the production process cannot be technically efficient. 

At first, rejection of the hypothesis that all the J.t . 's are equal to zero 
l 

might seem as an implausible out come. Given that the two decompositions of 

overall inefficiency, involving radial and non-radial technical inefficiency, 

respectively, are indeed equivalent, then why should the latter decomposition 

be preferred to the former? However, this objection fails to recognize that the 

fact that there exists alternative decompositions of overall inefficiency which 

are mathematically equivalent does not imply that these alternatives are also 

statistically equivalent, in the sense of providing equally good fit to data. 

Rather, it is reasonable to expect the more richly parameterized alternative to 

be preferred to the more parsimonious one. Hence, if the production process is 

technically inefficient, rejection of Ho should be a more likely outcome than 

acceptance. 

The estimated versions of the systems (20) and (32), yield an estimate of 

31 That the procedure must eventually produce estimates which satisfy (29) is 
clear from (28); an increase in the second term on the RHS due to an increase 
in J.ti must be balanced by a decrease in the first term, brought about by a 
decrease in the partiai derivative. Thus, when the LHS of (29) goes up, the 
RHS goes down. 
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TE according to 

(33) 

cf. (23). Like the Farrell measure of the degree of allocative efficiency, (21), 

TE varies over time in response to changes in the relative input prices and the 

time index. By (26), (, the common degree of overutilization corresponding 

to neutral technical inefficiency, is given by 

(34) 

Thus, ( is not a constant but a function, determined by the input prices and 

the time index. Given the estimate of (, the input utilization in the context 

of allocative inefficiency only, Le. the i. 's, can be computed by dividing the 
l 

actually observed input usage i ., i = 1, ... ,n, by (1 + ()j cf. (25) . Finally, 
l 

by inserting the so obtained estimates into (22) we obtain estimates of the 

cost-minimizing input demands, too. Hence, it is possible to compare the 

input usage actually observed with the cost-minimizing levels of utilization 

and to compute the minimum total costs, i.e. C == E n UJ. X. , in spi te of the 
k=l k k 

presumed lack of output measure. 

4.3 Computation of elasticities and effects of technical change 

To enable comparisons between the price and substitution elasticities prevail­

ing under cost-minimization, i.e. (4) and (5), and those corresponding to the 

input utilization actually observed, we show here how the latter elasticities 

should be computed. Likewise, we consider the effects of technical change 

corresponding to the i., i = 1, .. . ,n. 
l 

We first derive the elasticities of substitution. These should be defined 
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in terms of the cost function from which the i. have been derived. Since 
l 

i . = fC/å(>'~w.), i = 1, ... ,n, this means tbat the cost function (30) should be 
l l l 

used. In order to obtain a formula for the actual elasticities which is 

analogous to (4) we need the input cost shares which are minimum for this 

cost function. Denoting these by §. we obtain 
l 

* ) IX (>.~w.) . [ågr.u*, t) + /l.] (>'.w.· * 
l l å(>'. w. ) l l å(>' ~w. ) l 

§. :: 
l l l l (35) = 

l C g (.u*, t) + p'.ut 

i = 1, .. . ,n. To compute the numerator of § . we simply multiply the 
l 

estimated numerator of s: by >. ~ ; cf. (32) . And, as usual, the denOIninator 
l l 

is equal to the sum of the numerators. In analogy with (4), the elasticities can 

be expressed in terms of the §., according to 
l 

- [ - - (\ * ) å§i ) ( - - )-1 0" . • = s . s . + A.W . • ~ • s . s . . 
lJ l J J J vW . l J 

J 

(36) 

Because of the proportionality between the shadow prices and the input 

prices actually observed the price elasticities can be obtained as follows 

(37) 

where the first equality is due to the chain rule and the second equality follows 

by analogy with (5); this analogy is justified because the (>.~w . )'s are the 
J J 

prices for which the cost function (30) is defined. 

Concerning technical change, its effects on input utilization are given by 

T _ åXi(y,uf,t) 1 =igr.u*,t) [ågr.u*,t)]-1 
i = 1, ... ,n 

Xi åt x.(y,.u*,t) å(>.~w.)åt O(>'~W.) 
l l l l l 

(38) 

Regarding the effects on total costs, two aspects are relevant. On the one 
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hand, it is of interest to consider the influence that technical ch ange has had 

on the total costs actually observed, Le. 

(39) 

On the other hand, from the producer's point of view it is relevant to compute 

the effects of technical change on the total cost function (30), as (30) is the 

dual representation of the production technology (under the false perception 

that the input price vector is given by .t rather than III). This means that 

in the aggregation of the TXi the si 's should be used as weights according 

to 

- OC1 ~--T ::--= ~ S.T • 
e at C i=l l Xi 

(40) 

Like Te [defined by (11)] Te has a dual interpretation: - Te is the rate of 

technical change in the production function to which (30) is dual. No dual 

interpretation is possible with respect to T~, however, since C· is not a 

regular cost function. Finally, by analogy with note 16, the relative changes in 

si and Si induced by technical change are TXi - T~ and TXi - Te . 

5. Summary and roncluding romments 

What can you learn about a production process for which no output measures 

are available? This is the question we have tried to answer with the help of 

duality theory. Our results show that the possibilities to characterize 

production by means of input data only are indeed much greater than could be 

expected intuitively . 

The fundamental propert y upon which we base our analysis, Le. the fact 
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that for a homothetic technology the input cost shares can be completely 

specified without any information about output, can be found already in 

Shephard (1953). The importance of this result for applied production theory 

seems not to have been recognized, however, which is surprising considering 

the tremendous growth that has since then occurred in the production of 

services, where the output measurement problems are especiaIIy severe. It is 

significant that HuIten's (1984) study of productivity change in the public 

sector, the only previous attempt to characterize a production process 

econometricaIIy without explicit measures of the price or quantity of output, 

did not escape the output measurement problem by considering the input cost 

shares. Instead, Hulten chose to regard communities as generalized 

households, thereby making it possible to apply the analytical apparatus of the 

household production model to the production of public services. 

In contrast to Hulten's framework, our method can be applied to any 

production activity. Moreover, our analysis goes beyond Hulten's in that it is 

not limited to the issue of estimating productivity growth. We show that 

given a homothetic technology, knowledge of input prices and input cost 

shares makes it possible to estimate elasticities of substitution and factor 

demand, analyze productivity effects of technical change, and study 

(deviations from) efficiency in production. 

Concerning the relationship between technical ch ange and productivity 

growth, we show that the relative effects of technical change on total costs 

always can be estimated but that these correspond to estimates of the dual 

rate of growth in total factor productivity (TFP) only if constant returns to 

scale are assumed, as in Hulten's study. If, instead, homogeneity of degree 

r i= 1 is assumed the rate of growth in TFP can be estimated up to an initial 

condition or bench-mark value, while homotheticity aIIows only the sign of the 

TFP growth rates to be determined. 
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We also demonstrate how possible deviations from cost minimization can 

be taken into account parametrically. Hete, we make use of the fact that for a 

large class of technologies overall inefficiency can be decomposed either into 

independent measures of radial technical inefficiency and allocative inefficiency 

according to Farrell (1957), or into two interdependent measures of non-radial 

technical inefficiency and allocative inefficiency.32 Since the input cost shares 

are invariant with respect to radial technical inefficiency, the Farrell 

decomposition results in a share system which can take allocative inefficiency 

explicitly into account but which only allows for (radial) technical inefficiency 

implicitly, making it impossible to quantify the latter. The second 

decomposition, on the other hand, yields a system of cost shares by means of 

which overall inefficiency can be measured but which cannot separate clearly 

between technical and allocative inefficiency. We show that byestimating two 

share systems, one for each decomposition, Farrell measures of technical, 

alloeative, and overall inefficiency can be obtained. Moreover, the increases in 

total costs brought about by the inefficiencies can be estimated as well as the 

cost-minimizing input demands, in spite of the presumed lack of output data. 

Finally, it should be mentioned that although we have here performed 

the analysis in terms of static equilibrium cost models it can be extended to 

allow for the possibility that some of the factors of production, notably 

capital, may be fixed in the short run. For instance, it should be possible to 

use a dynamic cost of adjustment model of the type employed by Berndt and 

Hesse (1986) as a starting point. Since a typical feature of many service 

industries is that the bulk of their capital input is in the form of structures 

this extension should be an important one. 

32 The measures of allocative inefficiency will, of course, differ between the 
two alternative decompositions. 
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CHAPTER III 

Identification of technical and allocative inefficiencies 

in the absence of output data 

1. Introduction 

It is well known that for homothetic production technologies - Le. tech­

nologies which have the propert y that the optimal factor proportions do not 

vary with the level of production - the input cost shares are independent of 

the output level. Accordingly, if one assumes homotheticity and models the 

production technology by means of the cost function one can, e.g., estimate 

elasticities of substitution among inputs and the effects of (non-neutral) 

technical change without any information about output. This, of course, is a 

very useful propert y in situations where it is difficult to construct reliable 

output measures. Perhaps the most important example concerns the 

production of public services.! 

However, concerning public production in particular, the validity of 

taking a dual approach can be questioned. The underlying assumption of cost 

minimization does not agree with common opinions about misallocation of 

resources and excessive input usage in the public sector. This raises the issue 

of whether it is possible to model inefficiencies in production within a dual 

framework and, if so, if it is possible to do it in such away that the 

inefficiencies will be reflected in the cost shares. 

l The homotheticity assumption is of ten considered to be quite restrictive. In 
Chapter II some arguments are provided, however, according to which 
homotheticity should be more easily justified in the context of service 
production than in the production of goods. 
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Regarding allocative inefficiency, one could say that this question has 

already been answered in the affirmative. Confining the attention to models 

in which inefficiencies are taken into account parametrically, studies by, 

among others, Toda (1976, 1977) and by Atkinson and Halvorsen (1984, 1986) 

can be mentioned. In these analyses allocative inefficiency is allowed for by 

modeling the producer as minimizing costs subject to another set of (relative) 

input prices than those actually observed. Specifically, it is assumed that the 

producer behaves as if the relative input prices subject to which he/she 

optimizes are proportional to the observed relative input prices. By specifying 

the cost function in terms of the hypothetical, rat her than the actual, input 

prices one can then apply the usual results from duality theory. 

In all the published studies using this technique, output measures have 

been available and so there has been no need to estimate merely the cost share 

equations. In Chapter II of this book it has been argued, though, that , in 

addition to yielding estimates of the allocative inefficiency parameters, 

estimation of the system of input cost shares would also make it possible to 

compute estimates of the increases in total costs caused by the allocative 

inefficiency, as weIl as its effects on input demands. The intuition behind this 

claim is that since allocative inefficiency relates to the input proportions, 

which are independent of output for homothetic technologies, the evaluation of 

the effects of allocative inefficiency should not require output information. 

However, returning to common opinion, technical i nefficiency, Le. 

excessive input usage, is probably a more serious problem than allocative 

inefficiency. The problem of modeling technical inefficiency can be solved by 

means of an approach similar in spirit to the one used for modeling allocative 

inefficiency. To see this, not e that the technology available to the producer 

determines the minimum input requirements associated with every output 

level. Next, consider asecond technology which is dominated by the first in 
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the sense that is characterized by minimum input requirements which, for 

every given level of output, are at least equal to those of the first technology. 

Technical inefficiency can be allowed for by modeling the producer as trying to 

minimize costs subject to the inferior, rather than the superior, technology. 

Note that the inferior technology is contained in the superior technology and 

that in the case of technical efficiency the two will be equal. That neither of 

the two technologies can be observed does not constitute a problem; it is 

sufficient that the cost functions representing them can be estimated. 

Of course, what this says is merely that the cost function can be 

generalized to aIlow for technical as weIl as aIlocative inefficiency. If, in 

addition, the technical inefficiency is to have any effect on the input cost 

shares there is an additional requirement, namely that technical inefficiency be 

non-radial. This means that, in percentage terms, the excessive usage varies 

over inputs.2 While this may seem as a very natural assumption to make, the 

seminal work of FarreIl (1957) has created a strong tradition of modeling 

technical inefficiency as radial (input neutral) . If the FarreIl route is taken in 

conjunction with a dual approach it is necessary to complement the cost share 

equations by the cost function in order to obtain estimates of technical 

inefficiency.3 

Thus, the lack of output data presumed here implies that technical 

inefficiency has to be modeled as non-radial. The important question, which 

provides the basic motivation for this chapter, can then be put as follows. Is 

it possible to model non-radial technical inefficiency parametricaIly such that 

it (i) affects the input cost shares without making them dependent on the 

level of output, and (ii) allows the effects of this inefficiency on input 

2 For further discussion, see Färe and Lovell (1978). 

3 Examples of studies where aIlocative inefficiency and radial technical 
inefficiency are modeled by means of the input cost shares and the cost 
function are Kopp and Diewert (1982) and Ferrier and Lovell (1990). 
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demands and total costs to be inferred from the estimation of the system of 

cost shares alone? 

In Chapter II a specification of non-radial technical inefficiency was 

suggested which, it was argued, would make it possible to answer (i) in the 

affirmative, at least for some types of cost functions. Without a detailed 

discussion of whether the relevant parameters could be statistically identified 

it was conjectured that condition (ii) could be satisfied, too. As technical 

inefficiency seems to be directly related to the amount of output produced 

these claims certainly are counterintuitive. Moreover , statistical consider­

ations also give rise to doubts . While the system of input cost shares contains 

n-l independent equations where n = #inputs (as the shares sum identically 

to 1) the parametric modeling of non-neutral technical inefficiency increases 

the number of parameters by n. 4 Can these really all be identified? 

The idea of this paper is to show that (at least) one cost function - the 

translog - can be generalized to allow for allocative inefficiency and non­

neutral technical inefficiency in such away that estimation of the corre­

sponding system of cost share equations will yield estimates of both the extra 

costs induced by these inefficiencies and of their effects on input demands. 

For analytical tractability, attention is confined to the case when the number 

of inputs is (less than or) equal to 3. 

In Section 2 the system of input cost shares is derived. Section 3 shows 

how to evaluate the effects of allocative and technical efficiency on input 

demands, total costs and cost shares, given that the modells parameters are 

identified. In Section 4 the econometric model is specified. Sections 5 and 6 

adress the identification problem. A Full Information Maximum Likelihood 

4 This is in contrast to the modeling of allocative inefficiency. Since allocative 
inefficiency relates to the relative input prices, it can be modeled by means of 
just n-l parameters. 
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(FIML) estimator is eonsidered and it is demonstrated that under very weak 

conditions the information matrix has full rank, implying that all parameters 

are statistically identified. Concluding eomments are given in Seetion 7. 

2. The system of input rost shares 

The starting point of the analysis is a homothetic cost funetion 

C(y,lO,t) = J(y,t)·g(lO,t) , (1) 

where y denotes the level of output, 10 is the n x 1 veetor of input priees 

and t a time index representing the state of teehnology. The funetion J(y,t) 

which is strietly positive and strictly increasing in y determines the scaling 

properties of the teehnology and the effeets of Hieks-neutral teehnieal ehange. 

In the present eontext there is no need to eonsider an explicit form for J(y,t) . 

