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PREFACE 

An aggregation involves two sets of variables and three relations. The two sets 

of variables are called micro and macro variables. The first relation is a micro 

relation in the micro variables. The second relation is a macro relation in the 

macro variables. The third relation is an aggregating relation, which expresses 

the macro variables as functions of the micro variables. 

Aggregation is intrinsically problematic in the following sense. If the micro, 

macro and aggregating relations are to be logically consistent, they must be care­

fully chosen so as to fit together. Starting from this fundamental point, one can 

formulate a great variety of more or less specific aggregation problems. 

Aggregation has often been studied by econometricians, who formulated their 

aggregation problem:;; in economic terms. Eut aggregation problems are formal 

in the sense th at empirical knowledge does not contribute to their solution. Aggre­

gation problems, like identification problems, are about the logi c of mathematical 

or statistical models . 

Two different approaches to aggregation are predominant in the econometric 

literature . The first approach concentrates on pure economic theory. The second 

approach is concerned with the statistical estimation of economic models . 

The first approach usually assumes deterministic models . A frequent purpose 

is to find conditions such that the three relations of an aggregation are logically 

consistent. This may be called the consistency approach to aggregation. A sur­

vey of the consistency approach is given in J . Green, "Aggregation in Economic 

Analysis" , Princeton 1964. The general result is that consistency in aggregation 

is a scarce commodity. 

The second, statistical, approach originated with H. Theil, "Linear Aggrega­

tion of Economic Itelations", Amsterdam 1954. This approach assumes micro 

and macro relations that consist of linear statistical models of the kind used in 

regression analys is. The parameters of these models are called micro and macro 

parameters. Micro data are assumed to be generated in accordance with the micro 

relation. The micro data are aggregated into macro data. The macro relation is 

estimated from the mäcro data by means of regression analysis. The general re­

sult is that the macro parameters thus estimated can always be expressed as 

linear functions of the micro parameters. 
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The consistency approach indicates that aggregations are as a rule inconsistent, 

also linear aggregations of linear relations. The statistical approach, on the oth­

er hand, seems to derive the macro relation from the micro and aggregating re­

lations. The two approaches should be confronted . Do they contradict each other? 

This question is the point of departure of the present study. 

* * * * * 

This book is about linear aggregation in a context of linear regression analysis. 

It can be divided into three parts. The first part, chapters 1 to 3, introduces the 

concepts and theoretical tools required. The second part, chapters 4 to 8, out­

lines, performs and discusses a formal analysis of certain linear aggregations in 

linear regression . The third part, chapter 9, discusses some of the tacit assump­

tions of the formal analysis. 

The nine chapters are divided into sections, and these into subsections. Sec­

tions and subsections are referred to by their underlined numbers, -for example 

~ and 2.5. 1. Important results are formulated as propositions. A proposition 

carries the number of the subsection where it occurs, with a distinguishing letter 

added if necessary. For example, the second proposition of 2.4.1 is called 

P. 2.4.1. B. Figures and tables are numbered analogously. References are iden­

tified by the author's name and the year of publication, for example Malinvaud 

[1956 ]. 

With out loss of essential continuity, section 2.5, chapter 6, and section 8.3 

may be skipped. In any case, chapters 1, 4, 8 and 9 should not be skipped. 

* * * * * 

Chapter 1 introduces some basic concepts and broad problems of aggregation. 

The concept of consistency is slightly generalized, so as to become applicable to 

micro and macro relations that consist of linear statistical models . Starting from 

the fact the restrictions on the set of admissible data may be favourable to con­

sistency, two basic types of consistency problems are distinguished . The central 

resultof Theil's analysis of linear aggregation is formulated as an interpretation 

in micro terms of the macro regression coefficients. 
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Chapter 2 reviews the parts of least-squares theory needed later . Generalized 

least-squares and a regressor matrix of arbitrary rank are always admitted . 

Throughout, a distinction is maintained between properties that are based on the 

linear model, and model-free properties that are not . The conceptof a unique 

coefficient nmction is introduced as a model-free counterpart of the concept of 

an estimable parameter function. The relation of estimability to identification is 

indicated . A distinction is introduced between designed and observed regressor 

data . Certain expressions in deviation form are explicitly derived, using matrix 

notation . 

Chapter 3 indicates five different types, or structures, of linear aggregation . 

The macro data are in every case data from which one regression can be comput­

ed, the mac:ro regression . Two of the types of aggregation are in the dimension 

of the regression variables, and two are in the dimension of the observations, 

which are caIled units of analysis . The fifth type of aggregation, which is weIl 

known to economists, is analyzed and decomposed into two of the simpler types. 

Chapter 4 outlines the formal analysis to be applied in the next tbree cbapters., 

Any micro or macro relation considered consists of linear statistical models . 

Any aggregating relation considered is linear. The scheme of analys is comprises 

two aggregation problems . The first problem is about the. consistency or other­

wise of an aggregation . The formulation of this problem takes into account the 

distinction between designed and observed regressor data. The second problem 

is concerned with the interpretation in micro terms of a unique coefficient func­

tion in the macro regression. The interpretation occurs in two variants, one of 

which is model-free, while the other one is based on the linear models of the 

micro relation. The latter interpretation is a translation into different terminol­

ogy of Theil ' s analysis of linear aggregation . The theoretical core of the formal 

analysis is the three propositions P.4. 2 . 6, P. 4.3.4, and P.4.4 . 3 , 

Chapters 5, 6 and 7 apply the scheme of formal analysis to the five types of 

aggregation, three of which occur in one general and one special variant. The 

analysis of the fifth typ e of aggregation is based on that of the first two types. 

Chapter 8 sums up and discusses the formal analysis. Some simple examples 

are used as a basis for an analysis of the macro parameters and macro relation 

established by Theil's analysis of linear aggregation. The conclusion is that 
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Theil 's macro relation cannot, except in special cases, be a linear statistical 

model. Such models are usually assumed to be invariant with respect to the re­

gressor data, but Theil 's macro relation does not share this invariance propert y . 

Instead, Theil 's macro relation is interpreted as a certain model-free linear re­

gression. Further, the usefulness of the concept of aggregation bias is question­

ed. Finally , there is a brief comment on the role of the coefficient of determina­

tion in aggregation theory. 

* * * * * 

Even linear aggregations of linear relations are as a rule inconsistent. There­

fore, if the macro relation derived by Theil is assumed to conform to the stand­

ard specification of a linear statistical model, then there is acontradiction. But 

the outcome of the formal analysis is that Theil's macro relation is not a linear 

statistical model. Consequently, Theil' s statistical approach to aggregation cannot 

be used to bypass the fundamental difficulty that most aggregations are inconsist­

ent. 

Chapter 9 reconsiders the preceding analysis from a wide r perspective. Simp­

ly following practice, the formal analys is has treated all regressor data as non­

stochastic constants. This assumption is now questioned, and an alternative is 

suggested . The units of analysis are assumed to be drawn at random from a 

multivariate normal distribution. This distribution is assumed to be common to 

all units of analysis, so that there is a systematic similarity disturbed by random 

variation. The consequences are striking. The two aggregation problems of the 

formal analysis lose most of their appeal. The theme underlying the formal anal­

ysis was the conflict between the consistency approach and the statistical approach 

to aggregation. This conflict now loses its sharpness. 

Aggregation problems are about the logic of the models assumed . 

* * * * * 
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I wish to express my thanks to the following people for the support and assist­

ance they have given me. Professor Sten Malmquist supervised my research on 

aggregation during the many years preceding the completion of this book. Profes­

sor Ove Frank and Docent Anders Klevmarken read and discussed with me vari­

ous parts of earlier versions. The final typing and editing was done by Mrs. Ma­

rion Ekström and Mrs. Git Sundt. 

* * * * * 

Finally , a quotation. In one of his books, the German poet Christian Morgen­

stern described the exploits of the two friends Palmström and von KorL 

Korf erfindet eine Tagnachtlampe, 

die, sobald sie angedreht, 

selbst den hellsten Tag 

in Nacht verwandelt. 
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1 SOME FUNDAMENTAL CONCEPTS AND PROBLEMS OF AGGREGATION 

1 . 1 Some fundamental concepts 

1 . 1.1. Aggregation and dis aggregation 

Statistical methods are not applied to the real world directly, but to data 

representing the real world . Preliminary to statistical analysis, the relevant 

information on the real world must be formulated as data. A set of statistical 

data can be looked upon as a numerical picture of a seleeted segment of the real 

world . 

Numerical pietures , like map s , can be made in more than one way . In partic­

ular, two numerical pietures of the same aspects of the real world may differ as 

to degree of detaiI. More precisely , they may differ in such a manne r that the 

more summary picture can be constructed from the mor e detailed pieture. 

For example, consider an imaginary econometric study . The aspects of the 

real world to be studied are the consumer behaviour, during eight weeks, of 

each of one thousand households of equal size. For each week separately , each 

household registers its income and its expenditure on each of nine groups of 

commodities and services. The resulting detailed data consists of 80,000 pieces 

of data. 

Now suppose that the nine commodity groups are collapsed into three. Fur­

ther, incomes and expenditures are registered for the whole eight-week period 

only . Finally , the households are grouped into fifteen income classes , and the 

only data reported are the averages for each group . The resulting summary data 

consist of 60 pieces of data . 