The eost funetion is assumed to be of the translog form. 5 For n = 3 

[ 3 133 1 3 ] 
g{lIJ,t) = exp E 0'. ·lnw. + -2 E E "/ . . ·lnw.lnw. + -2 ET.·t lnw .. 

i = 1 l l i = 1j = 1 l J l J i = 1 l l 
(2) 

where the parameters to be estimated are denoted by Greek letters. It might 

be not ed that non-neutral technieal ehange is allowed for, through the T.'S. 
l 

Linear homogeneity and symmetry impose the following eonstraints on 

the parameters 

3 
E 0'. = 1, "/ .. = "/ .. , N i 

i=1 l lJ Jl (3) 
3 3 3 
E "/ .. = E "/ .. = E T . = O . 

j=1 lJ i=1 lJ i=1 l 

5 The translog has been ehosen beeause of its flexibility, d. Guilkey, Lovell 
and Sickles (1983), and beeause it allows the overall inefficiency (teehnical 
plus alloeative) to be decomposed in two equivalent waYSj d. Section 3. 
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To allow for deviations from cost minimization we consider the following 

generalization of (1) 

where 

and 

c (y, 111*, t) = J(y,t) -[g (.t, t) + h(II1*)l 

* 3 * h(lI1) = !: /l .- w .. 
j= 1 l l 

(4) 

(5) 

(6) 

Deviations from cost minimization due to allocative inefficiency are 

taken into account by the substitution of shadow input prices (A.W.), 
l l 

i = 1,2,3, for the input prices actually observed, Le. the w. 's. For simplicity, 
l 

the A. 's are taken to be parametric constants.6 Accordingly, they can only 
l 

capture the average, systematic, part of allocative inefficiency. If there is no 

allocative inefficiency then A. = l for i = 1,2,3. As only relative prices 
l 

matter and the cost function is well defined only for strictly positive prices the 

following constraints can be imposed on the A. 's without loss of generality 
l 

A. > O, 
l 

i = 1,2. 

(7a) 

(7b) 

In addition to these natural constraints, the following restriction will be 

imposed: 

(7c) 

This restriction greatly simplifies the calculations in Section 6 without 

6 Compared to Chapter II there is a notational difference here. In Chapter II 
the Aj'S were superindexed by either o or * in order to distinguish between 
the values taken on by these parameters under different model specifications. 
Since this distinction is unimportant in the present context the superindices 
have been dropped. 
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impinging on the essential feature of the model, namely, that allocative 

inefficiency and technical inefficiency are considered simultaneously. As the 

parametric approach to modeling allocative inefficiency has been extensively 

discussed in the literature there is no need to dwell any further upon it here.1 

Technical inefficiency is taken into account by means of the function 

h(.t). For reasons to be explained shortly the parameters p,., i = 1, 2, 3, 
l 

in this function are constrained to be non-negative, Le. 

P,i ~ O , ;=1,2,3. (8) 

Before considering the specification of technical inefficiency more closely, 

note that if the cost function (1) is regular then so is (4) . 8 This means that 

the demand for input i in the presence of allocative and technical inefficiency 

can be derived by means of Shephard's lemma, Le. by partiai differentiation of 

(4) with respect to w . . Denoting this demand by i. we have: 
l l 

i. :: oG /aw~ = J(y,t) ' [g(II1*,t).(a. + ~ 'Y ..• lnw~ + T··-2t )/w~l l l l j = 1 lJ J l l 

+ f(y,t)·p,., 
l 

i = 1,2,3. (9) 

The term J(y,t) ·p,. measures the (average) amount of technical inefficiency, 
l 

7 See, e.g., Lau and Yotopoulos (1971), Toda (1976,1977), and Atkinson and 
Halvorsen (1984, 1986). 

8 A cost function is regular if it is non-decreasing in output and in the input 
pri ces , and linearly homogeneous and concave in the price vector; see, e.g., 
Diewert (1971). The postulated properties of the function f and the 
constraints (3) are not sufficient to ascertain that the cost function (1) is 
regular - they do not guarantee that costs are non-decrasing and concave in 
111. However, if (1) is indeed regular then (4) must be regular, too. This can 
easily be seen by first considering the situation when Jl-i = O V i. In this case 
it follows immediately that (4) is regular. Allowing at least one of the P,i'S to 
be strictly positive has the effect of adding a term to the total cost function 
which does not violate any of the regularity conditions. As the regularity 
properties are preserved under addition, the regularity of (4) in the general 
case follows. 
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Le. excessive usage, with respect to input i. The fact that, by definition, 

technical inefficiency cannot be negative motivates the constraints (8). 

It can be seen that technical inefficiency is assumed to be input specific 

or non-radial. Moreover, the factor f(y,t) allows the technical inefficiencies 

to vary over time and with the level of output. This specification, suggested 

in Chapter II, differs from the formulation of non-radial technical inefficiency 

employed by Lovell and Sickles (1983), according to which the inefficiencies 

are assumed to be constant over time and independent of the level of output.9 

To provide some intuition for (9), note that if f(y,t) = y, Le. if there are 

constant returns to scale, then the effect of technical inefficiency is to increase 

the input/output - coefficient of input i by the constant Jl. .• 
l 

If there are neither allocative nor technical inefficiencies then the i. 's 
l 

specialize into the input demands under cost minimization, x.:: oC/ow. , 
l l 

i = 1, 2, 3. While, in general, i. can be either greater or smaller than x. for 
l l 

a particular i the total costs incurred given input demands i . and input 
l 

prices W., i = 1,2,3, will always be at least as large as C{y,lIJ,t) , provided 
l 

that C(y,w,t) is regular.10 Denoting the total costs in the context of both 

9 Further, in contrast to the specification used here, the one used by Lovell 
and Sickles (op. cit.) makes the cost shares dependent on the level of output, 
even if the technology is homothetic. 

10 This can be shown as follows. Expand C{y,lIJ,t) around .t according to 

C(y,w,t) = C{y,IIJ*,t) + d[C{y,IIJ*,t)j{IIJ-IIJ*) + (IIJ- ..,*)'H[C{y,a,t)j{"'-IIJ*) 
where d[·j is the vector of first order partiai derivatives, evaluated at ..,*, 
and H[ . J the Hessian matrix, evaluated at a point a . The linear 
homogeneIty of C in input prices implies that 

C{y,IIJ*,t) + d[C{y,IIJ*,t)j{"' - IIJ*) = d[C{y,.t,t)jllJ = C+ 1 "=0 ' 
where the last equality follows from the definition in (10). Thus, to prove the 
claim for the case when there is no technical inefficiency it is sufficient to show 
that the last term in the expansion is non-positive. But this follows directly 
from the concavity of C in input prices. Finally, allowing for technical 
inefficiency just strengthens the claim as it means the addition of a strictly 
positive term to the total costs incurred in the case of allocative inefficiency 
only. 
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allocative and technical. inefficiency bye· we have 

3 
e·:: !: w.i. 

i = 1 l l 

[ *3 3 * t 3] = f(y,t)· [g(1II ,t)· .!: (a . + .!: -y .. ·lnw. + T. '-2 )/A .] + .!: w./J. , 
1=1 l p1 lJ J 1 1 1=1 1 1 

implying the following cost shares 

• - - le· s . = W.X. 
III 

* 3 g(lII ,t)·[,!:lnA.(-Y .. IA.) + s ·IA.] + w./J . = ________ ~J]7=1~~J~I~J--~I----~1~1~--~1~1~--
* [3 3 ] 3 g (III , t)· .!: [,!:lnA·(-y .. IA.) + s·IA.] + !: w./J. 

1 = 1 P 1 J IJ 1 IIi = 1 1 1 

for i = 1, 2, 3, where s. is the cost-minimizing cost share, Le. 
1 

(10) 

(11 ) 

_ 3 t 
s. = 8lnC(y,lIJ,t)l81nw. = o'. + !: -y .. ·lnw. + T. '-2' (12) 
III j=l lJ J l 

Using the propert y that !:.3 s . = 1 one can see that if there are neither 
1=1 1 

allocative nor technical inefficiencies - implying that A. = 1 and /J . = O for 
1 1 

all i- then s~ = s. for i = 1, 2, 3. Since, in contrast to the i. 's and e·, 
l l l 

the s~ 's are independent of the level of output, y, the system of input cost 
1 

shares can be estimated by means of input data only, which are presumed to 

be available. 

3. EvaJuating the effects of inefficiency 

Technical and allocative inefficiencies affect input demands and thereby total 

costs and input cost shares. Using (9), the relation between the cost­

minimizing demand for input i and the demand in the presence of both 
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technical and allocative inefficiency can be written 

* t'3 * t * i. g(w ,t)-(o:. + ,-"o 1 'r .. ·lnw. + T"-2 )/w. + p. 
l l J= l J J l l l -=--------''-;;---''----''--_..::.....:=---;-''-----''-

X i g (w, t)· (o: l' + b. 31 'r .. ' l n W. + Tl·• -2t ) / w l' 
J= lJ J 

(13) 

for i = 1, 2, 3. Thus, by solving (13) for X. one obtains an estimate of the 
l 

costminimizing level of input i, in spite of the fact that this demand depends 

on the unknown level of output. Further, given the X. IS, the minimum total 
l 

costs can be calculated by means of the definition C= bi!l wixi and, finally, 

the costminimizing cost shares are given by S. = w.x./C, 
l l l 

i = 1,2,3. 

Accordingly, the actually observed total costs, input demands, and cost shares, 

C+, i. and s~, i = 1,2, 3, can all be compared to the corresponding 
l l 

variables under cost minimization.1l 

The measure (13) of overall inefficiency can be multiplicatively 

decomposed into two components, attributable to technical and allocative 

inefficiency, respectively. The technical inefficiency component is given by 

i. g(uf, t}- (o:. b 3 * t / * + . 1 'r .. ·lnw. + T" 2 ) W . + p. 
l l J= lJ J l l l 

= 
3 * 

i·1 g(w*, t}- (o: . + b. 1 'r .. ·lnw. + T .• ~ )/w~ 
l Pi=O l J= lJ J l l 

(14) 

which can be solved for the input demand ii I Pi=O prevailing when there is 

allocative inefficiency but no technical inefficiency. Finally, the component 

corresponding to allocative inefficiency equals 

ii IPi=o = g (w*, t)· (O:i 

xi g(w,t).(o:. 
l 

* 'r .. ·lnw. + 
lJ J 

'r .. ·lnw. + 
lJ J 

)/w~ 
l 

)/w. 
l 

(15) 

From the estimates ii I Pi=o' i = 1, 2, 3, of the input demands in the context 

11 Of course, comparisons can be made over time, too, although the 
suppression of the variables I time indices has the consequence of not making 
this possibility explicit. 
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of allocative inefficiency only, the corresponding estimates of total costs can be 

computed according to e· I = ~. 31 w.' i·1 and the associated input 
/kO 1= 1 1 Pi=O 

cost shares can then be calculated as 8: I = [w .. i·1 ] j c+ I . 
1 /kO l 1 Pi=O P=o 

Note that (13) is the product of (14) and (15). By construction, the 

corresponding multiplicative decomposition of total costs has the same 

propert y , Le. In terms of an isoquant 

diagram in inputjoutput-1lpace, the technical inefficiency components 

(i. / i., ._ ) and (e· je·, ) measure the volume and cost effects from 
1 1 PI-O P=O 

production taking place off (above) the isoquant rat her than on it . The 

allocative inefficiency components (ii' Pi=O/xi) and (e· I /k/C) show how 

input demands are affected and how much costs are increased, relative to the 

minimum costs, when production is taking place on the isoquant hut not at 

the optimum location. 

While the interpretation of the measures i . j x., i = 1, 2, 3, and e· j C 
1 1 

of overall inefficiency is straightforward, Kopp (1981) has pointed out that the 

decompositions of these into measures of technical and allocative inefficiency 

are not unique. This is due to the non-radial specification of technical 

inefficiency used here. When technical inefficiency is specified as radial, the 

technical inefficiency component corresponds to a specific movement from the 

technically inefficient point in inputjoutput-1lpace to the isoquant, namely 

along the ray which leaves the input proportions unaffected. The fact that the 

technical inefficiency measure corresponds to a single point on the isoquant 

implies that there can be only one measure of allocative inefficiency. By 

contrast, when technical inefficiency is specified as non-radial there is no 

restriction imposed on the movement from the technically inefficient point to 

the isoquant. Depending upon which way is chosen (Le. depending on the 

parameters /J. , i = 1,2,3) the technical inefficiency measure will differ and 
1 

so will the measure of allocative inefficiency. That is to say, the price one has 
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to pay for allowing technical inefficiency to be non-radial is that the technical 

and allocative inefficiency components no longer are independent, as they are 

under the radial specification. 

Kopp (op. cit.) also notes, however, that for technologies which satisfy 

strong free disposability of inputs (SFDI) a given overall inefficiency can 

always be decomposed using either a radial or a non-radial specification of 

technical inefficiency.12 The translog satisfies SFDI; in fact that was one of 

the reasons for choosing it here. Accordingly, the decompositions above can 

always be transformed to decompositions based on a radial specification of 

technical inefficiency. 

4. The econometric model 

The econometric model comprises the first two cost shares. The reason why 

the 3rd cost share is not included is that the complete system of input cost 

shares is singular. Since maximum likelihood is the estimation method that 

will be considered here the estimates will be invariant with respect to the 

choice of equation to be left out in the estimation; cf. Barten (1969) . 

However, the exclusion of the 3rd share means that identification of the 

model cannot be ascertained unless the constraints (3) are imposed in the 

estimation.13 Together with the constraints (7) and (8), this implies that the 

vector of unrestricted parameters, which will be denoted O, can be 

12 Strong free disposability of inputs implies that when production is taking 
place at a technically efficient point an increase in the utilization of some 
input(s) will always result in some, however small, increase in output. 

13 The constraints (3) can be relaxed, and thus tested, only if the (complete) 
cost function is estimated. Due to the presumed lack of output data that is 
not possible in the present context, however. 
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partitioned according to 

Dl (0'1,0'2) , 
~ (/11 '/12' /22)' 

D= Da = (Tl ,T2)' 
04 {3 

(16) 

Os (V p v2 ,v3 )' 

The inefficiency parameters .A and Jli , i = 1, 2, 3, are exponential 

functions of (3 and the v. , respectively, Le.: 
l 

.A = exp({3) , 

Jl. = exp(v.) , i = 1,2,3, 
l l 

(17) 

(18) 

so as to ascertain that ,\ and the Jl. are non-negative, in accordance with (7) 
l 

and (8).14 There are, of course, a number of alternatives to the exponential 

transformation; the quadratic is perhaps the most obvious one. However, like, 

e.g., hyperbolic transformations the quadratic one has the disadvantage that it 

implies multiple optimas to the likelihood function. For this reason, mono­

tonic transformations, like the exponential, are preferable. 

Later on, it will be useful to aggregat e the partition of D according to 

To formulate the econometric model, denote the vector of observed cost 

shares for the 2 first input cost shares in period t by r t . =: (TU' Tt2). The 

corresponding vector of predicted cost shares is given by s;. =: (8;1' 8;2) , 

where the s;i's are defined in accordance with (11) and (12); a detailed 

specification of s;. in matrix terms is given below. Finally, denote by Ut. 

a 2 x 1 vector of disturbances. The model can then be written in (row) 

14 Actually, ,\ is to be strictly positive; cf. (7b). However, the probability of 
,\ being exactly equal to zero should be extremely low as it implies that the 
cost shares are independent of the prices of inputs 1 and 2. Thus, for 
simplicity, only non-negativity has been imposed. Strict positivity is easily 
ascertained, however, by adding a small positive constant to the RHS of (17). 
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vector form according to 

t = 1, .... ,T (19a) 

where 

and 02 and 02 2 denote the 2 x 1 vector of zeros and the 2 x 2 zero , 
matrix. The 2 x 2 covariance matrix fl is taken to be positive definite. 