The two sets of data in the example are numerical pietures of the same seg­

ment of the real world . The two pietures differ as to degree of detail. The sum­

mary picture can be derived from the detailed pieture. 

Some terminology will now be introduced. Consider two different procedures 

for describing a segment of the real world by means of statistical data. If the 

real world were sufficiently different, the data would be different. Thus, each 

single datum is to be regarded as a variable. Assume that the two procedures 

are such that, whatever the reality described, the more summary data can be 

computed from the more detailed data by a fixed rule of computation . The more 
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detailed data are then called the micro data, the mor e summary data the ~ 

data. The process of exchanging the micro data for the macro data is called an 

aggregation, the revers e process a disaggregation. 

Let the micro data be arranged into a variable vector d, the macro data into 

a variable vector D. The fixed rule by which the macro data are computed from 

the micro data is avector function F f 

D = F(d) • 

This vector function is called the aggregating function. 

As a rule, aggregations are such that the macro data vector D has fewer 

elements than the micro data vector d, and such that an inverse (disaggregating) 

function F-i does not exist. In other words, as a rule some information is lost 

in the aggregation, and cannot be regained by a pure ly formal operstion. 

1. 1.2 Micro and macro relations 

The purpose of a statistical analysis of data is often to investigate some 

theory. A theory restricts the behaviour of the real world. If the numerical 

picture used is relevant, the theory implies restrictions on the data. Of ten, but 

not always, these restrictions are to the effect that certain elements of the data 

are functions of the other elements. 

In the example of 1. i. i, the theory could be that all demand functions are 

constant-elastic and common to all households. If the micro data are a relevant 

numerical picture, this theory implies that the logarithm of the expenditure on 

a given commodity group is a linear function of the logarithm of income . Further, 

the same function applies to every household and week. 

Alternatively , one might consider the macro data relevant, and would then 

expect these to satisfy log-linear relations, each relation being valid for all 

fifteen income group s . 

In the example, there is one single theory, although it is somewhat uncertain 

whether it restricts the micro data, the macro data, or perhaps both. There 

could also have been two different theories, one for the micro data and another 

one for the macro data. 

Further, in the example different parts of the data can be compared in order 
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to provide a partial check on the theory . For example, the data can be plotted 

on double-logarithmic paper . In other cases there are fewer data, in particular 

macro data, and no such internai checking is possible . 

Same more terminology and notation will now be introduced . A theory of the 

kind exemplified divides the relevant set of data into two subsets . Thus, the 

micro data vector is partitioned into the independent micro data vector x and 

the dependent micro data vector y . The restrictions on the micro data are ex­

pressed by the vector function 

y = cp(x) , 

which is called the micro relation. 

Analogously, the macro data are partitioned into the independent macro data 

vector z and the dependent macro data vector u. The restrictions on the macro 

data are expressed by the vector function 

u = ljJ(z) , 

which is called the macro relation . 

1 . 1.3 Semi-aggregation and semi-dis aggregation 

The distinguishing feature of aggregation is that the macro data are a function 

D = F(d) of the micro data . This need not mean that each single macro datum is 

a function of every micro datum. For instance, in the example of 1.1.1 , macro 

income data are functions of the micro income data on ly , and similar ly for the 

expenditure data. More generally , the independent macro data are functions of 

the independent micro data on ly , and similar ly for the dependent macro and 

micro data. Aggregations which have this propert y will be called segregated. 

In segregated aggregation, the aggregating function is split into two separate 

vector functions . One is the aggregating function for independent data 

z "" g(x) , 

and the other one is the aggregating function for dependent data 

u = h(y) . 

This terminology will be reconsidered in ~ 
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A segregated aggregation involves four variable data vectors and four fixed 

vector functions. Their interrelations are shown in Figure 1.1.3, which is, 

apart from notation, due to Malinvaud [1956J . As a rule, the four vector func­

tions are not assumed to have inverse functions. 

I----~ U =1jJ (z) I---~ 

Fig. 1.1.3 The formal structure of segregated aggregation 

If the micro relation <P is substituted into the aggregating function for depend­

ent data h, the outcome is a composite vector function 

u = h(<p(x)) , 

which will be called the semi-aggregated micro relation. In the figure , it is re­

presented by the arrow path from x by way of y to u. 

If the aggregating function for independent data g is substituted into the macro 

relation ljJ , there results a composite vector function 

u ~ ljJ (g(x)) , 

which will be called the semi-disaggregated macro relation. lts representation 

in the figure is the arrow path from x by way of z to u. 

This study is concerned with segregated aggregation only . 

1.1.4 The concept of point-consistency 

Four fundamental and two derived relations have been introduced above. 

G: 

H: 

<i>: 

'il: 

z = g(x) 

u = h(y) 

y = <p (x) 

u = ljJ (z) 

aggregating function for independent data, 

aggregating function for dependent data, 

micro relation, 

macro relation, 

H<i>: u = h (<p (x») semi-aggregated micro relation, 

'ilG: u = I/> (g(x») semi-disaggregated macro relation. 
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Throughout this study, the single and paired letters G, H, ~, 'l', H ~, and 'l'G 

will be used as a brief symbolic notation. 

The term "aggregation" can be given a narrower or a wider rneaning . An 

aggregation in the narro\,'er sense is defined by the t\yO aggregating funetions 

alone; in symbols [G, H} . Aggregation in this sense is unproblematie. An 

aggregation in the " 'ider sense ineludes into the definition the miero and maero 

relations, too; in symbols [G , H , ~, 'l'} . Below , the term is used in the wider 

sense. 

Any four vector funetions of appropriate orders define an aggregation 

[G, H, ~, ~} . Consider sueh an aggregation and a given independent miero data 

vector x . What dependent maero data vector u corresponds to x ? The semi­

aggregated miero relation H ~ gives an answer. The semi-disaggregated maero 

relation ~G g'ives an answer, too. The two answers may weIl turn out to be 

different. The situation is illustrated by Figure 1.1.4. 

Fig . 1. 1 . 4 The question of eonsisteney 

If an aggregat ion is such that . for a given admissible independent miero data 

vector x , 

h(Ctl(x)) .~ li- (g(x» . 

the aggregation is said to I)e point-consistent for that x. Otherwise it is point­

inconsistent for the x in question. Loosely speaking , point-inconsistency is the 

rule and point-consistency the exception. This is the root of the eomplex of 

problems sometimes named, colleetively, "the" aggregation problem. 

A different but re lated coneept of consistency \,·m be introdueed in 1. 2.3. 
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1.1.5 A generalization: Stochastic relations 

Up to this point, micro and macro relations have been assumed to be deter­

ministic vector functions, where an independent vector determines a dependent 

vector exactly. This was a simplification. In econometrics, economic theories 

are not normally taken to imply such exact restrictions on the data. Instead, the 

typical micro or macro relation is what can be called a stochastic vector func­

tion. The dependent vector is assumed to be stochastic, and the independent 

vector determines its probability distribution. 

Assume that the micro and macro relations are stochastic vector functions. 

The dependent "quantities" of the micro and macro relations are no longer the 

dependent micro and macro data vectors y and u, but probability distributions 

for them, 

Pr (y ~ y ) = (@(y ) , 
o o 

Pr (u ~ u ) = n (u ) , 
o o 

By the micro and macro relations, the independent micro and macro data vectors 

x and z determine the respective distributions . In symbols, 

~: x~(@ (.) , 

'lt : z r-->'n (. ) 

The aggregating functions are as befor e but are now written 

in conformity with the notation for ~ and W • 

The aggregation now involves four data vectors, two pr ob ab ilit y distributions, 

two deterministic and two stochastic vector functions. Their interrelations are 

indicated by Figure 1. 1.5. A, which is, apart from notation, due to Malinvaud 

[1956]. 

By the aggregating function H, the vector u is a function of the vector y. 

Given certain mathematical reservations on the nature of H (see e. g. Wilks 

[1962 J section 2.8) this implies that the probability distribution of y determines 

that of u. In symbols, 
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If the micro relation q, is com?ined with H * , the outcome is the semi-aggregated 

micro relation 

If the aggregating function G is combined with the macro relation 'lr, the semi­

disaggregated macro relation 

is immediately obtained . 

Fig . 1 . 1 . 5. A The formal structure of aggregation with stochastic relations 

Any set of two deterministic and two stochastic vector functions of appropriate 

orders define an aggregation (G, H, q" 'lr} . What probabiIity distribution ('2 of u 

corresponds to a given x ? The answers given by the semi-aggregated micro and 

semi-disaggregated macro relations may weIl differ. The situation is iIlustrated 

by Figure 1.1. 5. B. 

/?/ 

I °'l'G(') r 
Fig . 1.1.5 . B The question of consistency for stochastic relations 

A possible generalization of the concept of point-consistency is as foIlows. 

An aggregation is considered to be point-consistent for a given admissible in­

dependent micro data vector x, if and only if for that x 
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This concept may be called distributionaI point-consistency, because it means 

that at the point x the two probability distributions of u are identical. 

The above formal apparatus is very much inspired by Malinvaud [1956J, 

section 1. 

1.1.6 Expectational point-consistency 

DistributionaI point-consistency means that two probability distributions are 

identical. A less stringent requirement is often preferable. A weaker concept 

of consistency will now be defined, for use in 4. 2 and later. 