There are, at least, two ways to motivate the presence of the disturbance 

terms. One reason is that the producer may be committing errors when mini­

mizing total shadow costs.15 Secondly, allocative and technical inefficiency are 

here modeled in a very simplistic and stylized fashion. The parametric speci­

fications may capture the systematic parts of the inefficiencies but there is 

probably some non-systematic variation, too. Such variations could also 

have the effect of making the observed cost shares different from the s~ 's. 
l 

Concerning the distributionai assumption (19b), it is primarily moti­

vated by simplicity. In general, nothing can be said about the disturbances 

except that they can be both positive and negative. A symmetric distribution 

therefore seems natural . Regarding the variances and covariances of the dis­

turbances, they may weIl be heteroscedastic and/or autocorrelated in addition 

to being contemporaneously correlated. However, as the assumption of a time­

independent fl will yield consistent estimates even if the residuals are 

heteroscedastic and/or autocorrelated it should do as a first approximation.16 

15 Notice that from the producer's perspective the minimum total shadow 
costs are given by (4). 

16 One potential drawback with the normality assumption is that it may yield 
predicted cost shares which are either negative or larger than one. From this 
point of view the Dirichlet distribution, which automatically limits the shares 
to the unit simplex, is preferable. However, according to a study by 
Woodland (1979) the normality assumption yields results very elose to those 
obtained with a Dirichlet distribution. He concludes (p. 302) that " ... while 
the Normal model may not be a theoretically appropriate specification for 
share equations, it may, for a large number of data sets, yield valid results." 
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The vector 8+ of predicted cost shares can be expressed in matrix 
t· 

terms as follows. The exogenous variables can be compiled into the T x 3 

matrix W whose tth row is "'t. = (wtl ' wt2 ' wt3) and the T x 5 matrix Z 

whose tth row is 

Zt. :: (1, lnwtl , Inwt2, Inwt3, ~) , t = 1, ... ,T. 

Both W and Z are assumed to have full column rank. 

There are two coefficient matrices whose elements are functions of the 

parameters to be estimated. The first one, denoted B, which is 3 x 5 and 

dependent on the subvector ,. of 8, is given by : 

b11 1111 A 1121 A - (111 + 112)1 A T11 A l 
b21 1121 A 1221 A - (112 + 122 )1 A T21 A 
b31 - (111 + 112) - (112 + 122) (111 + 2112 + 122) - (T1 + T2) 

(20) 

where 

and 

b11 = [a1+ hu + 112 )·lnA]1 A 

b21 = [a2 + (112 + 122 )·lnA]1 A 

b31 = (1 - al - ( 2) - hu + 2112 + 122) ·lnA , 

A = exp(f3). 

The second coefficient matrix, M, is 3 x 3 diagonal. Its diagonal 

elements are functions of the 3 x 1 vector II according to 

M = M[p(lI) ] = diag[p(lI) ] 

(21) 

17 For a definition of the diag operator, see Appendix A, eq. (A.17). 
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Using (ll) and (12) and the above notation one can express 8;. as follows 

(g*.JBz' + JMw' )' 
8+ = t t· t· 

t· * I' B' + I' M",' 9t · 3 Zt · 3 t· 

(22) 

where 13 is the 3 x I unit vector and J is a selection matrix, defined 

according to 

(23) 

Premultiplication of B and M by J thus has the effect of selecting the 2 

first rows of these matrices. The scalar g:, finally, can be written 

g: = g("'t. ,t ; ,,) 

= exp [[ln( III: Jl a + ~ [ln( III: Jlr [ln( -\ Jl' + ~ [t · ln( III: Jl T] (24) 

where 

The scalar A, the 3 x l vectors a and T, and the 3 x 3 matrix r are 

functions of °1, 02' 03' and 04 according to 

a = (O' Q' )' 
l' n ' 

T = (O' T)' 
3' n ' 

A = A(04) = exp(04) , 

r = (rij) = r( °2); r = r', rI3 = (1~r)' = 03· 

(25a) 

(25b) 

(25c) 

(25d) 

In matrix form, comprising all T observations, the system is given by 

R' = SH + U' = J(BZ'G + MW')D-t + U' , (26) 

18 The function g(w t-. t ; ,,) and the function denoted g(.t,t) in Section 2 
are one and the same. The former notation is better suited in the present 
context as it makes an explicit distinction between parameters and variables. 
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where R' = (r~., r;., .... , r~.) and S+' and U' are defined analogously, 

G = diag(g*)] = diag[(g~, .... , g;)'] , (27) 

and 

D = diag[(l~BZ'G + l~MW')'] . (28) 

Notice that, in con trast to the matrices Z, W, B, and M whose elements are 

either exogenous variables or (funetions of) parameters, the elements of the 

matrix G are funetions of both the exogenous variables and the parameter; 

cf. (24). 

5. The likelihood function and its first order derivatives 

From (19) it can be seen that, in statistical terms, the system of input eost 

shares eonstitutes a multivariate regression model. In spite of the strong non­

linearities it involves the model is aetually not overly eomplieated to analyze. 

The main reason for this is that the non-linearities are eonfined to the 

mapping from the vector O of unrestrieted parameters to the vector 8; . of 

predicted eost shares. This propert y implies that several weIl known results 

eoneerning maximum likelihood estimation of multivariate regression models 

apply. In particular, general non-linear models of the form (19) have been 

considered by Berndt et al. (1974). In principle, the problem here is to extend 

their analysis so as to explicitly aeeount for the particular form of the non­

linear funetions eonneeting O and 8; .. 
Another feature which facilitates the analysis is the fact that the 

restrictions (3), (7), and (8) have been used in the derivation of the predicted 

cost shares. This means that the problem of finding the parameter estimates 
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can be formulated as an unconstrained optimization problem. 

It should be noted that neither of two properties just described have 

anything to do with the number of inputs or the constraint (7c). Accordingly, 

they will apply also in more general con texts when n > 3 and the degree of 

allocative inefficiency is allowed to vary between different pairs of inputs. 

While Berndt et al. (op. cit.) work with the concentrated log-likelihood 

function, the unconcentrated function will be used here because it provides a 

more natural starting point for the analysis of the information matrix in the 

next section. By considering the unconcentrated log-likelihood function one 

can also avoid a small inconsistency in the results of Berndt et aL, concerning 

their expression for the first order derivatives of the log-likelihood function. 

Whereas the expression that they provide always can be obtained from the 

unconcentrated log-likelihood function, it js only asymptotically true for the 

concentrated log-likelihood function, from which Berndt et al. claim that it 

has been derived. 

As mentioned above, the new problem to be addressed here relates to the 

specific form of the non-linear mapping from the vector of unrestricted 

parameters to the vector of predicted cost shares. Accordingly, this section 

commences with a lemma concerning the first order partiai derivatives of this 

mapping. By means of the lemma a theorem is then proved, which extends 

the results of Berndt et al. to the present model. 

In the calculations, references will frequently be made to equations in 

Appendix A and Appendix B. The former have the prefix A and the latter 

the prefix B. Concerning the results on differentiation in Appendix B, the 

definition (B.I) should be noted, according to which the derivative of the 

m x l vector 1/ wi th respect to the n x l vector x is the m x n matrix 

a1/1 ax with typical element ay.j ax., i and j being row and column 
l J 
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indices, respectively,19 

LEMMA 1. The parlial derivative of (S+I)C = [J(BZIG + MWI)D-ljC 

with respect to O = ("I ,V)I is given by 

~ = (D-1 ® 12) Al [(GZ ® 13) ~ 

+ (W ® 13) ~ + (Ir ® BZI ) ::] , 

where 

(29) 

and 'Jr is the T x T2 basis matrix for diagonality defined in Magnus 

(1988, p. 109) and in (A .20). 

Furlher, the parlial derivatives öDc I åO, åMc I åO, and {)Gc I åO 

can be expanded according to 

where : denotes parlitioned matrix, i. e. [~C: °5 , 3,3] is parlitioned 

into the 5·3 x 8 matrix åBc I å" and the 5·3 x 3 zero matrix. 

PR o OF. See Appendix C. 

19 While this definition, due to Pollock (1979), is at variance with much of the 
early work on matrix differential calculus it is now becoming widely accepted. 
Recently, the same definition has also been strongly advocated by Magnus and 
Neudecker (1988). However, they denote the matrix of parti al derivatives by 
åyl åx . 
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By means of Lemma 1 one can prove the following theorem. 

THEOREM 1. For the model specified in Seetion ,{ the 10frlikelihood 

funetion is 

L(O,n) = const . -~ . lnlnl-~ · tr[(R-S+)I(R-S+)n-lj . (30) 

The first order derivative of L(O,n) with respeet to n is given by 

Further, two equivalent expressions for the first order derivative of 

L(O,n) with respect to O = (/'öl , 11)1 are 

åL~"n) = [(F-vl;)'jC' [(GZ® I3)[g~C : 05'3,3] 

+ (W® I3)[032,8 : ~;M] + (IT®BZ')[~~ g( : 0T2,3] ] 

and 

åL~"n) = [[F - vl;)'GZjC' ~C : o;] + [os : [(F - vl;) 'Wld'M] 

+ [[ZB'(F - vl;)'ld, g( : o;] , 

(32) 

(33) 

where Xd denotes the eolumn veetor eorresponding to diagonal elements 

of the square matrix X [ef. (A.18)l and 

(34) 

v:: [S+n-1(R - S+)ID-1ld , (35a) 

:: ~T [S+n-1(R - S+)ID-1lC . (35b) 

PROOF. The likelihood function can be found in, e.g., Pollock (1979, p. 236) . 
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To prove (31), note that, by the chain rule (B.5) 

aL( 0,0) __ !. mn I ni 
anc - 2 anc 

l. atr[(R - S + ) 1 (R - s+)n-1J an -lc 
2 an-l c anc 

Application of (B8), (B.9), (B.7) and, finally, (A.3a) to this expression yields 

(31). Concerning (32) and (33), application of the chain rule gives 

aL( O,n) 

ao 
__ !. atr[·J a(R - S+)C a( S+)C a(S+ 1 )C 
- 2 a(R - S+)C a(s+)C a(s+I)C aD 

= -!. [2(R- s+)CI(n-l ® 9)(- 12 , T)K2T a(s;~ )C 

(36) 

where the second equality foIlows from (B.IO) and (BA) and the third equality 

is obtained by means of (A.15), (A.3b), (A.5), and (A.3a). Like (31), this 

result, which does not take the specific form of the mapping from O to S+ 

into account, is just a variant of a result that is weIl known in the literature. 

An equivalent expression can, e.g., be found in Berndt et al. (1974, p. 663). 

To proceed, use the first part of Lemma l in (36) and rearrange, to get 

aL( O,n) = [(R _ S+)I]CI (D-l ® n-l) [(GZ ® J) aBC 
ao ~ 

+ (W ® J) f!t. + (~® JBZ') :? ] 
(361) 

- [(R - S+)I]CI (D-l ® n-ls+I) w~ [(GZ ® 1~) 1!f. 
+ (W ® 1~) f!t. + (~ ® l~BZ') :?] . 

Note that, by (A.3a) and (A.14) 

(37) 
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and 

Further, by means of (A.3a), (A.14), (A.21) and (A.2'), (38) can be rewritten 

according to 

[(R - S·)']C' (D-1 ® 0-lS·') \}i'~ = {\}i'T [D-1(R - S·)O-lS·'jf'}' 

= {\}i'T [S·O-l(R- S·)'D-1]C}' = [S·O-l(R- S·)'D-1]d' 

= ([S·O-l(R - S·)'D-1]dV . (38') 

By inserting (37) and (38') in (36'), using (34) and (35a), and (A.14) one gets 

oL(O,O) = [ZG(F-vl'W aBc + [W'(F-vl'W oMc + [(F-vl')BZ']f åGc . 
00 3 ~ 3 7fT 3 OT 

Given this result, (32) follows from application of (A.14) and (A.3a), and the 

second part of Lemma 1. The alternative form (33) is obtained by inserting 

the second part of Lemma l and applying (A.3a) and (A.21) . Q.E.D. 

The reason for giving the two equivalent expressions for the gradient vector is 

that while the form (33) is more convenient for evaluating the first order 

derivatives, the form (32) is better suited for the calculation of the information 

matrix, which is the topic of the next section. 

6. The information matrix 

The principal reason for considering the information matrix is that this matrix 

can be used to check whether the modells parameters are identified. As shown 

by Rothenberg (1971) the parameters are (locally) identified if, and only if, 
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the information matrix has full rank, Le. is non-singular. In addition, given 

that the parameters are identified, the asymptotic covariance matrix of the 

parameter estimates can be estimated by means of (the sample analogue of) 

the information matrix.20 Finally, estimates of the information matrix can be 

useful in the construction of numerical algorithms for the generation of the 

parameter estimates themselves. 21 

According to a well-known propert y of the likelihood function, the infor­

mation matrix 1 = 1 (Oo,no), where °0 and no denote the true values of ° 
and n, can be defined in two equivalent ways. According to the most 

common definition it is given by the negative of the expected value of the 

Hessian matrix of the log-likelihood function, evaluated at (Oo,no)' However, 

the information matrix may also be defined as expected value of the outer 

product of the first order derivatives of the log-likelihood function, again 

evaluated at (Oo,no)' 22 In the following, both definitions will be used. 

With respect to the particular model at hand, the information matrix is 

block~iagonal, due to the fact that there are no restrictions on the covariance 

matrix of the disturbances, n j d . Magnus and Neudecker (1988, Theorem 7, 

p. 326). The information matrix can thus be written 

(39) 

where 011 4 denotes the 11 x 4 zero matrix, , 

20 See, e.g., Magnus and Neudecker (1988, p. 314). 

21 Two examples are the method of scoring and the method proposed by 
Berndt et al. (1974). An elementary discussion of both of these can be found 
in Maddala (1977, pp. 176 -179.). 

22 Berndt et al. (1974) were the first to exploit this propert y in an econometric 
context. For a formal proof of the equivalence, see, e.g., Pollock (1979, p. 339). 
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and 

Clearly, if 1(fJo) and 1(00) are offull rank, then 1(fJo'00) must have full 

rank, too. Concerning the present model, it is a simple matter to derive the 

submatrix 1(00) and to show that it has full rank. These results, which are 

well known, are stated in in the following lemma. 

and has full rank, i.e. rank[1(00)] = 4. 

PR o OF. See Appendix C. 

Given Lemma 2, proving the full rank of 1 (fJo, 00) amounts to proving the 

full rank of 1(fJo)' One way to establish the rank of 1(fJo) is suggested in the 

following proposition. 

PROPOSITION 1. The submatrix 1(fJo) of 1(fJo'00) satisfies the 

following two conditions. 

(i) It can partitioned according to 

1(fJ) = 1{~' ,v')' = [TT~1 TT12] , 
o o o 12 22 

(40) 
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where T 11' T 12' and T 22 are defined according to 

T =- E [[åL(Oo, no)] , [åL (00 , no)]] 
11 a" a,,' 

T =- E [[åL(Oo,no)] , [åL (00 ,no)]] 
12 a" a,,' 

T22 =- E [[åL(~no)]' [åL(~no)]] , 

and equal to 

T 11 = [[g~T(Z'G®ln) + [g(]'WT(I.r®ZB')]A(D-2®n-I)A' 

x [(GZ ® In) [~] + (I.r ® BZ')W~[g(]] , (41) 

T 12 = [[ g~e] '(Z'G ® In) + [g(] , WT(1.r ® ZB')] A(D-2 ® n-l )A' 

x (W® I )W'M, 
n n 

T = Mw (W' ® I )A(D-2 ® n-I)A'(W ® I )W'M 
22 n n n n ' 

the matrix A being defined by (29). 