Let E Hep (u) denote the expected dependent macro data vector according to the 

distribution !\rep (u), and similarly for EwG(U) and nwG(U) . Both expected 

vectors are functions of the independent micro data vector x. Of ten, Hep and 

WG are such that no other properties of O ch an ge with x . 

If an aggregation is such that, for a given admissible independent micro data 

vector x , 

EHep (u) = E WG (u) , 

the aggregation is said to be expectationally point-consistent for that x. Other­

wise it is expectationally point-inconsistent for the x in question. If the expecta­

tions do not both exist, the concept of expectational consistency is not applicable. 

On the terminology in.!.:.!, see 1. 4.2. 

1.2 Problems related to consistency 

1.2.1 Four examples 

Four examples will be studied. Each is a different specialization of the follow­

ing c1ass of aggregations. The four data vectors are 

x= (xO' xi' ... , ~, ... , x } , q <! 2 , 
q 

y = [Y1' ... , Yh' ... , y } , 
q 

z = f zO' z1} , 

u = (u} 



The four vector functions are 

G: 

H: 

~: 

'lr: 

q 
u = 1: y , 

h=1 h 

h 1, ... , q , 

The semi-aggregated micro and semi-disaggregated macro relations are 

q ~ i3h 
H~ : u = h~1 ~ Xo ~ 

q Ö 
'lrG: u ~ l' x>" ( l: gh ~ ) 

O h=1 
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Only independent micro data ~ > O, h = O, 1, ... , q are admissible. The para­

meters are restricted ah > O, ){h < O, i3 h > O, h = 1, ... , q; l' > O, >.. < O, 

Ö > O • 

A possible interpretation is that ~ is the constant-elastic demand functions 

of q households, and 'lr the analogous "aggregate" demand function. Then Xo 

is the price of the commodity in question, while ~, h;;" 1, are the incomes, and 

Yh the quantities demanded. 

Example 1.2.1.1. Here, q = 2, g1 = g2 = 1, 13 1 = 13 2 = 1, and Ö = 1. 

Further, a 1 = 1 and Xi = -1, a 2 = 6 and "2 = -3, 1'= 3 and A. = -2. Thus 

For what independent micro data vectors x = t xo' xi' x2} is the aggregation 

point-consistent? 

When the aggregation is consistent, the two expressions for u are equal. 

Their difference vanishes , 

O • 
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For what admissible vectors x does this equation hold? For any given xo' it is 

the equation of a straight line through the origin in the (xi' x2) plane, say 

where w i and w 2 are functions of xO· The signs of w i and w 2 are as follows. 

o < Xo < 2 wi < O w 
2 

> O , 

Xo 2 wi < O w2 = O 

2 < Xo < 3 wi < O w2 < O , 

Xo 3 wi = O w2 < O 

3 < Xo wi > O w2 < O 

Thus if 2 ,,;; Xo ~ 3, the line does not pass inside the first quadrant. 

A necessary and sufficient condition for point-consistency is that Xo < 2 or 

Xo > 3 while (xi' x2) is a point on a certain straight line, which is different for 

different values of x . . O 

Example 1.2.1.2. Again, q = 2, gi = g2 = i, ~i = ~2 = i and Ö = 1. 

Now, a i = i and xi = -i, 0'2 = i and x 2 = -3, y= i and).. = -2 . This, 

H~: u= 

-VG: u = 

For what independent micro data vectors x = [xO' xi' x2} is the aggregation 

point-consistent? 

As in the preceding example, consistency implies an equation, 

If the equation is denoted w i x i + w 2x2 = O, the signs of w i and w 2 are as 

follows. 

O < Xo < i wi < O w2 >0 , 

Xo i wi O w2 O 

i < Xo wi > O w2 < O 

When Xo = 1, the equation does not define a line in the (xi' X2) plane, but is 

satisfied by any (xi' x2). 
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A neeessary and sufficient eondition for point-eonsisteney is that either Xo = i 

while (xi' x2) is arbitrary, or else xi of i while (xi' X2) is a point on a eertain 

straight line, whieh is different for different values of xo. 

Example 1 . 2.1.3. Tentatively , the whole class of aggregations is considered . 

What members of the class are point-eonsistent for all admissible independent 

miero data veetors x ? 

Assume eonsisteney. Then the two expressions for u are equal, and the 

equation 

q xh -). I'h ( q )6 
2::O'x x. =y ~~x 

h=1 h O h h=1 -h h 

holds identieally in x . The RHS does not vary with xo. If there is an h sueh 

that Xh > A , the LHS inereases infinitely as Xo - 00 • If there is an h sueh that 

xh < ). , the LHS inereases infinite ly as Xo .... O . Thus Xh = A. for every h . 

The remaining equation is differentiated w . r . t. x. where i is one h. This 
l 

trick and the following reasoning are inspired from Green [1964J. The resulting 

equation 

13.-1 ( q )6-1 
O' . 13 . X. l = Y 6 g. >.:: gh x. 

l l l l h=1 h . 

holds identieally in x. Since the LHS does not vary with any ~ whose h of i, 

neither does the RHS. Thus 6 = 1. But then the RHS does not vary with x., and 
l 

so neither does the LHS . Thus 13 . = 1, and consequently 0'. = yg .. The argu-
l l l 

ment is repeated for i = i, . .. , q . 

The aggregation is point-consistent for all admissible x if and only if 

Xi X2 X = q X , 

13 1 13 2 ~ 6 = 1 , 
q 

O'h ygh' h = 1, .. . , q 

Interpreted in economic terms, all micro and macro priee elastieities are equal 

mutually, all miero and maero ineome elastieities are equal mutually and to 

unity, and the miero ineomes are weighted in the aggregation proportionately to 

eertain miero parameters. 

Example 1.2.1 . 4. Again, the whole class of aggregations is tentatively 



considered. Now, the independent micro data vector x is subject to the restric­

tions 

where ; h are given positive constants. What aggregations are point-consistent 

for all positive values of x and t ? 
O 

Assume consistency. The two expressions for u are equal, and the equation 

holds identically in (x , t). The RHS does not vary with x or t. As in the 
O O 

preceding example, this implies that "h = A for every h. By an analogous 

argument, it also implies that f) h = Ö for every h . Finally , the equation 

i a h ~~ = y ( i gh ~ h) Ö 
h=1 h=1 

is als o implied . 

The aggregation is point-consistent for all admissible vectors x, where the 

elements x1 , "', x q maintain fixed proportions, if and only if 

A 

Ö 

In economic terms, all micro and macro price elasticities are equal, and 

similar lyall micro and macro income elasticities. The last condition is better 

not verbalized. 

1.2.2 Two basic types of consistency problems 

Most aggregation problems concern a class of aggregations. Often, each of 

the four vector functions G, H, q" 'Jr is specified onlyas a class of functions, 

whose members are distinguished by different numerical values for certain para­

meters. All the parameters of G, H, q" 'Jr together form the total parameter 

vector p of the clas s of aggregations. 
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Problems concerning consistency also involve the independent micro data 

vector x. The elements of x are regarded as variables, and may be subject to 

restrictions. 

The beginning of 1. 2.1 provides an example, if q is fixed. The total para­

meter vector is 

The aggregating function H contributes no parameters in this case. The inde­

pendent micro data vector x and the restrictions on p and x were specified in 

1.2.1. 

Consider a class of aggregations, i. e. a given set 11 of total parameter 

vectors p, and a given set ?: of independent micro data vectors x. The question 

of point-consistency can be raised for every pair of one aggregation p E n and 

one data vector x ~ ::::: . For every pair (p, x) the verdict is either "point-con-

sistent" or "point-inconsistent". 

Consider a subset n. of the set of aggregations n. Those data vectors x E _ 
l 

for which every aggregation p E Il. is point-consistent, form a subset of :;,: , 
l 

perhaps the null set, which will be denoted :;,: (n.). 
l 

Similarly, consider a subset :;,:. of the set of data vectors :;,: . Those aggrega­
l 

tions p E n which are point-consistent fQr every data vector x E ?: i' form a sub-

set of n, perhaps the null set, which will be denoted TI( S .). 
l 

The above formal apparatus is inspired by similar ideas in AIstadheim [1968 J. 
There are two basic types of aggregation problems concerned with consistency. 

The first type of problems selects a set n. of aggregations and asks what is the 
l 

corresponding set :;,: ( n .) of data vectors. Problems of this kind will be called 
l 

direct consistency problems. The second type of problems selects a set :;,:. of 
l 

data vectors and ~isks what is the corresponding set fl (:;,:.) of aggregations. 
l 

Problems of this kind will be called indirect consistency problems. 

Example 1. 2 .1.1 is a direct consistency problem. The set ni has a single 

member. The set :;,: ( fl 1) can be visualized as part of the locus of those points in 

the (xO' Xi' x2) space that satisfy the equation h(<p(x» = l/J(g(x». The locus is a 

curved two-dimensional surface . The part inside the positive orthant is retained . 

The solution has not much intuitive appeal. Loosely speaking, this is typical of 

direct consistency problems. 



Example 1. 2.1. 2 is quite analogous to the preceding example . Nevertheless 

its solution E ( TI 2) is qualitatively different. It consists of a surface like that 

just described, plus the plane X o = 1, both restricted to the positive orthant. 

The "additional" part of E (TI2) is due to what can perhaps be called a singularity 

in the equation h(cp(x)) = I); (g(x)). 

Example 1 . 2.1 . 3 is an indirect consistency problem. The set E 3 consists of 

the entire positive orthant. The solution described the set n (E 3) by means of 

3 q + 1 independent restrictions. The corresponding micro and macro relations 

are 

q, : h = 1, ... ,q, 

'lr : 

hlterpreted in economic terms, this is a set of demand functions which is too 

restricted to be of much interest . Loosely speaking , this is typical of indirect 

consistency problems. 

Example 1 . 2 . 1 . 4 i s another indirect consistency problem. The set S 4 is a 

subset of E 3 ' By definition E 4 c E 3 implies n (E 4) ;;J n (S 3) ' The set TI (S 4) is 

less restricted than n (E 3)' The solution describes it by means of 2 q + 1 in­

dependent restrictions. The corresponding micro and macro relations are 

~: h=1 , ... ,q, 

, where 

Compared with the preceding example, the restrictibn Ö = 1 has gone , and the 

proportionality requirements for Q'h and gh have been replaced by a single 

restriction . 

Direct and indirect consistency problems do not form an exhaustive classifica­

tion of all aggregation problems directly concerned with consistency . 

1 . 2 . 3 Another concept of consistency 

hl the econometric literature, indirect consistency problems are sometimes 

formulated a little differently in two respects . An example is Green [1964 J, 
ch . 5 . 
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First , the set :s. of independent micro data vectors is not specified explicitly . 
l 

Instead, it is tacitly understood that x is not restricted except as required by 

the economic interpretation. For example, any non-negative number is admis­

sible as a price. 

Second, the term "consistency" is not used in the point-wise sense of ~ 

or ~. Instead, an aggregation p is called consistent if and only if 

p E Ii (:s .) . In other word , p is consistent if and only if it is point-consistent for 
l 

every x E :S i . 

In the terminology indicated, the question asked in an indirect consistency 

problem is simply : What aggregations p are consistent? 

The terminology described implies a modifiedconcept of consistency. In~, 

consistency was defined as a possible propert y of the pair (p, x) of one aggrega­

tion and one independent micro data vector . According to the new terminology, 

consistency is a possible propert y of the pair (p, :s.) of one aggregation and one 
, l 

(understood) set of independent micro data vectors. 

The concept of consistency is now redefined as follows. 

A set of independent micro data vectors :s is assumed to be given. An aggre­

gation (G, H, ~, IV}, where ~ and IV are deterministic vector functions, is said 

to be consistent if and only if 

h (cp (x» = l/J ( g (x» for every x E :;:: • 

If~, IV are stochastic vector functions, the aggregation is said to be (expectation­

ally ) consistent if and only if 

EH~ (u) = E WG (u) for every x E S . 

An analogous concept of distributionai consistency relative to a set could also be 

defined. 

The above concept of expectational consistency was formulated independently 

by Hannan [ 1972J and by Liitjohann [1970aJ. 

1.2.4 Articulated consistency problems 

Indirect consistency problems as described in ~ ask a single question 

about the total parameter vector p as a whole. By the definition of consistency 
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in 1. 2 . 3, the question is: For what vectors p is there consistency? 

Given an indirect consistency problem, the analysis can be brought further. 

The total parameter vector can be partitioned in some given way p = (p i' P2)' 

and different questions can be asked about the two subvectors. First, for what 

subvectors Pi is consistency attainable by suitable selection of P2? Second, if 

p i is such as to admit consistency, how should the subvector P2 be chosen so 

as to achieve it? Problems of this more refined kind will be called articulated 

consistency problems . The elements of the subvector p i will be called the 

critical parameters. The elements of the subvector P2 will be called the discre­

tionary parameters . 

For example, consider again the indirect consistency problem of example 

1.2.1.3. A possible background is as follows . An investigator assumes that the 

micro relation ~ is valid, although he may not know its parameter values. He 

aggregates by the aggregating functions H and G, where he is willing to accept 

any weights gh that turn out to be helpful. Re would like the macro data to satis­

fy a macro relation of the form Il!. The parameters ')I, X, Ö of Il! may take what­

ever values are required by the circumstances. 

Given this background, it is natural for the investigator to consider the follow­

ing articulated consistency problem. The critical parameters Pi are the para­

meters of cp. The first question is: What restrictions, if any, must be imposed 

on the parameters of cp for consistency to be at all attainable? The discretionary 

parameters are the parameters of Il! and G. The second question is: If the para­

meters of cp admit consistency, how should those of Il! and G be chosen to 

achieve it? 

The solution of the indirect consistency problem in example 1 . 2 . 1.3 provides 

answers to both questions. First, consistency requires of cp that ~ = X and 

~ = 1, h = i, .. " q, where X is some negative number . Second, if these re­

quirements are fulfilled, in order to fit cp the parameters of WO and G must be 

chosen so that X = X, Ö = 1, and ygh = '\ ' h = 1, ... , q. 

Another possible background for example 1.2.1.3 is as follows. An investi­

gator assumes that the macro relation Il! is valid for specified parameter values, 

perhaps unknown. Re also assumes that the aggregating functions R and G are 

valid, where gh = 1 for all h. He would like to know whether a micro relation of 

the form cp is consistent with these assumptions. 
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Given this alternative background, the appropriate articulated consistency 

problem is as follows. The critical parameters are those of 'it. The discretion­

ary parameters P2 are those of ~. The parameters of G are fixed, and are 

therefore omitted from the total parameter vector p. 

Again, example 1.2.1.3 provides the answers. First, in order for consisten­

cy to be attainable, the parameters of the macro relation must satisfy the single 

restriction Ö = i. Second, if Ö = 1, in order to achieve consistency, the para­

meters of the micro relation must be chosen to be ~ = y, ~ = >.., ~h = 1, 

h= 1, ... ,q. 

A particular class of articulated consistency problems will be introduced in 

~. On the terminology in~, see 1.4.2. 

1.2.5 The classical Econometrica debate 

One source of aggregation problems in economics is the wish to establish an 

explicit connection between micro-economic and macro-economic theories. In a 

classical debate in Econometrica, it was discussed what kind of consistency 

problems ought to be considered in this context . The following brief review does 

not cover the specific economic argumentation. 

One idea was propos ed by Klein [1946aJ. Micro-economic theories should be 

accepted as given . Macro-economic theories should be postulated, but the defi­

nition of the aggregates involved should be left open. "Then construct aggregates 

which are consistent with the two theories. " 

Formally , Klein takes as given the micro and macro relations ~ and 'it, and 

tries to find consistent aggregating functions G and H. He seems to intend the 

independent micro data vector set:;;: to be essentially unrestricted. 

Another ide a was proposed by May [1946 J. A particular micro-economic 

theory should not be studied isolated from the total micro-economic context, say 

a general equilibrium systeIll' The other relations of the complete model may 

limit the freedom of the variables involved in the particular theory. Macro-eco­

nomic aggregates should be defined. Then, if the number of degrees of freedom 

left is appropriate, "the functions of the simplified model are derived as func­

tionals of the functions of the general model. " 

Formally , May takes as given the micro relation ~, the aggregating functions 
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G and H, and the restricted independent micro data vector set:;:;: implied by, 

let us say, the micro-economy at large . If these givens are appropriate, the 

macro relation W can be derived mathematically from them. 

Yet another idea was propos ed by Shou Shan Pu [1946 J . The distribution 

among the micro-economic entities, say firms, of a quantity to be aggregated, 

say a factor of production, should not be assumed to be free to vary arbitrarily . 

It may be economically reasonable to assume that there exists a pattern to which 

the distribution always adheres, for example because the firms operate under 

perfect competition . Macro-economic aggregates should be defined . Then, "as 

long as there are any definite relations that determine the pattern of distribution, 

a unique aggregate production function can be formulated . " 

Formally , the approach of Shou Shan Pu agrees with that of May . 

Shou Shan Pu objected to Klein's approach that it could welllead to unnatural 

macro-economic aggregates, for example geometri c averages . 

The ideas of May and Shou Shan Pu were criticized by Klein [1946b J for mak­

ing W depend on :;:;: . The macro relation W is thus determined not only by the 

micro relation q, but also, indirectly, by other relations and conditions of the 

total micro-economic system. But "the aggregate production function should not 

depend upon profit maximi z ation, but purely on technological factors. " 

In defense ofhis approach, May [1947J argued La . that Klein's requirement , 

that a production function ought to be purely technological, is not reasonable even 

in micro-economics . 

Somewhat less sketchy reviews of the classical debate are given in Nataf 

[1962J and in Alstadheim [1968J. 

1 . 3 Problems of interpretation 

1. 3. 1 . Three examples 

The linear models assumed in regression analys is are a special kind of 

stochastic vector functions. In the following three examples of aggregation, the 

. micro and macro relations consist of one or two such models • Regression coef­

ficients are computed from the given set of micro and macro data for n :;" 2 
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observations. (Formally , this anticipates chapter 2, but the examples are very 

simple.) 