(42) 

(43) 

(ii) lt has full rank if Tu' T22 , and (Tu - T12T2~Tl2) all have 

full ranks. 

PROOF. To prove part (i), first take the expectation of the outer product of 

the expression (36), which was derived in the proof of Theorem (1) : 

(44) 

The second equality follows since E [(R - s+),e(R - s+),e,] = (IT ® n). The 

result (44) is not new; see, e.g., Berndt et al. (1974, p. 664) for an equivalent 

expression. 
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The next step is to expand (44) by means of Lemma 1. The the first 

part of Lemma lyields, 

I(80 ) = [[gr] '(Z'G €O 13) + [rf] '(Ir €O ZB') + [g~C] '(W' €O 13)] 

x A(D-2 €O 0-1)A' x (45) 

[[~]'(Z'G €O 13) + [:?]'(~ €O ZB') + [~]'(W' €O 13)]' , 

where the RHS is implicitly taken to be evaluated at (80 ,00), Finally, by the 

second part of Lemma l, 

[[~] '(Z'G €O 13) + [:?] '(~ €O ZB') + [~] '(W' €O 13)] 

= [[~]'(Z'G €O 13)] + [[~ ''1r(lr €O ZB')] + [ 0 8 ,r'3 ]. 

03,r'3 03,r'3 M'I3(W'€013) 

Inserting the RHS of this last expression in (45) one obtains the desired result, 

af ter a number of tedious but straightforward calculations. 

The second part of the Lemma is an immediate consequence of weIl 

known results concerning inverses of partitioned matrices. If 1 11 , 1 22 , and 

(111 - 1 12 12~1~2) all have full rank then the inverse of I(80 ) exists, which 

implies that it must have full rank: see, e.g., Johnston (1984, p. 135). Q.E.D. 

To show that 1 11 , 1 22 , and (111 - 11212~1~2) have full rank it is 

necessary to consider these matrices in detail. To this end, the foIlowing two 

lemmas, which characterize the matrices A and A(D-2 €O 0-1)A', respectively, 

will be useful. The first lemma demonstrates, that in spite of its complicated 

appearance, the matrix A has a quite simple block-diagonal structure. 
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LEMMA 3. The T·3)( T·2 matrix A:: (Ir ~ J') - (Ir ~ 13).T((Ir ~ S+) 

has the following properlies : 

(i) It can be written in block-diagonal form according to 

A= 

J' -1 8+ O 
O 3 1· J' -1 8+ 

3 2· 

O O 

O 
O 

J' -1 8+ 
3 T· 

where 8;. , t = l, ... , T, denotes the t'th row of the matrix s+ given by 

(26) and the zero matrices are 3 )( 2. 

(ii) It has full column rank, i. e. rank ( A) = T· 2 . 

PR O OF. See Appendix C. 

The next lemma provides a decomposition of A(n-2 ~ {l-1)A' and establishes 

its rank. 

LEMMA 4. The T·3)( T·3 matrix A(n-2 ~ {l-l)A' has the following 

properlies. 

(i) It can be decomposed according to 

" A(n-2 ~ {l-l)A' = [A(D-l ~ P)][A(D-l ~ P)]' 

where P is a non-singular 2 )( 2 matrix. 

(ii) Rank[A(D-2 ~ {l-l)A'] = rank[A(n-1 ~ P)] = rank(A) . 

PROOF. See Appendix C. 

Since T 22 is the less complicated of the three matrices whose rank are 

to be determined, it will be considered first. The following lemma gives a 
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detailed description of a product matrix involved in T 22 and in the theorem 

immediately following it is proved that T 22 has full rank. 

LEMMA 5. The 3 x T·2 matrix Ml)iW' ® 13)A involved in T 22 can 

be partitioned into T submatrices of dimension 3 x 2 according to: 

where wt . , t = 1, ... , T, denotes the t'th row of W, p is implicitly 

defined by the equality M = diag(p), and 0 denotes the Hadamard 

product, i.e. p0 w~ . = (Jl1Wtl , .... , JlnWtn)' . 

PROOF. See Appendix C. 

THEOREM 2. The 3 x 3 matrix T 22 given by (43) has full rank. 

PROOF. By (43), Lemma 4 and the results concerning ranks that were 

exploited in the proof of Lemma 4 : 

rank(T22) = rank{[MI)3(W' ® 13)A(D-t ® P)][MI)3(W' ® 13)A(D-t ® P))'} 

= rank[MI)3(W' ® 13)A(D-t ® P)) 

= rank [MI) 3(W' ® 13)A) . 

Since MI)3(W' ® 13)A is 3 x T·2 the task is to prove that MI)3(W' ® 13)A 

has full row rank. To this end, partition MI) 3(W' ® 13)A in accordance with 

Lemma 5, and note that 

rank[diag(p0 w~,)(J' -138;,)) = Rank(J' -138;,) = 2, t = 1, .. . ,T. (46) 

The first equality follows from the non-singularity of diag(p 0 w~.) and the 
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second from Lemma 3. By (46), the rank of M'~iW' ® I3)A must at least be 

equal to that of its submatrices [diag(p®"'~J(J'-138~Jl, t= 1, ... ,T. 

Thus, given (46), the theorem is equivalent to the claim that the row rank of 

M~ iW' ® I3)A exceeds that of its T submatrices. This will be verified by 

showing that the rank of M~ iW' ® I3)A cannot be equal to the rank of its 

submatrices unI ess the predicted factor proportions are all constant over time. 

Consider the t'th submatrix. As this submatrix is 3 x 2 and its rank 

is 2 there exists one linear combination of its first 2 rows which is equal to 

its last row. Noting that by the definition (23) of J the tth submatrix can be 

partitioned according to 

this means that for t = 1, ... , T, there is a 2 x 1 vector at E 1R2 such that 

Since 

where 

(this can easily be verified by direct calculation) one can solve for 

according to 

(47a) 

(47b) 

Now, rank[M~3(W' ® I3)Al is equal to 2 if, and only if, there exists a set 

{ a~, a;, .... , at} such that a~ = a; = ... = at or, equivalently, if 

(48) 
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for t= 2, ... ,T. By the definition (47b), 0t is equal to the predicted eost 

share for the 3rd input in period t. Aecordingly, the condition (48) can 

alternatively be formulated in terms of the following requirement on the 

individual eost shares 

-=--- for i = 1,2 and t = 2, ... ,T, 

whieh, in turn, is equivalent to the condition 

for i = 1,2 and t = 2, ... , T. 

Thus, the rows of T 22 eannot be linearly dependent uniess all the predicted 

faetor proportions are constant over time. Sueh constaney requires that all 

relative prices are eonstant over time and that there is no teehnical ehange ; 

cf. (9). The probability of this event can safely be set to zero. Q.E.D. 

Next, the rank of T 11 will be eonsidered. Two lemmas are first given 

whieh deseribe the strueture of T 11 . 

LEMMA 6. The matrix [[~T(ZIG ® 13) + [Z(]''1r (Ir ® ZBI)]A 

involved in T 11' can be expressed in terms oj 1 x 2 vectors such that 

the (h,t)th element is given by 

* [ * oBI 09t l] I + 
Zt. 9t aKh + aKh B (J -13st .) , h = 1, ... ,8, t = 1, ... ,T, 

where Zt. denotes the tth row oj the T x 5 matrix Z, 9~ the tth 

element oj the T x l vector g* and (}BI / 0,\ denotes the 5 x 3 matrix 

obtained by dijjerentiating BI componentwise with respect to Kh. 

PROOF. See Appendix C. 



87 

LEMMA 7. The matrix ({)Bc/o,,)' is given by 

({)BC/o,,) ' = 

1/>" o -1 o o o o o o o o o o o o 
o 1/>" -1 o o o o o o o o o o o o 

In>../ >.. o -I n>.. 1/>" O -1 O O 0-1/ >.. O 1 O O O 
= In>../>..ln>"/>"-2In>" O 1/>"-11/>" O -1-1/>..-1/>..2 O O O 

where 

O In>../>.. -In>" O O O O 1/>"-1 O -1/>..1 O O O 
O O O O O O O O O O O O 1/>' O -1 
O O O O O O O O O O O O O 1/>"-1 
ql q2 q3 q4qSOQ7qS OqlOq11 0 q13q14O 

Ql = [('Yu + 'Yl2)·(>..-1-ln>..) - a(ln>..)/>.., 

Q2 = [('Yl2 + 'Y22)· (>..-1-ln>..) - a2·ln>"l/>", 

Q3 = - (-ru + 2'Yl2 + 'Y22) , Q4 = - 'Yu / >.., Q5 = - 'Yl2/ >.. , 

Q7 = - 'Yl2/>", Qs = - 'Y22/>", QlO = ('Yu + 'Yl2)/>", 

Qu = ('Yl2 + 'Y22)/>", Ql3 = - T l />" , Ql4 = - T2/>"· 

and has full row rank, i.e. 8, except at points in the parameter space 

where ,,= (al' a2, 'YH> 'Y12' 'Y22' Tl , T2 , (3)' can be written as 

At these points the rank of ({)Bc/o,,) ' is equal to 7. 

PROOF. The explicit matrix expression is obtained by vectorization and 

differentiation of B, as given by (20). The rank propert y can be proved as 

follows. Start by considering the first seven rows of ({)Bc/o,,)'. Denote the 

corresponding matrix (oBc/0fi.)' . As this matrix is a function of >.. only its 

full rank can be verified by assigning an arbitrary (positive) value to >.., 

forming the product [({)Bc/0fi. )'({)Bc/0fi.)) and checking that its inverse 

exists. Accordingly the rank is at least seven. That it is exactly seven will be 
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proved by showing that the last row can be obtained as a linear combination 

of the first seven rows. This is tedious but straightforward work. To see how 

it can be done, first consider the last three elements of the last row. It is clear 

that these must be obtained by means of the sixth and seventh rows. It can 

also be seen that if a linear combination of rows six and seven is to resu1t in a 

vector with a zero last element, then it must be the case that T1 = - T2 . 

Similarly, consider the fourth, fifth, and sixth elements of the last row (Le 

q4' q5' and q6) · To obtain these elements rows three and four have to be 

weighted by -'11 and - '12' respectively, and, moreover, it must be the 

case that '12 = -'11 in order to ascertain that ~ = O. The constraint 

'22 = - '12 can be established in the same way by considering the elements 

q7' qs' and qg. Thus, '22 = '11· Further, note that, given these 

constraints, q1 = - 0'1 ·ln>'/ >. , q2 = - 0'2 ·ln>'/ >., and q3 = O. Since rows 

three, four, and five are weighted by '11' - '11' and '11' respectively, rows 

one and two have to be weighted by - 0'1 . In>' and - 0'2 . In>' to generate q1 

and q2. Finally, q3 = O implies that the weights for rows one and two must 

sum to zero which implies that either 0'2 = - 0'1 or fl = O (Le>. = 1). Q.E.D. 

Concerning Lemma 7, it is worth noting that ([}Bc/o,.) ' has full row 

rank for a static, allocatively inefficient CoblrDouglas technology, Le. if 

'11 = '12 = '22 = T1 = T2 = O, provided that either 0'2 f. - 0'1 or fl f. O. 

This indicates that full row rank on (aBc/a,.)' cannot be a sufficient 

condition for identification, because any attempt to estimate a model of this 

type will fail, at least as long as technical efficiency is assumed. That can be 

inferred by mere inspection of the cost shares (11), remembering that only the 

two first shares will be considered in the estimation. The following theorem 

shows that the conditions under which (aBc/a,.)' has full row rank is a 

special case of the conditions under which T 11 has full rank. As expected, 
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the lat ter conditions imply that the Cobb-Douglas model just discussed is not 

identified. In fact, the theorem implies that identification will fail even if the 

technology modeled only has a parti al Cobb-Douglas structurej this is further 

commented upon af ter the proof of the theorem. 

THEOREM 3. A sufficient condition for the 8 x 8 matrix T 11 ' given by 

(41), to have full rank is that the parameter vector ,. does not belong to 

the subspace of the parameter space which satisfies 

If technical inefficiency is not modeled (i.e. assumed non-existent a 

priori) then this condition is also necessary. 

PROOF. By (41), Lemma 4, and the results concerning ranks that were 

exploited in the proof of Lemma 4: 

rank(T 11) = rank{[ [g~T (Z'G ® 13) + [gf]'wr(lr ® ZB')] A(D-t ® P) 

x [A(D-t ® P)l' [[~]' (Z'G ® 13) + [~' Wr(lr ® ZB')]'} 

= rank{ [[~] '(Z'G ® 13) + [gf] 'Wr(lr ® ZB')]A(D-t ® P)} 

= rank{[[~]'(Z'G ® 13) + [~]'Wr(lr ® ZB')]A} 

It will be shown that the rows of the matrix in the last equality cannot 

be linearly dependent . 

From Lemma 6 it is clear that if the rows of T 11 are linearly dependent 

then there exists avector (E IRS, (f Os such that 

t = 1, ... ,T. (49) 
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The first thing to examine is whether there are conditions under which 

the matrix within brackets may be equal to °5,3' Lemma 7 states the 

circumstances which make it possible to make Eh~l {h' (oB' /0"h) equal to 

05 3' For the matrix within brackets to be singular these conditions should , 
also imply that the sum Eh~l {h' (Og~/ 0"h) equals zero. It can checked, 

however, that this is not the case. 

Next, it must be checked if it is possible to satisfy (49) if the matrix in 

brackets is different from the zero matrix. Note that 

since 8;3 = 1 - 8;.12, Secondly, notice also that 

where the first factor on the RHS is a scalar, namely total expenditure divided 

by f(y,t), and the second factor is the (row) vector of predicted expenditures 

divided by f(y,t). Utilizing these two observations, one can reformulate (49) 

according to 

where 

and "cc" denotes proportional to. Note that the implicit constant of 

proportionality may vary over time and, further, need not be equal to 

[(Zt.B'g~ + /tIt. M )131-1 . 

In general terms the LHS of (50) can be written f( Zt. j ,,) whereas the 

RHS can be written as g(Zt. ; ,,) + h(lIJt . j II). Since /tIt . cannot be written 
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as a linear function of Zt. , and v and " are not functionally related at all, 

a necessary condition for (50) to be satisfied is that the function h(lIJt . j v) is 

identically equal to zero. This can only happen if there is no technical 

inefficiency, in which case M = 03,3 and g~ can be set equal to unity [cf. 

(22)] .23 Put differently, if there is technical inefficiency then T 11 must have 

full rank. This is the reason for the last statement in the theoremj the mere 

modeling of technical inefficiency may suffice to give T 11 full rank. 

It remains to consider the case with technical efficiency. To begin with, 

notice that since in this case the matrix within brackets in (49) is given by 

1; 8 ~h' (fJB' / {JK..) the conditions in Lemma 7 will be sufficient to satisfy (49). 
h=l h 

Accordingly, in the context of technical efficiency a necessary condition for the 

full rank of T 11 is that matrix (fJBc / o,,)' should have full row rank. 