There are six data vectors 

Xl [Xi"' " Xn}, 

xl! [X11 , ... , Xin ; X2i , ... , X2n} , 

yl [Yi " ' " Yn}, 

yl! [Y , ... ,Yi ; 
11 n 

z [Zi"'" Zn}, 

u [Ui ,···, Un}' 

Each example involves either Xl or xl!, either yl or yl!. 

Averages are defined as follows, 

i n 
X =- ,2:i X2, , 

2 n J= J 

and similarly for X, Xi' Y, Yi ' Y2, Z and U . 

Deviations are defined as follows, 

x2j = X2j - X2 , j = i, ... , n, 

and similarly for xj ' xij ' y j' Y ij' Y 2j' Zj and xj ' 

In the examples, any summation is over j from i to n . Further, the denom­

inator of any computed regression coefficient is assumed not to vanish. 

Example 1 . 3.1.1 involves Xl , y l! , z and u . The four vector functions are as 

follows, where in each case j == i, . .. , n. 

G : 

H: 

cp : 

The probability distributions of y given x and of u given z are only incomplete­

ly specified . 

From the macro data, the regression of U upon Z is computed . The regres­

sion coefficient d corresponding to the parameter Ö is 
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LZ.U. 
d =--1.J 

2 
L:z. 

J 

From the micro data, the regressions of Y1 and Y2 upon X are computed. The 

regression coefficients bi and b2 corresponding to the parameters ~ 1 and ~2 

are 

LX'Y1' 
b =---.L2l 

1 L:x~ 
J 

By G and H, the relation 

d = b +b 
1 2 

follows immediately . 

Example 1.3.1.2 involves x", yl, z and u. The four vector functions are as 

follows, where in each case j = 1, ... , n. 

G: 

H: 

cp: 

w: 

Z=X +X 'z=x +x 
j 1 j 2j' j 1 j 2j , 

U. = Y. ; u. = y . , 
J J . J J 

Yj=Q+~1X1j +~2X2j + ej' E(€j)=O, 

u. = 'Y + Ö Z. + TJ. , E (TJ. ) = O. 
J J J J 

From the macro data, the regression of U upon Z is computed. The regres­

sion coefficient d is as in the preceding example. 

From the micro data, the regression of Y upon Xi and X2 is computed. The 

regression coefficients bi and b2 corresponding to the parameters ~1 and ~2 

are solved from the following pair of normal equations. 

By G and H, addition of the two normal equations produces 

(L:Z.x1·) bi + (L:z.x2 · )b2 = L:z.u . . 
JJ J J J J 

When the LHS is substituted in the numerator of d, the relation 



(l,Z'X1~ d = -L;l 
2 

l,z. 
J 

follows immediately . 
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(
l,z . x 2.) 

b + ~ b 
1 2 2 

l,z . 
J 

Example 1 . 3 . i . 3 involves x" , yl!, z and u. The four vector functions are as 

follows, where in each case j = i, ... , n. 

G : 

H: 

cp: 

z -X + X . z -x + x 
j - ij 2j' j - ij 2j' 

Uj = Y ij + Y 2j ; Uj = Y ij + Y 2j , 

Y ij = cvi + ~iXij + E: ij , E(E: ij ) = O, 

Y 2j = CV2 + ~2X2j + E: 2j , E ( E: 2j ) = O , 

U. = y + Ö Z. + Tj . , E (r/. ) = O 
J J J J 

The stochastic specification of the micro relation implies for j = i, . .. , n 

cp * : 
E(Yij )= ~1Xij , 

E (Y2j) = i3 2X2j 

From the macro data, the regression of U upon Z is computed. The regres­

sion coefficient d is as in the preceding examples. 

By the aggregating function H, 

2:z.y 2' 
+ ~ 

2 
2:z . 

J 

By application of cp *, there follows the relation 

E (d) = (L:Z(i j ) i3 + (L:Z(2j ) ~2 
cp 2:z~ 1 2:z~ 

J J 

where Edenotes expectation according to cp. 
cp 

1.3 . 2 Interpreting macro statistics in micro terms 

A potential source of aggregation problems is the following situation. A theory 

is to be investigated empirically . Data that give sufficiently detailed information 

are not available, perhaps for reasons of cost. Instead, there are less detailed 
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data. The investigator must try to extract information from the data available, 

even though that information is incomplete. 

In favourable cases, the situation can be formalized. A c1ass of micro rela­

tions cp is given or assumed, but the actual parameter values are not known. 

Micro data (x, y) are not available. A set of macro data (z, u) is available, and 

the aggregating functions G and H are known. From the macro data there is 

computed a vector of macro statistics 

T (z, u) • 

The macro statistics are intended to shed light on the parameters of the micro 

relation cp, or at least on the micro data (x, y). 

Precisely what micro information do the mactro statistics T (z, u) give? 

This quite open-ended question will be called the interpretation problem for the 

aggregation and statistics in question. 

The interpretation problem makes no reference to the macro relation W of the 

aggregation. Thus, no macro relation need be assumed. If one is assumed, its 

only role is to serve as a motivation for the macro statistics T (z, u). 

The three examples of 1.3.1 illustrate different kinds of answers to the inter­

pretation problem. In all three examples, there is a single macro statistic, the 

regression coefficient T (z, u) = d. 

In examples 1.3.1. 1 and 1.3. 1.2 th ere is considered also a vector of micro 

statistics 

t (x, y) 

that could be computed from the micro data, if these were available. There are 

in these examples two micro statistics , the regression coefficients t (x, y) = 

= (bi' b2)· The macro statistic T (z, u) is interpreted in terms of the micro 

statistics t (x, y) . The interpretation makes no reference to the micro relation 

cp of the aggregation. Thus, no micro relation need be assumed . If one is assum­

ed, as in these examples, its only role is to serve as a motivation for the micro 

statistics t (x, y). 

In the first two examples, the interpretation problem is answered by a rela­

tion between the macro and micro statistics. The relation is not based on the 

macro and micro relations, only on the aggregating functions G and H. Such 



answers to the interpretation problem will be called model-free relations. 

In example 1.3.1.1, the model-free relation is d = bi + b2 . No unknown 

quantities are involved except the micro statistics. Loosely speaking , this is 

atypical. 

In example 1.3.1.2, the model-free relation can be formulated 

where w 1 and w 2 are functions of the independent micro data x, and are thus 

unknown. But whatever the micro data, it is known that 
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although w 1 or w 2 may be negative. Thus in a generalized sense, d is a weight­

ed average of bi and b2 . This may be a useful interpretation if approximate val­

ues of w 1 and w 2 can be guessed. 

In example 1.3.1.3, the interpretation problem is answered by a relation of 

a different kind. lts LHS is the expectation, according to the micro relation, of 

the macro statistics , 

E (T (z, u)) 
<P 

lts RHS involves the parameters of the micro relation <p. The relation is based 

on the aggregating functions G and H and on the micro relation <p. Such answers 

to the interpretation problem will be called expectational relations. 

The expectational relation in example 1.3.1.3 is 

where the weights w 1 and w 2 are as in the preceding example. 

The model-free relation in example 1.3.1.2 implies a similar expectational 

relation, since by the micro relation E (b. ) = ~. , i = 1, 2. 
l l 

The expectational relation in example 1.3.1.3 does not imply a similar model-

free relation. Here it is n~t the case that d = w 1 b 1 + w 2b2' where bi and b2 are 

the simple regression coefficients corresponding to ~1 and ~2. 

Aparticular c1ass of model-free relations will be introduced in~, and a re­

lated c1ass of expectational relations in!:.±. On the terminology in g, see 1.4.2. 
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1 . 3 . 3 The macro parameters derived by Theil 

Perhaps the most natural approach to aggregation is to look for conditions un­

der which there is consistency . More often than not , the conditions are found to 

be unrealistically restrictive. 

In his pioneering work on linear aggregation of economic relations, Theil 

[ 1954J took a more constructive approach . That approach will now be described, 

using the concepts and terminology that have been introduced earlier in this 

chapter . 

The situation considered is of the kind where the interpretation problem is 

relevant . The macro statistics T (z , u) are regression coefficients dh ' 

h = 1, ... , q . The micro relation ~ consists of one or more linear (regression) 

models with par ameters 13 . , i = 1 , ... , p, where p is the total number of such 
l 

parameters . The aggregating functions G and H are linear . 

Theil's approach is in two steps . The first step is to answer the interpreta­

tion problem by means of expectational relations of the form 
p 

E.p(~)=i~1 whi13i, h=1, . .. , q, 

where whi are certain functions of the independent micro data x . Example 

1.3 . 1 . 3 illustrates the first step. 

The second step of Theil's approach is to postulate a macro relation W which 

is a linear (regression) model with parameters ~ , and to identify the expected 

macro regression coefficients with these parameters . "These estimates are, as 

usual, postulated to belong to certain macroparameters j and these are the para­

meters in which we are interested . More precisely , we interpret the macropara­

meters as the expectations of their estimates ." (Theil [ 1954 J, moment 2 . 2 . 1 . ) 

Thus, 

P 
Öh = i~1 whi l3i , h = 1, . .. , q • 

In example 1.3 . 1.3 , Theil would write Ö = w1131 + w2132 . 

In summary, Theil proceeds as follows . To begin with, there is an incomplete 

aggreation [G, H, ~} . Then a macro relation W is postulated, and its parameters 

are derived from the given G, H and .p . The result is a complete aggregation 

[G, H, .p, w}. 
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It turns out that the complete aggregation thus established is not expectation­

ally consistent. The semi-aggregated micro relation H~ and the semi-disaggre­

gated macro relation IltG give, in general, different forecasts of the dependent 

macro data vector for a given independent micro data vector x. "Suppose, for 

instance, that for some A all microvariables xAi increase by one unit, so that 

the macrovariable xA must increase by I units. If we assume all other exogenous 

variables and the disturbances to be constant, we can deduce from the macroequa­

tion that y must be increase by ~A I ..... units. On the other hand, the micro­

theory will tell us that under these assumptions each microvariable y. will in-
I 

crease by ~ . units, so that the macrovariable y must increase by l' I units. 
~ A 

This is clearly not identical with the prediction according to the macrotheory. So 

we see that there may be contradictions between conc1usions from the macro­

theory and those from the microtheory. " (Theil [1954 J, moment 2.3.4.) 

The purpose of the formal analysis later in this study is to try to sort out this 

confusing situation. Conclusions will be stated in 8. 1 and 8.2. 

1 .4 Some further topics and references 

1.4. 1 Seven topics not covered in this study 

This study does not attempt to cover the whole field of aggregation theory and 

applications. Seven of the more important omissions are listed below. 

First, index-number theory is a part of the theory of aggregation. This is so 

whether the approach is that of L Fisher [1922J, that of Konyus [1924; 1939J, 

or that of Theil [1960J. 

Second, the concept of functional separability. Economists sometimes wish to 

simplify differentlable functions by aggregating the arguments into a smaller num­

ber of aggregate arguments, each representing a subset of the original arguments. 

A necessary condition for consistency is that the original function has the proper­

ty of functional separability. The concept was formulated independently by Sono 

[1945; 1961J and by Leontief [1947J; see also Morishima [1961]. Different kinds 

of functional s ep ar ab ilit y have later been distinguished, as reviewed by Goldman 

and Uzawa [1964J, and by W. Fisher [1969J, section 4.3 and appendix E. 
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Third, the decision-theoretic approach to aggregation. Aggregation is some­

times unavoidable, perhaps for reasons of cost, although consistency is unattain­

able. The practical problem is then perhaps how to aggregate, and certainly how 

to use the macro data, so as to minimize the loss due to aggregation. The con­

eepts of decision theory are applicable. How they can be applied was shown by 

Malinvaud [1956J, section VI. This approach has been pursued by W. Fisher 

[1969 J, who gives further references; also i. a. by Sehneeweiss [1965 J . 

Fourth, what may perhaps be called aggregation by integration. In the exam­

ples of ~ and 1.3. 1, the aggregation was by summation over a finite number 

of entities. Sometimes, instead, the aggregation is by integration over a statis­

tical distribution, which is usually continuous. Examples are de Wolff [1941J, 

and the "stratification approach" in market demand theory deseribed by Wold 

[1952J, seetion 7.4 . 

Fifth, the applications in eeonomie theory are numerous . Some are in demand 

theory, e.g. Rajaoja [1958J. Many are concerned with production functions and 

the concept of capital , e. g. Solow [1956 J. Some are in input-output analys is , 

e. g. Hatanaka [1952J. Aggregation is reviewed from the economist 's point of 

viewby Green [1964J, who gives many references. 

Sixth, there are applications in sociology and related behavioural sciences. 

Many are eoncerned with eeological correlation, e.g. Robinson [1950J; 

ef. 8.3.3 below. Aggregation is reviewed from the sociologist' s point of view by 

Hannan [1971J, who gives many references. The methodological traditions of 

eeonomists and sociologists differ. The shift of perspective between Green 

[1964J and Hannan [1971J is notable. 

Seventh, the somewhat unstructured topic or set of topies labelled classifica­

tion, clustering, or taxonomy. A general reference giving many further refer­

ences is Cormack [1971]. 

1.4.2 On the terminology introduced 

The terms "micro/macro", "aggregation/dis aggregation" , "micro/macro re­

lation", and "consistency" are fairly current usage. 

The terms "segregated aggregation", "semi-aggregated micro / semi-disag­

gregated macro relation", "point-consistency", "expectational consistency", 
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"consistency problem", "direct/indirect/articulated consistency problem", 

"critical!discretionary parameter", "interpretation problem", and "model-free/ 

expectational relation" are all innovations. 

Instead of "micro" and "macro" , Malinvaud [1956 J and W. Fisher [1969 J use 

detailed and simplified. 

Instead of "aggregating function for independent/dependent data", Ijiri [1971 J 

uses active/passive aggregation function. 

Instead of "semi-aggregated micro / semi-disaggregated macro relation", 

Ijiri [1971 J uses principal! surrogate function. 

Instead of "expectational consistency", Theil [1954 J uses perfection, and 

Hannan [1972 J stochastic consistency. 

A few more alternative terms will be mentioned in 1.4.3. 

1.4.3 Some general references to literature 

In the literature on aggregation, the following five works as outstanding . 

Theil [1954 J considers micro and macro relations that eons ist of linear (re­

gression) models, and linear agg!'egation. Several different types of aggregation 

are distinguished; eL 3.2.5 below. The primary purpose is to express the para­

meters of the macro relation in terms of those of the micro relation; cf. 1.3 . 3. 

A secondary purpose is to find out how to achieve perfect aggregation, i. e. ex­

pectational consistency. The results are discussed in economic terms, but the 

emphasis is on statistical concepts and computations. 

Malinvaud [1956 J is primarily concerned with the logic of aggregation and ag­

gregation problems. Aggregation is defined as the representation of a detailed 

model by a simplified model. The use of the simplified model may involve dis ag­

gregating functions. A concept nearly equivalent to consistency is formulated as 

follows: Sometimes one can find intrinsic aggregates and an intrinsic (simplified) 

model such that operation with these involves no loss whatever of information es­

sential to the usel'. A concept of representative aggregates is formulated to cover 

i. a . the representation of a great number of micro data by a statistical distribu­

tion . Finally , it is shown in detail how the problem of optimal aggregation can be 

formulated as a problem in decision theory. Malinvaud' s exposition is strongly 

recommended. 
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Green [1964 J studies a number of types of aggregation occurring in econom­

ics. The micro relation is given by economic theory. The set of independent 

micro data vectors admitted may be restricted by economic theory. Aggregating 

functions and macro relation must be chosen from certain classes . All functional 

relations are assumed to be deterministic and differentiable. The primary pur­

pose is to find conditions for consistency. Except for a chapter on Theil 's ap­

proach, aggregation is studied as a branch of mathematical economics. 

W. Fisher [1969J studies aggregation as a branch of decision theory. The pri­

mary purpose is to find the optimal simplification. Consistency, called exact 

simplification, is but a rare Jimiting case. The problem formulation involves a 

loss function. A number of concrete numerical problems of widely different kinds 

are reformulated and studied as problems of optimal simplification. 

Ijiri [1971 J distinguishes four types of queries in aggregation theory. Two are 

concerned with different consistency concepts. The third type is concerned with 

the errors caused by aggregation, the fourth type with the selection of an optimal 

aggregation. The exposition covers a very wide field in a somewhat abstract 

manner. 

Particularly numerous references to the literature on aggregation are given 

in Green [1964J, W. Fisher [1969J, Ijiri [1971], and Hannan [1971J. Some fur­

ther references are Bentzel [1956 J, Thionet [1960 J, N at af [1964 J, Lancaster 

[1966J, Thionet [1967J, Alstadheim [1968J, F. Fisher [1969J, Moriguchi 

(1970J, Zellner and Montmarquette [1971J, Pokropp (1972J, Ltitjohann [1972J, 

and Wu (1973J. 
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2 SOME ALGEBRA AND THEORY OF LEAST-SQUARES 

2. 1 Some matrix algebra 

2. 1. 1 Some concepts in matrix algebra 

Matrix algebra will be used to express the theory of generalized least-squares 

regression. A few notions of vector geometry will also be referred to. 

Matrices will be denoted by capital letters like M, column vectors by lower­

case letters like v. A matrix of r rows and c columns will be called an r x c 

matrix . A (column) vector of n elements will be called an n-vector . The trans­

poses of M and v will be denoted M' and v' . The inverse of a square non-sin-
-1 

gular matrix will be denoted M . The unit matrix of order n will be denoted I 

or In. The n·-vector, each element of which is unity, will be denoted i or in' or 

sometimes i. 

The following definitions and simple properties will be referred to with out ex­

plicit quotation. A general reference is Graybill [1969J. 

An n l( n matrix Q is positive-definite if and only if it is symmetric and 

v l Qv > O for any n-vector v of o. A positive-definite matrix Q has an inverse 
-1 

Q which is positive-definite . 

Each positive-definite n l( n matrix Q defines variants of the concepts of dis­

tance and orthogonality as follows. Let v 1 and v 2 be two n-vectors. The positive 

square root of the non-negative quantity 

will be called the Q-distance between v 1 and v 2. Further, v 1 and v 2 will be 

called Q-orthogonal if and only if 

v' Qv .~ O • 
1 2 

Ordinary vector-geometric distance and orthogonality are the special variants 

where Q = I . 
n 

The covariance matrix of a set of non-degenerate random variables that are 

not linearly dependent, is positive-definite. (See e.g. Wilks [1962J, section 3.5.) 