However, full row rank of (aBc/o,,)' is not sufficient to ascertain that 

T 11 has full rankj it has to be proved that, in addition, (50) can not be 

satisfied by any 't E 1R8. Given technical efficiency, (50) can be expressed 

according to 

z ~ r .aB' = z B' ==} ~ r .aB' = B' {=::} aBC r= BC 
t'h=l'>th ~ t · h=l'>h ~ ~ '> , 

where 

The expression 1;h~l (h ({JB' / {J~) = B' follows by multiplying both sides of the 

first equality by Zt:' summing over t, dividing by T and, finally, 

multiplying both sides by (Z'zt1 • What the condition says is that if the 

rows of T 11 are linearly dependent then it should be possible to express BC 

23 While it is conceivable that the required proportinality might be satisfied 
for some individual observation even in the presence of technical inefficiency, 
the probability of proportionality holding at every observation when M:f. O 
can safely be set equal to zero. 
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as a linear combination of its first order derivatives with respect to ,.. 

By means of the technique employed in the proof of Lemma 7, it will be 

shown that Be' can be written as a linear combination of the rows of 

({}Be/o,.)' if, and only if, (i) the vector ,.= (al'~' '11' '12' '22' Tl , T2' (3)' 

can be written (0'1,0'2' '11> -'11> '11> Tl , -Tl , (3)' and (ii) (al + a2)·lnA f O . 

Since the conditions on ,. considered in Lemma 7 concern the cases when the 

product (al + a2)·lnA equals zero, the requirements (i) and (ii) plus Lemma 

7 must imply the condition on ,. that is stated in the theorem. 

In calculating Be, as a linear combination of the rows of (oBe / O,.)' 

note, first, that (8 must be non-zero. This can be seen as follows. If (8 is 

zero then it is easy to see that (3' (4' (5' (6 and (7 must be '11' '12' '22' 

T1, and T2, respectively. Given these weights it also clear that to obtain b11 

and b12 one must set (1 and (2 equal to al and 0'2' respectively. 

However, with the weights of rows 1,2,3,4, and 5 thus given by al' 0'2' '11' 

'12' and '22 the third element in the linear combination vector will be 

while the third element of Be' is 

Clearly, the two can never be equal. 

Consider, t herefore , a linear combination in which (8 f O. Inspection of 

the last three elements of Be, immediately shows such combinations require 

that T2 = - T1 and that the weights of rows 6 and 7 must satisfy 

(6 = (1 + (8)' T1 and (7 = - (1 + (8)' T1 , respectively, where (8 is yet to 

be determined. Proceeding to the seventh, eighth and ninth elements of Be, , 

Le. b13 = '12/ A, b23 = '22/ A, and b33 = - ('12 + '22) one concludes 

'22=-'12' (4=(1+(8)"12' (5=-(1+(8) " 12' 
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Likewise, for the fourth, fifth and sixth elements of BCI, i.e. b21 , b22 and b32: 

'Y12 = - 'Y11 ' (3 = (1 + (s) ' 'Y11 [and (4 = - (1 + (s)' 'Y11 ] . 

Summarizing, the analysis so far implies that 

(3 = (1 + (s)' 'Y11 ' (4 = - (3' (5 = (3 ' 

(6=(1+(s) ' T1 , (7=-(6 ' 

(51a) 

(51b) 

Three weights remain to be determined, namely, (1' (2 and (3' The 

information that 'Y12 = - 'Y11 and 'Y22 = 'Y11 makes it possible to formulate 

the following three equation system by means of the three first colurnns of 

(aBc /0,,)1 and the three first elements of BCI : 

The determinant of the system is given by D = - (0'1 + 0'2) • In>' ; hence the 

requirement (ii) above that (0'1 + 0'2) • In>' f. O. Imposing this condition and 

solving the system one obtains 

It can easily be checked that if this result and (51) are applied to the rows of 

(aBc /0,,)1 then BCI results. Accordingly, T 11 cannot have full rank under 

the specified restrictions [i.e. (51a) plus the condition (0'1 + 0'2) • In>' f. O] . 

Since these restrictions were necessary to obtain any solution and since the 

solution actually obtained is unique there can be no other linear combination 

of the rows of (oBC /0,,)1 that yields BCI . This completes the proof. Q.E.D. 



94 

To provide some intuition for the conditions under which T 11 is 

singular note that 

and 

where 0"13 and 0"23 denote the Allen partiai elasticities of substitution 

between input 1 and input 3 and between input 2 and input 3, respeetively. 

Aeeordingly, the information matrix may be singular if the model has partiai 

Cobb-Douglas strueture in that input 3 has a Cobb-Douglas relation to the two 

other inputs. This requires, however, that T2 = - T1 [and, henee, that 

T3 = - (T1 + T2) = O] . Still, this means that the eondition in Theorem 3 is 

not merely a mathematical subtiety. For an example of an empirical study 

based on the translog eost funetion in which apartial Cobb-Douglas struetures 

eould not be rejeeted, see Berndt and Wood (1975). 

It remains to prove that (Tu - T 12 T2~T~2) has full rank. This is done 

in the proof of the following theorem. 

THEOREM 4. The 8 x 8 matrix (Tu -T12T2~T~2)' where Tu, T12, 

and T 22 are given by (41), (42), and (43), respectively, has full rank if 

T 11 has full rank, i. e. under the conditions state d in Theorem 3. 

PROOF. For simplieity, define 

(52) 

and 

(53) 
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By means of these definitions and Lemma 4, T 11' T 12' and T 22 can be 

written 

T 11 = CA(D-1 ® P)(D-1 ® P')A'C' 

T 12 = CA (D-1 ® P)H 

T22 = H'H. 

Consequently, 

T - T T-IT' = CA(D-1 ® P)[T - H(H'H)-lH'](D-1 ® P')A'C' 
11 12 22 12 ~q . 

(54) 

Note that [lrq - H(H'H)-lH'] is symmetric and idempotent. Thus, since 

rank(XX') = rank(X'), 

rank(T - T T-IT' ) = rank{[I - H(H'H)-1H'](D-1 ® P')A'C'} 
11 12 22 12 T' 2 

~ min {rank[IT' 2 - H(H'Ht1H'], rank[(D-1 ® P')A'C']} 

By Theorem 3 and (54), rank[(D-1 ® P')A'C'] = 8. The rank of the 

matrix [lr'2 - H(H'H)-IH'] can be determined as follows. Notice, first, that 

since H has full column rank (this follows from the fact that T 22 has full 

rank) the Moore - Penrose inverse of H is given by (H'H)-IH'. Thus, 

application of Theorem 8 in Magnus and Neudecker (1988, p. 35) yields 

rank{lr'2-H[(H'H)-IH']} = rank(IT•2) -rank(H) = T·2-3. (55) 

Assuming T to be at least equal to the number of parameters to be estimated 

T· 2 - 3 will always be strictly greater than 8. It might thus be conjectured 

(T 11 - T 12 T2~T~2) has full rank. That this conjecture is correct will be 

proved by showing that rank(T 11 - T 12 T 2~ T ~2) cannot be less than 8. 

Accordingly, assume that the rank of (T 11 - T 12 T2~T~2) is less than 8. 
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This means that there exists an 8 x 1 vector { sueh that 

Remember that (D-t ® P')A'C' has full eolumn rank and note that the null 

spaee of [Ir ' 2 - H(H'H)-tH'] is spanned by H. The latter faet is easily 

established by means of the equality [Ir ' 2 - H(H'HttH']H = 0r'2,3 and (55). 

Thus, if true, (56) implies that there exists an 3 x 1 vector fl sueh that 

(D-t ® P')A'C'{ = - H", 3 fl E R, fl f 03 . 

Premultiplying by (D ® pH), using (52) and (53) and rearranging one obtains 

Note that (57) can be seen as a generalization of the eonditions examined in 

Theorem 2 and Theorem 3; in Theorem 2 it is shown that (57) cannot be true 

if {= 08 and fl f 03 while in Theorem 3 it is demonstrated that (57) is not 

fulfilled for e f 08 and fl = 03 . 

Reformulating (57) in analogy with the condition (49) used in the proof 

of Theorem 3 one obtains 

* 
[Zt. [Jt {h' g~. g~~ + :!: B'] + fI'diag(p 0 ~t:)] (J' - 138;,) = O~ . 

The matrix diag(p0 ~t:) is obviously non-singular. 24 Further, in the proof of 

Theorem 3 it is was shown that there are no eonditions under which the 

matrix within the large parentheses may be equal to the 5 x 3 zero matrix. 

Aeeordingly, it is impossible to satisfy the condition by making the expression 

24 Of course, it is assumed here that teehnical inefficieney is modeled, rather 
than taken to be non-existent a priori. Otherwise, the present theorem would 
be irrelevant. 
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within braekets equal to a sum of two zero vectors. Neither is it possible that 

'1'diag(p €l Ult :} = - Zt. [.] for all t = 1, ... , T, because ItJt • not a linear 

function of Zt. and the parameters in ~ and p are not functionally related. 

Hence, the condition cannot satisfied by making the sum of the vectors within 

the brackets equal to a zero vector. 

Accordingly, it remains to examine if the equality can be fulfilled when 

the two vectors within the brackets are non-zero and (non-trivially) distinct. 

To this end, (57) is reformulated in analogy with the condition (50) used in 

the proof of Theorem 3, yielding the following condition which is satisfied if 

(T 11 - T 12 T;~T~2) does not have full rank 

(58) 

for all t = 1, ... , T where 

The first thing to notice is that P~ diag(p €l ItJt :) can always be made to 

be equal to ItJt .M simply by letting P~ = (1, 1, 1) . 

Next consider the possibilities to choose (t such that 

To simplify this equation, premultiply both sides by (g~ti . Zt. , sum over t, 

divide by T, and, finally, premultiply both sides by (Z'zti . This yields the 

following condition: 

8 oBI 8 [1 T og~/ 0,\] 
~ ( .~ + B' ~ ( . _. ~ = 

h=i h UK h h=i h T t=i g~ 
B' , (59) 
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where 

Some reflection shows that (59) is satisfied under precisely the conditions 

which make the matrix T 11 singular. That is to say, (59) holds whenever 

there exists avector ( such that 

or avector ( such that 

8 • aB' bl' .~ - o 
h=l'" h UKh - 5,3 

(60) 

(61) 

To see this, note that if (60) holds then (59) can be satisfied by means of the 

following choice of the (h's: 

h = 1, ... ,8. 

On the other hand, if (61) is true then the (h's can be chosen according to 

__ ~ . . [_1. ~ ag~/ aKh] 
(h = {h' 1/J-I; 1/J - h~1 (h T t~1 g* , h = 1, ... ,8. 

t 

Since it is dear that (59) can be satisfied only under either of the conditions 

(60) or (61) the Theorem follows. Q.E.D. 

7. Concluding comments 

The above analysis has shown that in the context of a static, three input 

translog technology, subject to non-neutral technical change, it is possible to 
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identify both allocative and technical inefficiency parametrically. It was also 

demonstrated, however, that there exists a set of parameter constellations for 

which the model will not be identified. This condusion was arrived at by 

extending the general results of Berndt et al. (1974) for non-linear multivariate 

regression models to the system of translog input cost share system and, 

subsequently, applying Rothenberg's (1971) identification criterion. 

It is interesting to note that the existence of subspace of the parameter 

space where the model is not identified is due to the parametric specification 

of allocative inefficiency. As mentioned earlier this specification has been 

extensively used in the literature. Apparently, it has not been noted before 

that the dass of models for which identification fails comprises, e.g., all static 

models with apartiai Cobb-Douglas structure. Of course, this dass is much 

larger than the dass of (full) Cobb-Douglas models for which the lack of 

identification is trivial to establish. The formulation of technical inefficiency 

which has been used here, and which is new, does not induce any identification 

problems (beyond the general problem of increasing the number of parameters 

to be estimat ed by means of a given data set.) 

Concerning the possibilities to generalize the results obtained in this 

paper it should be said that the restriction (7c) which reduces the number of 

parameters associated with allocative inefficiency from two to one, greatly 

simplifies the calculations in Section 6. To substitute other restrictions which 

have same effect for (7a) - e.g. that two of the three parameters be equal to 

unityapriori - poses no problem. As soon as only (7a) and (7b) are imposed 

it becomes much harder to derive the conditions under which the model is 

identified, at least by means of the techniques used here. However, there is no 

reason to believe that the basic result, Le. that the model is identified for a 

large set of parameter constellations, should be overthrown. The same can be 

said about extensions involving alarger number of inputs. 
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Appendix A: Matrix operators and operations 

This appendix contains a listing of some matrix results used in the paper. 

More extensive treatments can be found in Pollock (1979), Magnus (1988) and 

Magnus and Neudecker (1979, 1988). 

A m x n matrix X may be regarded as an array of column vectors, 

x ., J' = 1, .... ,n, or as an array of row vectors x. , i = 1, .... ,m. Thus, X 
• J l' 

may be vectorized either by stacking its columns on top of each other 

or by putting its rows af ter one another 

For a column vector, y say, (A.l) and (A.2) specialize into 

and 

11 = y,r = y' , 

respectively. The operators c and r are related according to 

(A.l) 

(A.2) 

(A.1') 

(A.2') 

(A.3a) 

(A.3b) 

(A.3c) 

25 The use of the indices c and r is due to Pollock (1979). A more common 
notation for the column vector corresponding to X is vec(X); see, e.g., 
Magnus (op. cit.) and Magnus and Neudecker (op. cit.). If the vec notation 
is adopted there is no counterpart to the superindex r, however. For this 
reason Pollock's notation is of ten more convenient. 
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The commutation matrix Kmn is the mn x mn matrix which 

transforms Xc and Xr according to 

(A A) 

(A.5) 

The last result can be derived by means of (A.3a), (A.3b) and the following 

fact 

K l -K -K-l mn - nm - mn· (A .6) 

Let A = (a . . ) be r x m and B = (b . . ) s x n. The Kronecker product 
lJ lJ 

is then the rs x mn matrix 

A®B = (a . . B) 
lJ 

Some properties of Kronecker products are 

(A®B)(C®D) = AC®BD) , 

A ® (B + C) = (A ® B) + (A ® C) , 

(A®B) ' =A'®B' , 

rank(A ® B) = rank(A) ·rank(B) , 

(A ® Btl = A-l ® B-l. 

(A.7) 

(A.8) 

(A.9) 

(A. W) 

(A.11) 

(A.12) 

The relationships between the operators c and r and the Kronecker 

product are given by 

(AXB')C = (B ® A)XC , 

(A'XBY = xr(A ® B) , 

(A.13) 

(A.14) 

26 The name commutation matrix and the denotation Kmn were introduced 
by Magnus and Neudecker (1979), where an explicit definition of Kmn can be 
found. The same matrix was deflned in Pollock (1979) who called it the tensor 
commutator and denoted it by an encircled T. The former notation is used 
here because it is simpler and shows the dimension of the matrix. 
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while the following equality shows how the Kronecker product can be revers ed 

by means of the commutation matrix 

K (B ® A) = (A ® B)K . rs mn (A.15) 

Let A and C be m)( n. The Hadamard product is then the m)( n 

matrix 

A0C= (a .. c .. ). 
lJ lJ 

(A.16) 

Finally, some definitions and results relating to square matrices. Denote 

the n)( n diagonal matrix corresponding to the n)( 1 vector 1/ by diag(1/), 

Le. 

diag(1/) = (6 .. y.) , 
lJ 1 

1: {I if i = j 
Uij = O if i f j' (A.17) 

Further, denote by superindex d the operator which picks the diagonal 

elements of the n)( n matrix A and arranges them into an n)( 1 vector: 

(A.18) 

Thus, in particular, 

[diag(1/)]d = 1/. (A.19) 

The n)( n2 basis matrix for di agon ali t y " is (implicitly) defined by 
n 

,,' 1/ = [diag( 1/))C . 28 
n 

(A.20) 

It can be shown that [cf. Magnus (1988, p. 110)) 

[for A n)( n]. (A.21) 

27 This notation is of my own making. Magnus (1988, p. 108) denotes this 
operator by w(A). However, given the use of the superindices c and r, it 
seems natural to use a superindex here, too. [The operation (A.18) is not 
considered in Pollock (1979) so there is no notation to be gotten from that 
source.) 

28 An explicit definition of "n can be found in Magnus (1988, p. 109). 
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Appendix B: Results from matrix differential calculus 

Following Pollock (1979) and Magnus and Neudecker (1988) matrix 

differentiation is treated within the framework of vector differentiation. 

According to the basic definition, the partial derivative of the m x 1 vector 

y( x) with respect to the n x l vector x is the m x n matrix 

8,,/8x= (8y';8x.) . 
l J 

(B.1) 

Special cases of (B.1) are the derivative of a sealar, y, with respeet to an 

n x 1 vector x, and the derivative of an m x l vector " with respeet to a 

scalar, x. These are given by the row veetor 

8Yl8x = (8yl 8x! ' .... , 8Y18xn) (B.1') 

and the column vector 

respeetively. Regarding matrices, let Y = Y(X) be r x s and X m x n. 

Expressing the mapping in vector form, Le. yc = YC(XC), the derivative can 

be written 

(B.2) 

Notice that in this case the typical element is an r x m matrix. 

Using (A.12) and (B.2) 

Further, by (AA) 

(B A) 
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Let Y = Y(U) and U = U(X). Then, by the chain rule, 

(B.5) 

There is also an matrix analogue to the product rule. If Y = UVW is an 

r x s matrix wherein U = U(XC), V = V(XC), and W = W(XC) then 

(B.6) 

where I and I denote the identity matrices of order r and s, 
r s 

respectively. Of course, (B.5) and (B.6) can easily be specialized to the case 

when the derivative is taken with respect to an ordinary vector, z say, 

rather than Xc; z is then simply substituted for Xc. This is the case 

which will be encountered in the text . 

By means of the above results one can derive the following two rules : 

(B.7) 

and 

llnlUI/oUC = u-tr , (B.8) 

where In I U I denotes the naturallogarithm of the determinant of U. 

Finally, two results concerning the derivatives of matrix traces, which 

can be found in Pollock (1979, p. 82) 

Otr(A'AX)C = (A'AY , 
oXc 

Otr(X I AXB'Y = XC'(B ® A) + XC'(B' ® Al) . 
oXc 

(B.9) 

(B.IO) 
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Appendix C: Proofs of lemmas 

Proof of Lemma 1 

Application of (B.6), (B.7) and (A.9) yields 

~ = (D-tGZ ® J) ff- + (D-t ® JBZ') :; 

+ (D-tW ® J) rlf - (D-t ® St') :; . 

The partial derivative aDc / aD can be expressed in terms of the partials 

{)Bc / aD, ()GC / aD, and aMc / aD. By (28), the definition (A.20) of the basis 

matrix for diagonality, and (A.l') 

DC = 'IJ'(l'BZ'G + l'MW')' = 'IJ'(l'BZ'G + l'MW')C T3 3 T3 3 • 

Hence, by renewed application of the chain and product rules 

Inserting this result in the above expression for 8(S+')c/ aD and rearranging, 

using (A.8) and (A.10), one obtains the first part of the lemma. 

The second part follows from the definitions of B, M, and G [cf. 

Example 1, (21), and (28)] and from the definition (A.20). These imply 

Q.E.D. 
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Proof of Lemma 2 

By (B.5), (B.6), and (B.7) : 

- ut8L(0,0}/OOCj' = ! . [O-l(R- S+)'(R- S+)O-l ® 0-1] 
OOc 2 

+ ~. [0-1 ® 0-1(R - S+)'(R - S+)O-l]_~. (0-1 ® 0-1) . 

Noting that, when evaluated at (°0 ,00 ), the expectation of (R - S+)'(R - S+) 

equals T . O one obtains the desired expression. The rank of I( 0 0 ) follows 

immediately from (A.11) . Q.E.D. 

Proof of Lemma 3 

To prove (i), first consider the product ~T(IT ® S+) . As shown by Magnus 

(1988, p. 109) the matrix 'JT can be written 

where the submatrices Ett (T) , t = 1, .. . , T, are T x T with the (t,t) 'th 

element equal to unity and all other elements equal to zero. This implies that 

the T x 2 matrix ~T(IT ® S+) has the following structure: 

8+ O' 
l' 2 

O' 
2 

O' 8+ O' 
~T(~ ® S+) = 2 2· 2 

O' 
2 

O' 
2 

8+ 
T' 

where 8;. denotes the tth rowof S+ and O2 is the 2 x 1 zero vector. 

Now consider (I.r ® 13)~T(~ ® S+) . Premultiplication of ~T(IT ® S+) 

by (IT ® 13) simply amounts to premultiplying the elements of ~T(1.r ® S+) 

by 13 so that (I.r ® 13)~T(1.r ® S+) can be obtained from ~T(1.r ® S+) by 

substituting 138;. for 8;., t = 1, ... ,T, and the 3 x 2 zero matrix 03,2 
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for O;. Finally , since J', 138;. and °3,2 are all 3)( 2 the following sum 

can be formed 

J' °3,2'" 03,2 

° J' ... ° = 3,2 3,2 

°3,2°3,2 ... J' 

which gives the result. 

138~. ° 3,2'" 03,2 

° 3,2 138;. ° 3,2 

To prove (ii), note that, by (i), rank(A) = ~t!lrank(J' -138;J, where 

rank(J'-138;J$2 since J'-138; .. is 3)(2 for t=l, ... ,T. Itthushas 

to be proved that rank(J' -138;,) = 2 for t = 1, ... ,T. The strategy will be 

to prove that the first 2 rows of J' - In 8;. are linearly independent or, 

equivalently, that the corresponding submatrix has full row rank. By the 

definition (23) of J, the first 2 rows of J' -138;. can be written 

12 - 128;. where 12 is the identity matrix of order 2 and 12 is the 2)( 1 

unit vector. As det(I2 - 128;. ) = 1 - 8; .12 [cf. Magnus and Neudecker 

(1988, p. 25)] the matrix 12 - 128;. is non-singular, Le. has rank equal to 2, 

as long as 8;.12 f 1. But this follows directly from the definition of S+; the 

rows 8;., t = 1, ... ,T, of S+ contain the predicted cost shares for the 2 

first inputs. Since the sum of all the predicted cost shares is identically equal 

to uni t y the sum of the 2 first predicted shares must be different from unity. 

While, theoretically, there is a (remote) possibility that 8;.12 is exactly 

equal to one for some t, t = 1, ... , T, the probability of this event is zero since 

8;.12 is continuous on the interval [0,1]. Accordingly, with probability 1 

rank(12 -128;.) = 2 for t = 1, ... , T, implying that rank(J' - 138;.) = 2 for 

t= 1, ... ,T, too. Hence, rank(A) = T·2. Q.E.D. 
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Proof of Lemma 4 

The propert y (i) foIlows from the fact that since O-l is positive definite (due 

to the assumed positive definiteness of O) there exists a non-singular matrix 

p such that O-l = PP'; cf. Magnus and Neudecker (1988, Theorem 23). 

Accordingly, 

A(D-2 ® O-l)A' = A(D-l ® P)(D-l ® P')A' = [A(D-l ® P)][A(D-l ® P)l' . 

The rank propert y (ii) is implied by (i) and weIl known results con­

cerning ranks [cf. Magnus and Neudecker (op. cit., p. 8)] according to which 

rank[A(D-2 ® O-l)A'] = rank{[A(D-l ® P)][A(D-l ® P)]'} 

= rank[A(D-l ® P)] = rank(A) 

where the last equality is a consequence of the fact that (D-l ® P) is non­

singular [cf. (A.12)] and, hence, must be of full rank. Q.E.D. 

Proof of Lemma 5 

Consider, first, the matrix product \PT(W' ® 13), This product can be written 

where the matrices Eii (3), i = 1,2,3, are 3 x 3 with the (i,i)'th element 

equal to uni ty and all other elements equal to zero. 

Premultiplication of wtiI3' t = 1, ... ,T, by Eii(3) yields an 3 x 3 

matrix whose i'th row equals the i'th of wtil3 while all other rows equal 

1 x 3 zero vectors. Premultiplication of (W' ® 13) by \PT thus yields 
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Further, since M = diag(p) and diag(p)diag(wtJ = diag(JL1wt1 ' .... ,JLnwtn) , 

where 0 denotes the Hadamard product. Finally, combining this result with 

Lemma 3, one directly obtains the expression sought. Q.E.D. 

Proof of Lemma 6 

The matrix considered in the lemma is equal to the following sum 

Concerning the first term, note that BBc/OK = (aBC 1 OK. 1 ' .... , BBc 1 OK.s) where 

BBc/a'\. = [(ab. 1/0'\.)', .... , (ab.5/a'\.)']', h = 1, .... ,8. Hence 

(ab .tl OK.t ) , (ab. 21 aK.t ) , ... (flo . 51 aK.t ) , 

[g~T = (Ob. tloK.2)' (Ob. 210K.2)' .•. (flo. 5/aK.2) , (C.1) 

Further, using the fact that G == diag(g*) and, subsequently, Lemma 3 

(Z'G ® I3)A = 

zug7 (J' - 13s~.) z21g~ (J' -13s;.) 

Zt2g7 (J' -13s~.) z22g~ (J' -13s;.) 

ZTt g; (J' -13s;' . ) 

zT2g; (J' -13s;'.) 
(C.2) 

Since the elements in the RHS matrices in (C.1) and (C.2) are l x 3 vectors 

and 3 x 2 matrices, respectively, these partitions are conformable. The result 

of premultiplying (Z'G ® I3)A by (aBC / aK)' can thus be expressed as a 
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matrix whose elements are l x 2 vectors. Carrying out the multiplication 

one sees that 

[f,!CJ (Z'G ~H3)A = (1"ht) = [g:[j~l Ztj( ~. / a"h)'] (J' - 138; J] 
= [Zt. g: g~: (J' - 138;J] , (C.3) 

where the indices on the typical l x 2 vector element 1"ht run from l to 8 

and from l to T, respectively. 

Concerning the term (ag*1 a,.)'11Ir ("Lr ® ZB')A, consider first the matrix 

11Ir (lr ® ZB'). Noting that the tth row of ZB' is equal to Zt. B' one can 

immediately infer the structure of this matrix from the structure of the matrix 

11Ir (lr ® S+) considered in the proof of Lemma 3. Together with Lemma 3 

itself this yields 

z B'(J' - l 8+ ) O' 
l' 3 1· 2 

O' z B' (J' -1 8+ ) 
2 2. 3 2· 

O' 2 O' 2 z B'(J' - 1 8+ ) r· 3 r· 

The l x 2 elements of this matrix are conformable with the 1 x l elements 

of the 8 x T matrix (8g* 1 a,.)' = (ag:1 8"h)' Thus, 

where the indices on the typical l x 2 vector tPht run from l to 8 and 

from l to T, respectively. Accordingly, 1"ht' given by (C.3), and tPht 

can be summed. Doing so, one obtains the desired result. Q.E.D. 
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Abstract 

Productivity measurement is considered in the context of incomplete output information. 
Only a value measure of output is assumed to be available, which is typical for many service 
industries. Input markets are assumed to be competitive, while the output market is aIIowed 
to be noncompetitive, and potential markups are assumed to be either known or constant. It 
is shown that if production technologies-are homothetic and the e1asticities of total costs 
with respect to output are strictIy increasing, the given data are equivalent to complete 
information, provided the markup is known. If it is not, the results hold conditionai on the 
unknown markup. . 

I. Introduction 

A salient feature of the service industry is that, in general, it is very difficult 
to measure its output. While input data are mostly available, reliable 
output quantity or output price data usually cannot be found in official 
statistical sources. Indeed, for some types of services, notably within the 
public sector, it is not even possible to obtain output value measures. 
Mellander and Ysander (1990) exarnined the conclusions that can be drawn 
about production technology and producer behavior when there is no 
output information whatsoever. It was shown that for homothetic produc­
tion technologies, i.e., with the propert y that the optimal factor mix is 
independent of the level of production, time series on input prices and 
input quantities only can be used to study almost all dimensions of the 
production process by means of a dual approach, using the cost function 
as the instrument of analysis. In principle, the only aspects that cannot be 

* Financial support from the Bank of Sweden Tercentenary Foundation, the Royal Swedish 
Academy of Sciences and the Sweden-America Foundation is gratefully acknowledged. I 
have benefited from comments from Thomas Andersson, Ernst Berndt, Rolf Fåre, Lars 
Grönstedt, Sten Nyberg and, in particular, Fabio Schiantarelli and two anonymous referees. 

Scand. J. of Economics 1992 
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investigated are those affecting input demands neutrally, e.g. (purely) 
Hicks-neutral technical change and properties relating to returns to scale. l 

This study extends the analysis to the case where a measure of the value 
of output is available, which is the typical situation for most kinds of 
private services. Thus, the analysis is again based on the cost function and 
presumes that firms are endowed with homothetic production tech­
nologies and operate on a competitive input market. The output market, 
on the other hand, is allowed, to be noncompetitive. It is assumed, 
however, that in the context of markup pricing, the markup is either known 
or (approximately) constant. Thus, while there can be a wedge between the 
marginal cost and the output price, it is assumed that if this wedge is 
unknown it can be treated parametrically. In order to simplify the analysis, 
the producer is assumed to maximize profits and attention is confined to 
static equilibrium models. 

The homotheticity assumption and the requirement that, in the absence 
of a priori information, the possible markup be constant might perhaps 
seem rather restrictive. However, if the traditional route in dealing with the 
output measurement problem is followed instead and the unknown output 
is replaced by some proxy variable(s), then it is usually impossible to 
ascertain the circumstances under which the variations in the proxy( -ies) 
really mirror ' the changes in the actual output, and hence whether the 
results obtained are valid. Here, the conditions under which the method 
suggested is applicable are completely clear. 

It can be argued that the homotheticity assumption is more easily justified 
in the context of service production than in goods production. Due to the 
more limited scope for automatization in the service industry, expansion 
often takes place by setting up additionai production units (offices), similar 
to those already existing, e.g. in the banking industry, travel agencies, etc. 
As a result, the input proportions change much less than when expansion 
occurs mainly through additions to the capital stock, as is the case in the 
manufacturing industry.2 As regards the constant markup assumption, it 
should be noted that in the context of productivity measurement, it is quite 
common to assume not only the input but also the output market to be 
competitive. Here, the latter assumption is relaxed, albeit in a crude way. 

The paper unfolds as follows. In Section II the model is described in 
terms of the firms' production technologies and the market conditions. 

l As a reminder, for a homothetic technology retums to scale are determined solely by the 
level of output and will thus be independent of the input mix. 
2 Of course, input proportions change over time in the service industry as weIl because of 
changes in relative factor prices. The claim here is simply that the smaller changes observed 
for the service industry as compared to the manufacturing industry are due to the fact that 
ceteris paribus expansion affects input proportions much less in the service industry than in 
the manufacturing industry. 
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The existenee of an equilibrium in the output market is established and 
sufficient eonditions for a unique and stable equilibrium are considered. 
The key result of the paper is then derived, i.e., a relation between the 
unknown output variable and the ratio of the value of output over total 
eosts, for whieh data are assumed to be available. Seetion III foeuses on a 
deeomposition of total faetor produetivity growth into the effeets of 
(Hicks-)neutral teehnieal ehange, biased teehnieal ehange and effeets from 
returns to seale; followed by a general diseussion of the estimation of eaeh 
of these eomponents is also diseussed. Implementation of the theoretieal 
results is dealt with in Seetion IV and some eoncluding eomments are 
given in Seetion V. 