A set S of n-vectors is a vector space if and only if it has the following prop­

erty. If v 1 E S and v2 E S, then a1v 1 + a2v2 ES for any two scalars a1 and a2 . 
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Consider avector space S of n-vectors . The set of all n-vectors v such that 
1 

w' v = O for all w E S is another vector space, the orthogonal complement S of S. 
1 

The orthogonal complement of S is S. 

Let M be a given n x m matrix . The set of all n-vectors v such that v = Mt 

for some m-vector t is avector space, the column space of M. The set of all 

m-vectors w such that w' = s' M for some n-vector s is also avector space, 

the row space of M . The set of all m-vectors h such that Mh = O is avector 

space too, the null space of M. 

The row space of M and the null space of M are each other's orthogonal 

complements. Each determines the other uniquely. 

Let M be a given n x m matrix, v a given n-vector, and h an m-vector of un­

knowns . The equation system Mh = v has a solution if and only if v is in the col­

umn space of M. 

2. 1.2 Some propositions in matrix algebra 

The following propositions will be useful later in the chapter . 

Proposition 2. 1 . 2 . A 

Let Q be a given positive-definite n x n matrix. Let M be a given n x m 

matrix. 

The three matrices of m columns 

M, QM, M'QM 

have identical row spaces . g 
If Mt = O, then QMt = O. If QMt = O, then M' QMt = O. If M'QMt = O, then 

t'M ' QMt = O, and then, since Q is positive-definite, Mt = O. Thus the three 

matrices have identical null spaces . Consequently they have identical row 

spaces . CJ 

Proposition 2.1.2 . B 

Let M be a given n x m matrix, v a given n-vector, and h an m-vector of 

unknowns. Let M and v be such that the equation system 

Mh = v 

is consistent . Let A be a given m-vector . 

A necessary and sufficient condition for the quantity A' h to be uniquely deter-



mined by the equation system is that A is in the row space of M. g 

Let h be a particular solution, i. e. Mh = v . 
o o 
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Necessity . Assume that A I h is uniquely determined. Then A I (h + d) = A I h 
o o 

for all d such that M(h +d) = Mh . Otherwise expressed, ).' d = O for all d such 
o o 

that Md = O. Thus A is orthogonal to the null space of M. Consequently A is in 

the row space of M. 

Sufficiency. Assume that ). is in the row space of M, i. e. there is an n-ve c­

tor s such that A' = s'M. Then for any solution h of the equation system, 

A I h = s I Mh = s I V = S I Mh = A' h . Thus A I h is uniquely determined by the equa-
o o 

tion system. O 

Proposition 2. 1 .2. C 

Let Q be a positive-definite n x n matrix . Let M be a given n x m matrix 

and v a given n-vedor. Let h be an m-vector of unknowns. 

The equation system 

M'QMh = M'Qv 

has a solution. g 
The vector M I Qv is in the column space of M I Q. Thus by P. 2 . 1. 2. A it is in 

the column space of M' QM. Consequently the equation system has a solution. O 

Statisticians will no doubt interpret P. 2. 1 . 2. C in terms of normal equations. 

P. 2 .1. 2. A and P. 2.1.2. B are also likely to remind statisticians of certain well­

kno\\ll theorems on least-squares regression . The formulations have been chosen 

so as to bring out the purely algebraical content of those theorems . This is done 

in the interest of the distinction that will be made, between model-free properties 

in ~ and properties based on the linear model in ~ and 2.4. 

The three propositions with their demonstrations were built from material 

found in Graybill [ 1961J, Rao [1965J, Seber [1966J, and Searle [1971]. Detailed 

references are hardly necessary, and would be quite tedious . 
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2 . 2 Model-free properties of least-squares regression 

2.2.1 The pattern of regression data 

Linear regression analysis can be regarded as a systematic comparison of 

units of analysis. The comparison over a given set of units of analys is . 

The units of analysis are observed with respect to a common set of regres­

sion variables . One of these, the regressand, is to be "explained" by a linear 

combination of the other regression variables, the regressors . 

For each combination of one unit of analys is and one regression variable 

there is one datum . The total set of regression data can be partitioned into the 

regressand data and the regressor data . 

The regression data can be arranged into a matrix, where each row is asso­

ciated with one unit of analysis, and each column with one regression variable . 

The data matrix will be denoted 

[y;XJ 

where y is the regressand vector and X is the regr essor matrix . Each column 

of X is a regressor vector . 

More often than not, the first regressor vector represents a dummy variable, 

the intercept regressor, which is equal to unity for every unit of analys is . 

The term "unit of analysis " is taken from Blalock [1964J. 

2. 2 . 2 Regres sion data versus observational data 

The regression data need not be the data originally observed . Usually, the 

observational data can also be arranged into a matrix, where each row is asso­

ciated with one unit of observation, and each column with one observationai vari­

able . One of these, the dependent variable, is to be "explained" in terms of the 

other observational variables, the independent variables. The intercept regressor 

is not usually counted as an observationai variable . 

An example will illustrate the distinction between observational data and re­

gression data . The demand for cheese in a country is to be "explained" in terms 

of population, income and price . The units of observation are the twenty years 

1951, . . . , 1970 . The dependent variable is the quantity of cheese sold Q. There 



are three independent variables , the population N, the disposable income M, 

and a price index for cheese P . The observationai data form a 20 " 4 matrix. 

The demand function assumed is constant-elastic in per capita variables, 
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The function is made linear in the parameters by taldng logarithms. Then, a 

strong positive residual autocorrelation is eliminated by differencing. The trans­

formed demand function is 

t = 1952, . .. , 1970 

Q Q 
Yt = log CN)t -log ("N\-1 ' 

M M 
Xit = log ("N)t - log (N t1 ' 

This is the relation'fitted by linear regression analys is . 

The units of analys is are, strictly speaking, the nineteen pairs of years 

(1951,1952), ... , (1969 , 1970). Conventionally, the nineteen years 1952, .. . ,1970 

are regarded as the units of analysis. The regressand is the differenced logarith­

mic per capita demand quantity Y. There are two regress ors , the differenced 

logarithmic per capita income Xi and the differenced logarithmic cheese price 

index X2 . In this example, there is no intercept regressor. The regression data 

form a 19 )( 3 data matrix . 

Henceforth, the terms "data" and "variable" refer to regression data and 

variables . 

2.2.3 Least-squares approximation 

Consider a given n )( p regressor matrix X and a given regressand n-vector y. 

Any p-vector h defines a linear combination Xh of the regressor vectors. If that 

n-vector is used as an approximation of the regressand vector, the approximation 

errors committed are the elements of the vector y - Xh. 

The purpose of model-free linear regression is to find that linear approxima­

tion Xh which is in some sense best . Each positive-definite n )( n matrix Q 
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defines a variant of generalized least-squares regression, say GLS(Q)-regres­

sion for short . GLS(Q)-regression ehooses that weight vector h which minimizes 

the Q-distance between the regressand vector y and its approximation Xh. Ordi­

nary least-squares is the special variant where Q = I • 
n 

As is well known, GLS(Q)-regression leads to the system 

X'QXh = X' Qy 

of normal equations . 

Proposition 2 . 2 . 3 

Let Q be a given positive-definite n x n matrix . Let X be a given n x p re­

gressor matrix and y a given regressand n-vector . Consider GLS(Q)-regression . 

(i) The normal equations are satisfied by a least one p-vector h = b. 

(ii) Let b satisfy the normal equations. Then 

X' Q (y - Xb) = O . 

In words, the approximation error vector y - Xb is Q-orthogonal to the regres-

sor vectors . 

(iii) Let b satisfy the normal equations, while h is any other p- vector. Then 

(y - Xh)'Q (y - Xh) ~ (y - Xb)'Q (y - Xb). 

In words, the approximation Xh is not better than Xb in terms of Q-distance. ~ 

(i) This follows from P. 2 . 1 . 2 . C . 

(ii) This follows immediately from the normal equations . 

(iii) Decompose y - Xh = (y - Xb) + X (b - h) . By (ii), 

(y - Xh) ' Q(y - Xh) = (y - Xb)'Q(y - Xb) + (b - h)'X'QX(b - h). 

Since Q is positive-definite, . the last term is non-negative . O 

Any p-vector satisfying the normal equations will be denoted b . The normal 

equations will be written 

X'QXb = X'Qy , 

that is with b instead of h. Each element of a solution vector b is associated 

with one regressor, and is calIed a regression coefficient. The intercept is the 

regression coefficient associated with the intercept regressor . 
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Any vector of regression coefficients bdefines two n-vectors 

y=Xb and e=y-Xb, 

the approximation vector and the residual vector , respectively. 

2.2 . 4 Unique coefficient functions 

Consider again the model- free GLS(Q)-regression of y upon X, where the or­

der of X is n x p . Any p-vector A defines a linear coefficient function A I b of the 

regression coefficients b . A coefficient function A I b will be called unique if and 

only if the system of normal equations X' QXb = X' Qy determines it uniquely . 

Proposition 2 . 2 . 4 . A 

Let Q be a given positive-definite n )( n matrix . Let X be a given n )( p re­

gressor matrix and y a given regressand n- vector. Consider GLS(Q)-regression. 