II. The Model 

The basic strueture of the model is given by the following three sets of 
assumptions. 

(i) Technological assumpfions 

Firms, indexed by i = 1, ... , m where m might be equal to 1, are assumed to 
produce the (homogeneous) output good by means of (possibly different) 
homothetic teehnologies. Given eost minimization, cf. (iii) below, the firm's 
teehnology can be eharaeterized by means of the eost function. Due to the 
homotheticity assumption, the eost funetion is separable in output, Yj, and 
the vector HI of input priees, aeeording to 

i = 1, ... ,m, (1) 

where the time index frepresents the state of the technology and C;( 1, HI, f) 
denotes the eost of produeing one unit of output. As regards notation, Cj is 
only used to denote total eosts, to avoid eonfusion between total and unit 
cost. Boldface lowercase letters are used to denote vectors. Accordingly, it 
is assumed here that output can be treated as a scalar. This does not 
exclude multiple output activities, but it requires the existenee of an output 
aggregate.3 

The funetion /;(y), which is monotonieally increasing, determines the 
sealing properties of the technology.4 In this and the following section C j is 

3 This, in tum, amounts to assuming that the optimal output proportions (but not the leveis) 
can be determined without any input information. 
4 In principle, it is conceivable that technological developments might affect the 
technology's scaling properties, in which case t should also be an argument in the /; function. 
For simplicity, I abstract from that possibility here. 
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assumed to be a regular cost function.5 In addition, it is taken to be twice 
differentiable with respect to each of its arguments. 

It is also assumed that the elasticity of total costs with respect to output 

_ ( ) = a lo C;(y;, w, t) _ y;"/;(y;) 
E-E· y. - -

I I I a In y; f;(y;) , i=I, ... ,m, (2) 

is monotonically increasing in output, i.e., 

E;(Y;) > O Vy;, i=I, ... ,m. (3) 

While the cost/output elasticity is very often assumed to be nondecreasing, 
it is less often assumed to be strictly increasing since this rules out 
homogeneous technologies and hence, in particular, technologies that are 
homogeneous of degree 1, i.e., exhibit constant returns to scale.6 The 
reason for the strict monotonicity assumption is that later on the existence 
of a mapping from the cost/output elasticity to the level of output will be 
exploited; such a mapping exists if, and only if, the function E;(y;) can be 
inverted, i.e., if it is strictly monotonic.7 

It is further assurned that marginal costs are strictly increasing, i.e. 

j';(y;) > O Vy;, i= 1, ... ,m. (4) 

(ii) Assumptions about market conditions 

Input markets are assumed to be competitive while the output market is 
allowed to be noncompetitive. The inverse industry market demand curve 

p(.I y;) = p(lly), 
,-l 

where superindex "t" denotes transpose, is assumed to be finite valued, 
nonnegative, strictly decreasing and twice differentiable.8 Total industry 
revenue, i.e., 1 ty·p(l ty), is assumed to be bounded and strictly concave for 
ally. 

s Regularity conditions can be found in e.g. Diewert (1971). Someof these conditions can 
be tested statistically; cf. Section IV. 
6 In principle, the only troublesome fact is that constant retums to scale technologies cannot 
be considered. As technologies that are homogeneous of degree ri' 1 have ever-increasing 
or ever-decreasing retums to sCale and, hence, lack well-defined optimallevels of produc­
tion, the exclusion of them is not very serious. 
7 This is not to say that homogeneous technologies cannot be analyzed at all - the results in 
Mellander and Ysander (1990) are also valid for homogeneous technologies. It means, 
however, that for these technolgies the output value measure yields no extra information in 
addition to that provided by the input data. 
s Of course, the argument list of the price function will in general include a number of 
exogenous shift variables. To simplify the notation, these are suppressed here. 

Scand. J. of Economics 1992 



119 

(iii) Assumptions about information sets and behavior 

All finns are assumed to know the inverse industry market demand eurve, 
their own eost funetion and the eost funetions of all other firms. Given this 
information, they seek to maximize profits. D 

The assumption that produetion teehnologies are homothetic implies 
that the profit maximization problem of firm i can be divided into two 
separate subproblems. The first is to ehoose the eost-minimizing faetor 
proportions, whieh are independent of the seale of produetion. The 
second is to ehoose the optimalievei of output.9 The solution to the first 
problem is given by C;(I, w, t). When solving the seeond problem, the firm 
can take Cj(l, w, t) as given. Aeeordingly, firm i's maximization problem 
can be written 

max.nj = p(l ty)' Yj - [;(yJ Cj(l, w, t). 
Yi 

It should be noted that assumptions (i) and (ii) imply that the profit 
funetion .n j is strietly concave with respeet to Yj.10 

Following Appelbaum (1982), the first-order eonditions for profit 
maximization can be formulated aeeording to 

p(1 - Oj1])= f:(yJ Cj (1, w, t), 

where 

i=1, ... ,m. (5) 

(6) 

is the eonjeetural elasticity of total industry output with respeet to the 
output of firm i and 1] is the inverse demand elasticity, defined as 

1] = - [ap(l ty)Jal tYl'[l ty/p(l ty)]. (7) 

Aeeording to (6), the firm should set its output sueh that its marginal 
eost equals its perceived marginal revenue. This formulation of the first­
order eondition is eonsistent with a wide range of behavioral modes. For 
example, under Coumot behavior the eonjeetural variation (a l tyJa Yi) 
equals one implying that the eonjeetural elasticity Oj reduees to the output 

9 It is not possible to separate these two problems for a nonhomothetic technology as the 
cost-minimizing factor mix will be dependent on the level of production. The fact that I 
denote the problems "first" and "second", respectively, should not be taken to indicate 
anything about the order in which they are to be solved; as will be seen later on, it is 
perfectly possible to begin by considering the second problem. 
10 The strict concavity of total industry revenue with respect to total output implies that 
p( l'y)' Yi is strictly concave with respect to Yi' Further, (4) implies that the cost function is 
strictly convex with respect to Yi or, equivalently, that the negative of the cost function is 
strictly concave with respect to Yi' Accordingly, :lfi is a sum of two strictly concave functions 
and so must itself be strictly concave. 
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share of finn i. In the case of perfect competition Oj = O for all i. Further, 
under pure monopoly and in the case of collusive behavior, the conjectural 
elasticity will be identically equal to one, in the former case because 
y, =Ity and in the latter because (a I ty/a y;) = ItY/Yj for all i. Although 
other types of behavior are also conceivable within this framework, only 
the four types just mentioned are considered here. 

In regard to the Coumot oligopoly game, Friedman (1986, pp. 54-56) 
demonstrates the existence of at least one equilibrium point." Since pure 
competition can be viewed as a limiting case of the Coumot oligopoly, it 
follows that there must also be at least one pure competition equilibrium. 
In the context of pure monopoly the existence of equilibrium is trivial. To 
the extent that the case of collusive behavior can be treated as a multiplant 
monopolyoperation, i.e., if agreements can really be considered binding, it 
is dear that there must exist an equilibrium in that case, too. 

Conditions for the equilibrium to be unique and stable are considered in 
an Appendix (available on request) for the simple case where the inverse 
demand curve is linear. (As is weIl known, Coumot behavior and collusion 
yield the same outcome in this case.) It is shown that under this as sump­
tion, the equilibrium is unique if there are two firms. For m = 3 it is demon­
strated that, essentially, the equilibrium is unique if the absolute value of 
the slope of the demand curve is less than twice the geometric mean of the 
slopes of the firm's marginal cost curves. For stability it is required, in 
addition, that the slopes of the firm's marginal cost curves exceed the 
absolute value of slope of the demand curve if m = 2. If m = 3 the slopes of 
the marginal cost curves have to be at least twice the absolute value of the 
slope of the demand curve. 

An equilibrium relation may now be derived between the output level Yj 
which is presumed to be unknown to the econometrician, and total costs 
C j and the value of output Vj = P' Yj, for which data are assumed to be 
available. The first step is to solve (5) for p, yielding 

P='K j ·t:(y}C;{1,w,t), i=1, ... ,m (8) 

where 

1 
'K-=--­

, 1-0j '1 

II Assumptions (i)-(iii) combined fulfIll Friedman's Conditions 2.1-2.3, with one minor 
qualification: whereas in Friedman both the inverse demand function and the cost functions 
are defined over the range [0, 00), the corresponding range here is assurned to be [6, 00) 
where 6 is some (infinitely) small positive number. The reason for this difference is that the 
dual cost function is weil defined only for strictly positive output leveIs; cf. Diewert (1971, 
p.489). It should a1so be mentioned that since the intention is to use this model for 
measuring productivity developments, the Cournot one-shot game has to be regarded as 
being repeated over time. 
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According to (8), the output price is given by a markup 'K j over marginal 
cost. It can easily be shown that ()j'fJ belongs to the half-open interval [0,1[; 
cf. Appelbaum (1982, p. 290). Hence, 'K j will be bounded from below by 1, 
which is its value under perfect competition (since under perfect competi­
tion () j = O for i = 1, ... , m). The markup will be highest in the contexts of 
pure monopoly or collusive behavior since in these cases the markup will 
be equal to (1 - 'fJ) - ). In the Cournot case, the markup will lie between 
these two extremes. 

It is assumed that if 'K j is unknown, it can be treated as a constant. Note 
that, in general, this is not the same thing as assuming the price elasticity of 
demand to be constant; constancy of 'fJ is neither a necessary nor a 
sufficient condition for constancy of 'K j. However, if 'fJ is constant then, for 
'K j to be constant, () j must be constant, too. l 2 

The definition of Vj and (8) imply 

Vj = 'Kj"ff(yJ C;( 1, w, t)· yj, 

Hence,by(1)and(2) 

V 
~ =;= 'K j ' dY;)' 
C; 

i= l, ... ,m. (9) 

(10) 

Since, according to (3), the function e j(Yj) is invertible, ( 10) implies that it is 
possible to express Yj in terms of the ratio VJ Cj and the markup factor 'Kj. 
This is the key result of the analysis; next we discuss how it can be used in 
the estimation of total factor productivity growth. 1 3 

III. On the Estimation of Total Factor Productivity Growth 

In this and the following sections the data available· to the econometrician 
are assumed to refer either to a single firm or to an aggregate of firms. 14 

Accordingly, the firm index i is dropped in the following. 

12The assumption of a constant "i may not be too bad an approximation even if 1'/ changes 
over time, because such changes are likely to be counteracted by changes in 0i of the 
opposite sign. For example, take p( l'y) to be linear. If at a given demand new firms enter -
e.g. because costs have been reduced by technical change - then the new equilibrium will be 
characterized by a higher 1'/ than the old one, but a1so by lower O;'s, at least given Coumot 
behavior. Conversely, if at a given industry supply the demand curve shifts outward, then 
new firms are likely to enter and the new equilibrium will have the same qualitative 
properties as in the first case. 
13 I was surprised to find that the interesting relation (10) seems to have gone almost 
unnoticed. However, in a different context, Morrison (1992, p. 55), considers the corre­
sponding result in the monopoly case, Le., when ,,= (1 - 1'/ ) - I. 

14 For the latter case to be meaningful, the existence of a representative firm has to be 
assumed. As a discussion of aggregation conditions is outside the scope of this paper, suffice 
it to note that the assumption that all the m firms are identical is (triviaIIy) sufficient for the 
existence of a representative firm. 
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The following (time-series) information is assurned to exist. All relevant 
input data are known, i.e., both the quantities used of the n faetors of 
produetion, x=(x1, ••• , xn ), and the eorresponding input priees 
w=(w1, ••• , wn ), and, eonsequently, total eosts C== w'x. Regarding the 
output side, only the value V (== P' y) of output is assumed to be known. 

The following duality result, due to Ohta (1975), provides a useful 
deeomposition of the growth in total faetor produetivity (TFP). Denote the 
prodution funetion eorresponding to C(y, w, t) by tp(x, t). The rate of 
ehange in TFP ean then be written 

(11) 

where 

_ alnC(y,w,f) 
v= - at (12) 

and e-I is the inverse of the elasticity of total eosts with respeet to output, 
defined in (2). The faetor v is the dual rate of teehnieal change. Thus, if 
technical ehange has a positive impaet, v measures the resulting rate of 
dirninution in total eosts. The inverse of the eost/output elasticity is the 
dual rate of return to scale. Returns to seale are inereasing if e -I> 1, 
eonstant if e-I = 1, and deereasing if e-I < l. 

The dual rate of technical change can be further deeomposed into two 
eomponents eorresponding to (Hicks-)neutral technical ehange and 
nonneutral, i.e., input speeific, teehnical . change. The former is a funetion 
of t while the latter depends on both t and w. Thus, den oting these 
funetions by g and h, 

d In g(t) 
v= -

dt 

a In h(w, f) 

at (12') 

We now tum to the problem of estimating the three eomponents in TFP 
growth. The estimation of the dual rate of return to scale, which does not 
require any assumptions about the functional form of the cost function, is 
discussed first. Coneerning the two eomponents relating to technical 
ehange, the one corresponding to nonneutral technical changes is 
considered briefly, as its estimation is discussed in Mellander and Ysander 
(1990). Lastly, the direet relation between the presumed output 
measurement problem and the estimation of {Hieks-)neutral technical 
change is examined. 
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The Dual Rate of Return to Scale 

Since the dual rate of return to scale is simply the inverse of the cost/ 
output elasticity, ( 10) yields 

(13) 

showing that the cost value ratio is proportional to the dual rate of return 
to scale. Accordingly, if the markup 1( is known, the dual rate of return to 
scale can be computed directly by means of the given data on total costs 
and the value of output. 

However, if 1( is not known a priori, it is clear that the dual rate of 
returns to scale effect on total factor productivity can only be measured 
conditionaI on this unknown constant. That is to say, same kind of sensi­
tivity analysis has to be performed where the consequences of different 
assumptions about the magnitude of 1( are investigated. 

The Dual Rate of Nonneutral Technical ehange 

Estimation of the last term in (12'), a In h( w, t l/a t, merely requires input 
data and the specification of an explicit functional form for the function 
h( w, t). According to Shephard's lemma 

S, = a In e = a In h( w, t) 
I alnwj aInwj ' 

j= l, ... ,n, ( 14) 

where Sj is the cost share of input j, i.e., Sj == ( wjx) e). Thus, the homo­
theticity assumption makes the cost shares functions of wand t only. 

Imposing linear homogeneity of h( w, t) in w, an estimate of h( w, t) can 
be obtained by simultaneous estimation of n-l of the n share equations.1S 

Partial differentiation of this estimate with respect to t then yields an 
estimate of a In h( w, t)/a t.6 

Before turning to the estimauon of the dual rate of Hicks-neutral 
technical change, it should be said that while the above discussion has 
shown that the minimal requirements for the estimation of - a In h( w, t)/ 
at are very limited, the efficiency of the parameter estimates might be sub­
stantially increased if the cost function is estimated along with the system 

15 As is weil known, the system of cost shares is singular and so one of the cost shares has to 
be left out in the estimation. 
16 Estimation of the system of input cost shares will also yield estimates of the Binswanger 
( 1974) measures of the bias in technical change, and of elasticities of substitution and price 
elasticities; see Mellander and Ysander (1990). 
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of cost shares.17 Hence, the necessity of specifying the cost function 
completely to enable estimation of the Hicks-neutral component in TFP 
growth, to be discussed next, has the positive side-effect of increasing the 
precision in the estimate of the function h( w, t).IS 

The Dual Rate of Neutral Technical Change 

As the input cost shares are unaffected by neutral technical change, 
estimation of the function g(t) requires specification and estimation of the 
complete cost function. But estimation of the cost function presupposes 
data on y - or at least data providing information about the variation in y. 
This is the reason for assumption (3) which, through (10), ascertains that y 
can be expressed in terms of V, C and K. 

One possibility is to assume that e is linear in y, Le. 

e= {3+ cp'y, 

where the positivity constraint follows from (3). By ( 10), 

{3 1 V 
y=--+--. 

cp K'cp C 

(15) 

The specification (15) thus results in y becoming an affine transforma­
tion of the VI C ratio. We can go one step further, however, by exploiting 
the fact that for empirical implementations it is the variation in y (rather 
than its levet) that is of interest. The reason is that the explicit cost 
functions used in empirical applications constitute first- or second-order 
approximations to the "true" cost function around some point of 
expansion. Accordingly, what matters are the variations around the 
expansion point, which means that y(as weIl as the w/s and t) are appropri­
ately measured in terms of deviations from this point. The specification 

17 Compared to estimating only the system of eost shares, simultaneous estimation of the 
eost funetion and the eost shares will inerease the efficieney of all the parameter estimates -
and henee, in particular, those associated with the funetion h( w, f) - for two reasons. First, 
parametrieal eonstraints between the eost and the share equations will be taken into aeeount 
explicitly in the latter ease. Second, the residual in the eost funetion and the residuals in the 
share equations are probably eorrelated, whieh can also be taken into aeeount. 
18 Moreover, consideration of the whole eost funetion in the estimation also makes it 
possible to test the validity of the restrietion that h( w, I) be linearly homogeneous in w. This 
is not possible if only the system of eost shares is estimated, since in that ease the 
homogeneity restrietion has to be imposed a priori to aseertain that the parameters to be 
estimated are identified. 
19 This type of specifieation has been diseussed by Zellner and Revankar (1969). The eorre­
sponding scaling funetion is given by f(y) = YP'exp(q:>' y). 

Scand. J. of EcoIWmics 1992 



125 

( 15) may thus be reparameterized according to 

q;>o, ( 15') 

where Å == fJ + q;. Yo and Yo denotes the point of expansion. 
Since the choice of expansion point is arbitrary, we can sirnply choose 

the one most convenient to work with. In the following, Yo is regarded as 
being equal to the value on y in some "base year", e.g. the mid-point of the 
observation period. However, Yo might equally weIl be set equal to e.g. the 
observation period mean. 

By evaluating (15') at y and Yo, applying (9) twice, and forming the 
difference between the results, we obtain 

1 
y- Yo =- [( V/C)-( V/C)o], ,<" q; 

K;?: 1, q;>O, (16) 

where (V/C)o denotes the value/cost ratio corresponding to the expansion 
point, i.e., its base-year value. Thus, by confining our attention to the 
deviation of y from the expansion point, we arrive at a proportional 
relationship between [( V/ C) - ( V/ C)o] , for whieh data are assumed to be 
available, and the unknown output variable. . 

Of course, there are other specifieations of e which also have the 
propert y that e is monotonically increasing iny. In studies based on e.g. the 
translog function proposed by Christensen et al. (1973), the foIlowing 
formulation is the most common 

e = a + y·(ln Y -ln Yo) = a + y·ln(y/yo) y>o. (17) 

Subjecting (17) to the same operations as those performed on (15') to 
obtain ( 16), we get 

1 
ln(yfyo)=- [(V/C)-(V/C)o], 

K·y 
(18) 

This specification is used in the next section. As a matter of interpretation, 
note that by taking Yo to be the Value of y in a base year the l.h.s. of ( 18) 
becomes (the logarithm of) a quantity index for output. 

IV. Implementation by Means of the Translog Cost Function 

Since it is desirable to impose few a priori restrictions on the substitution 
possibilities among the factors of production, one should preferably 
consider flexible functional forms in the specification of an explicit 
functional form for the general eost function (1). The reason why the 
translog has been chosen here is that it is convenient to work with and has 
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been shown to provide adequate estimates of quite compIex technoIogies; 
cf. Guilkey and LovelI (1980). lt shouId be stressed, however, that, in 
principle, the above results can be impIemented by means of any cost 
function which fulfills the assumptions in Section II. 

The translog cost function constitutes a second-order approximation 
to In C(y, w, t) in terms of In y, In w1, ... ,In wm and t. Denote the 
point around which the "true" cost function is expanded by (In yo, 
In wlO , ••• ,In w nO' to). The homothetic translog cost function can then be 
written 

In G= In e(y, w, t) = a o + Inf(y) + In g(t) + In h( w, t) 

where 

Inf(y) = a ·Iny+!· y ·(Iny)2 y - yy -

In g(t) = at"l+! . YIt .12, 

and, for notational brevity, 

~= ylyo, 

1f= C~l, ···'~n ) = (w1lw lO ,···, wnlwno ), 

1= t-to· 

(19) 

(20) 

(21) 

(22) 

(23a) 

(23b) 

(23c) 

Thus, output and the input prices are taken to be measured on index form 
Yo and wlO , ••• , W nO being the base-year vaIues, Le., the values at time to. 

Direct application of (18) yieIds 
-1 -I 

In~= 1{ Yyy • 9. .. (24) 

where 

9.. = ( VI C) - ( VI C)o· 

By means of (24) the cost function can be formulated in terms of VI e, w 
and t, rather than y, wand t, according to 

In C(vle, w, t)= a + In [*( VI C) + Ing(t) +In h(w, t), 

~where 

In [* ( VI e) = a q .9.. +! . y qq .9..2 

and 

a q = ay/(1{· Yyy ), 
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(29) 

From (28) and (29) it is clear that for a given K both a y and Yyy are 
identified. 

To ensure that the cost/output elasticity implied by the model i.e. 

c=ay+Yyy'Iny, (30) 

is consistent with (9) and that the property (3) holds, the following 
constraints must be imposed on a q and Yqq 

O<aq• (3 1) 

yqq=aq'[(V/C)ol-l, (32) 

Together, (28), (29), (31) and (32) yield 

ay=K-l.(V/C)o (>0), (33) 

y yy = K - 2. a; l . ( V/ C)o (> O). (34 ) 

By inserting the expressions for In y, ayand y yy given by (24), (33) and (34) 
in (30), it can easily be verified that the equaIity c = K - l . ( V/ C) will always 
hold, as required by (10). Moreover, (3) holds by positivity of y YY' Of 
course, that (3) and (10) hold does not mean that the empirical 
implementation of the model does not yield any new information about the 
technology's scaling properties; it will result in estimates of the scaling 
parameters ayand Yyy (conditional on K) and, moreover, it will make it 
possible to form some idea about the precision in the estimate of the scale 
elasticity, through the standard error of the parameter a q of which Yyy is a 
function. It should also be recalled that it is only by using q as an instru-
ment for In ythat the function g(t) can be estimated. -

Unfortunätely, it is not possible to impose a priori constraints on the 
parameters such that (4) is guaranteed to hold. It can be concluded, 
however, that (4) implies an upper bound on aq which should be approxi­
mately 4'( V/C)o.21 
Symmetry among the second-order partial derivatives of C with respect to 
the input prices and linear homogeneity of C in w imply the following 
constraints 

n n n n 

I Yjk= I Yjk= I Yj(=O' 
j=l k=l j=l 

20 If the markup is known, the argument q/Je is substituted for q in the cost function, the 
parameters aqand Yqq becoming ay/yyyanal/yyy, respectively. -
2 J This conclusion is obtained as follows. By direct calculation it can be shown that (4) holds 
if and only if (E 2 - E + yyy» O, implying that yyy> 0.25 is a sujJicientcondition. By inspection 
of (34) it can be seen that yyy> 0.25 translates into the condition a q <4 ' ( V/C)o' ,,2. Since 
,,~1, a q < 4'( V/C)o is necessary for yyy> 0.25. which in tum is sufficient for (4). 
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As in the case when output data are available, these restrictions can all be 
tested. 

In empirical applications, the cost function is estimated jointly with 
n-l of the input cost shares, given by - d. ( 14) -

Application of (12)-(12') to (21) and (22) gives the effect of technical 
change on the TFP growth rate according to 

aln C 1 (n ) v==--= -(a +y ·t)-_· '\' y··ln w 
:l '/I - 2 L., )' -}' 
ut j-l 

(35) 

where the first and second terms correspond to effects from neutral and 
nonneutral technical change, respectively. Further, by combining (11 ), (13) 
and (35) 

.f' -l ( 1 In ) C TrP=v'c = - a + y ·t+_· y.·ln w . '1('- . 
, II - 2. 1/ -, V 

,=1 
(36) 

Since TPP is dependent on K, it will be necessary to perform a sensitivity 
analysis on TPP with respect to this parameter, uniess it is known a priori. 

Finally, it should be noted that in addition to the productivity measures, 
the empirical analysis also yields estimates of (the logarithms of) the output 
quantity and output price indices. (Of course, like the estimates of TFP 
growth, these estimates will be conditionaI on the markup factor K.) By 
means of definition (23a) and results (24) and (34), the log of the output 
quantity index can be estimated according to 

ln(y/yo) = 9.' [( V/C)o' K -3. a; l]. 

Further, the definition 

ln( V/ Vo) == ln(py/ PoYo) = ln(p/ Po) + ln(y/yo), 

implies that the log of the output price index can be estimated as 

(37) 

(38) 

Since for many service industries proper output quantity and output 
price indices are not available in the national accounts statistics, (37) and 
(38) are important by-products of the estimation. For instance, in the 
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Swedish national accounts, quantity indices for the banking and the 
insurance industries are obtained by means of the ad hoc assumption that 
average labor productivity increases 2% per annum. The empirical valid ity 
of this assumption can be examined by comparing the estimated indices 
(37) and (38) with the corresponding national accounts indices. 

V. Concluding Comments 

The problem under consideration concerns the possibilities of charac­
terizing a production process empirically when there is complete input 
information but the output information is limited to data on the gross value 
of output - a typical situation in a large part of the private service sector. It 
is demonstrated that if (i) the technology is homothetic, (ii) output can be 
treated as a scalar, and (iii) the elasticity of total cost with respect output is 
strictly increasing in output, then, essentially, the only additional informa­
tion required for a complete characterization of the production process is 
the possible difference (in percentage terms) between the marginal cost 
and the output price, i.e., the potential markup. Since in many cases it is 
difficult to obtain information about the markup, the analysis proceeds to 
the case where the price elasticity is unknown but constant. It is shown that 
in this case the results continue to hold, conditionai on the unknown 
markup factor. 

The key assumption is (iii); this assumption makes it possible to substi­
tute known variables for the unknown output variable in the eos t function. 
The fact that (iii) is not only sufficient to enable this substitution but also 
necessary has an important implication: that a value measure of output 
carries information in excess of that inherent in input data only if the 
underlying technology is not homogeneous. Thus, that the technology 
exhibits nonconstant returns to scale is a necessary but not sufficient con­
dition. 

As regards productivity measurement, the result is that if the markup is 
known, the rate of growth in total factor productivity can be estimated with 
the same precision as if output data were available. If the markup is 
unknown, the estimated rate of growth in TFP will be conditionai on the 
assumption made about the markup. Hence, in applications, it will be 
necessary to perform a sensitivity analysis where the effect of variations in 
the markup is assessed. This, however, is quite easy to do; as long as dif­
ferent constant markups are considered, the model does not have to be 
reestimated when the markup is altered. Moreover, in quite a few 
empirical applications it should be possible to obtain information at least 
about the magnitud e of the markup, indicating the interval over which the 
sensitivity analysis should be carried out. 
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Appendix: Conditions for uniquenesB and stability of equilibrium 

Since the profit functions are assumed to be twice differentiable with respect 

to the Yj'S, Theorem 2.6 in Friedman (1986, p. 45) can be used to formulate 

conditions under which the equilibrium is unique. According to this theorem, 

the equilibrium is unique if the symmetric m)( m matrix 

M=P+P' 

is negative definite, where P is the Jacobian matrix of the system of first 

order derivatives of the profit functions, Le. 

p = [a~atJ . 
The typical elements of P are: 

{Jl7r i = p*(ltll)'Y ' + 2.p'(ltll):: A. 'J. k aVi aYk l l' Z.,., (Al) 

and 

827r2i = A . - r (y .). C. (1,10, t) :: A. - B. , 
~ 1111 l l 
vYi -

(A2) 

implying that 

M = 

Denote the principal minor subdeterminants of M by Dl, D2, ... Dm (where, 

of course Dm = I M 1). For M to be negative definite, the Dj 's should 

alternate in sign, starting with Dl negative. As the number of firms (Le. m) 

grows it becomes exceedingly more difficult to formulate simple conditions 

which guarantee that the subdeterminants obey these constraints. For this 

reason, only the cases where m = 1, m = 2 and m = 3 will be considered 

here. 

By the concavity of the profit function the first subdeterminant is always 

(strictly) negative. The second subdeterminant can be written 

D2 = 4[(Al - Bt)(A2 - B2) - AlA2]- (Al - A2)2 , 

which should be positive. A sufficient (but not necessary) condition for 

D2 > O is that the inverse industry market demand curve is linear. Then 

Al = A2 = A < O implying that the first term is strictly positive [since the 

Bi'S are strictly positive by (4)], while the second term is zero. 
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Finally, to simplify the analysis when m = 3 only the case with a linear 

demand curve, Le. Al = A2 = A3 = A, will be considered. In this case, one 

obtains, af ter a number of tedious manipulations, the following expression 

D3 = -2·A3 + 6Ba ·A2 + 18(B: / Bh)·A -6B:, 

where Ba, Bg, and Bh denote the arithmetic, geometric, and harmonic 

means of Bt, B2, and B3, respectively. Further, since Ba ~ Bg ~ Bh (the 

inequalities being strict unless Bl = B2 = B3 ) 

D3 ~ -2.A3+(6+()Bg.A2+18B~.A-6B:, (A3) 

where (= (Ba - Bg) / Bg. It can easily be verified that if (. ~ 0.5, which 

seems like a very reasonable assumption, then the RHS of (A3) will be non-

positive for all A such that -2· Bg ~ A « O). (For higher values on (. the 

lower bound will be eloser to zero.) Thus, for the case when m = 3 it should 

be possible to conelude that the equilibrium is unique if the inverse industry 

market demand curve is linear and (the absolute value of) its slope is less than 

twice the geometric mean of the slopes of the firm's marginal eos t curves. 

St abili t y conditions can be found in Friedman (1977, p. 71) . According 

to these, the equilibrium is stable if 

Aj- Bj +!Ek=j Ak! < O i = l , ... ,m . (A4) 

If the inverse demand curve is linear, then (A4) reduces to 

(l-m)·p'(ltll)-P(y . )·C.(l,~t) < O, i=l, ... ,m, 
l l l 

Le. for m = 2 the slope of the marginal cost curve should exceed the absolute 

value of the slope of the demand curve for each firm. If m = 3 the slopes of 

the marginal cost curves must be more than twice the absolute value of the 

slope of the demand curve. These conditions are considerably stronger than 

those required for uniqueness and fulfillment of them implies fulfillment of the 

uniqueness conditions. 
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