Let X be a p-vector. 

(i) A necessary and sufficient condition for the coefficient function X I b to be 

unique is that X is in the row space of X. 

" (ii) The regression determines the approximation vector y and the residual 

vector e uniquely . g 
(i) By P. 2 . 1 . 2 . B, a necessary and sufficient condition for X I b to be uniquely 

determined by the normal equations is that A is in the row space of X' QX. By 

P . 2. i. 2 . A, the row spaces of X' QX and of X are identical. 

(ii) Let x~ be the j'th row vector of X . By (i), the coefficient functions x'b 
]" j , 

j = 1, . .. , n, are unique . Thus y = Xb and e = y - Xb are uniquely determined. O 

Whether a coefficient function X I b is unique depends on A and the regressor 

matrix X only . It does not depend on the variant Q of GLS-regression, nor on 

the regress and vector y. 

If the rank of X is p, the normal equations have the single solution 

-1 
b = (X'QX) X'Qy, 

and all coefficient functions are unique . 

The following proposition will be useful later in 3..:..± and ~. 

Proposition 2.2 . 4. B 

Let Q be a given positive-definite n )( n matrix. Let X be a given n x p 
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regressor matrix. Let y be a variable regressand n-vector . Consider GLS(Q)­

regression. Let X be a given p-vector such that the coefficient function A' b is 

unique. 

(i) There exists at least one p-vector r such that 

X'QXr = X · 

(ii) The n-vector 

'r= QXr 

is uniquely determined by the equation system X' QXr = A • 

(iii) The coefficient function A I b is the linear function 

X'b = 'r'y 

of the variable regressand vector y. g 
(i) Since X'b is unique, by P.2.1.2 . B A is in the row space of X'QX . 

(ii) By P . 2 . 1.2 . B a quantity kf r is uniquely determined if the p-vectot k is 

in the row space of X'QX . By P.2.1.2~A each row vector of QX is in the row 

space of X' QX. 

(iii) By (i), the normal equations, and (ii), 

X'b= rIX'QXb= rIX'Qy= 'r'y . O 

Consider fixed Q, X and X such that A'b is unique . Then the coefficient func­

tion X I b is the fixed-weight linear function .,' y of the regress and vector y. 

2. 2 . 5 Some references to literature 

Model-free properties of regression are clearly distinguished from properties 

based on the linear model in Goldberger [1964J, section 4.2, for full-rank ordi­

nary least- squares. A study devoted exc1usively to model-free properties is Le­

~er [1963J. Even the standard errors of the regression coefficients are given 

a model-free interpretation by Goldberger [1968 J . 

As is weIl known, GLS can be reduced to ordinary least-squares by a suitable 

linear transformation of the units of analys is . An alternative is to proceed as in 

P . 2.2.3. This approach is cited also by Theil [ 1971J, section 6 . 1. 

The standard approach to least-squares with possibly less than full rank seems 



51 

to be to assume the linear model and proceed in terms of estimability. Model­

free properties are then not easily distinguished. When all references to a model 

were weeded out from Graybill [1961J, section 11.2, the material remaining 

was sufficient to build up P.2.2.4.A and P.2.2.4 . B. Another source of inspira­

tion was Rao [1965J, section 4a . 

The concept of a generalized inverse matrix is used in least-squares theory 

by La. Rao [1965J, Pringle and Rayner [1971J, and Searle [1971J. The conse­

quent gain in elegance will be forgone in this study. 

2.3 The linear model and the regression model 

2.3.1 The incomplete and complete linear models 

Least-squares regression is of ten motivated as a method of estimation. The 

regression data [y! X J are then assumed to have been generated in accordance 

with a probabilistic model. One alternative is known as the Linear Model, an­

other one as the Regression Model. The latter will be described in 2.3.4. 

The linear model involves the following six components. 

(i) X is an n x p reriressor matrix. 

(ii) y is an n x 1 reriress and vector. 

(iii) ~ is a p x 1 parameter vector. 

(iv) f,; is an n x 1 disturbance vector. 

(v) W is an n x n standardized covariance matrix. 

(vi) 
2 

is a scalar averarie disturbance variance. (j 

The incomplete linear model consists of equations (1) and (2) and the explana­

tions following ttem. 

(1) y=X~+f,;. 

(2) E(E:)=O. 

The regressor matrix X is non-stochastic and known. It is identical with the re­

gressor data matrix actually observed. The parameter vector ~ is non-stochas­

tic and unknown . The disturbance vector € is stochastic and unobservable. The 

regressand vector y of the model is stochastic. The regressand data vector 
./ 
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actually observed is one realization of it. 

The complete linear model adds equation (3) and the explanations following it . 

(3) 
2 

E(€€')=O'W . 

The standardized covariance matrix W is positive-definite, has (for example) 

tr (W) = n, and is known. The average disturbance variance 0'2 is unknown . 

The incomplete linear model amounts to a partical specification of the first 

order moments of the distribution of the regressand vector y. The expected re­

gressand vector is some vector E (y) = XI:\ in the column space of the regressor 

matrix. 

The complete linear model adds apartial specification of the second order 

moments of the distribution of y . The covariance matrix of y is proportional to 

the known matrix W. A special case is when W = I . 
n 

The complete linear model is the traditionai Linear Mode!. The incomplete 

linear model is sufficient for the purposes of the formal analysis of chapters 4 

to 8. 

2 . 3 . 2 . Identified parameter functions 

The linear model can be reformulated in terms of a seventh component . 

(vii) I" is an n x 1 mean vector . 

Equations (1) and (2) in 2.3 . 1 are replaced by the following two equations. 

(1*) I" = X~. 

(2 *) E (y) = I" . 

The mean vector I" is non-stochast ic. It is known to belong to the column space 

of X but is otherwise unknown . 

When least-squares regression is used as a method of estimation , the purpose 

is to estimate, as far as possible, the parameter vector ~ . The relation between 

~ and the stochastic data vector y is in two steps. First, by (1*) the parameter 

vector ~ determines the mean vector 1'" Second, by (2 *) the mean vector I" part­

ly determines the distribution of the regress and vector y. 

The second step (2 *) can be reversed in the sense that j.l can be estimated 

from y . In fact, the approximation vector y is an unbiased estimator of 1". But 
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the first step (1 *) cannot aJways be reversed in the sence that if ~ were known, 

then l' would be knO\\"ll too. Several different parameter vectors B may corre­

spond to a given mean vector ~. Granted that B does not influence the distribu­

tion of y except through ~ , several different vectors B are then observationally 

equivalent. There is this a problem of identification . 

The concept of identification is weil knO\vn to econometricians since Koopmans 

[1953J. It is usually formulated and studied for models of the type known as 

Simultaneous Equations (see e . g. Johnston [1963J, section 9-2). The parameters 

B and the means ~ in the linear model correspond to the structural and reduced­

form parameters, respectively, in the simultaneous equations model. That the 

concept of identification is applicable in this way to the linear model is indicated 

in passing by Seber [1966J, section 3.4. 

Any p-vector A defines a linear parameter function A' B of the parameters B 

of the linear model . A parameter function A' B will be called identified if and 

only if the consistent equation system XI' = jJ. determines it uniquely. 

Proposition 2.3.2 

Let X be a given n )( p matrix. Let jJ. be a given n-vector such that jJ. = XI' 

for at least one p-vector 13 . Assume a linear model where X is the regressor 

matrix and ~ is the mean vector. Let A be a p-vector. 

A necessary and sufficient condition for the parameter function A' l' to be 

identified is that A is in the row space of X. g 

This follows from P. 2 . 1 .2 . B. D 

Whether a parameter function A' l' is identified depends on A and the regres­

sor matrix X only . It does not depend on the standardized covariance matrix W 

of the linear model. The linear model may even be incomplete . 

If the rank of X is p , the equation system (1 *) has the single solution 

-1 
l' = (X ' QX) X ' Qu, 

where Q is an arbitrary positive-definite n x n matrix. Then all parameter 

functions are identified . 
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2 . 3 . 3 Designed and observed regressor data 

The elements of the regressor matrix X can be of two kinds. Some have no 

empirical content . They are artifacts used in the construetion of a linear model 

to Ht given assumptions . Such regressor data will be called designed. Others 

record an observation of the real world. If the real world were sufficiently dif­

ferent , they would be numerically different. Such regressor data will be called 

observed. 

The veetors of the regressor matrix X can be of three kinds. If all the ele­

ments of a regressor vector are designed data, that regressor will be called 

designed. If all the elements of a regressor vector are different observed data, 

that regressor will be called observed. The intercept regressor is designed. All 

regressors used in the analys is of variance are designed . Most regressors used 

in regression analysis are observed. Regressors that are neither designed nor 

purely observed will be eaIled mixed. 

The following example illustrates the concepts . The macro-economic consump­

tion function makes eonsumption C a linear function of gross national product P. 

Data are available for half-years indexed t = 1, 2, 3, . . . The relation assumed 

is as follows. 

C =Q'+öP +& 
t t t 

C =x+ep +& 
t t t 

E(&t)=O, 
2 s 

E (€t €t+s) = cr p 

when t is odd, 

when t is even, 

for s = O, 1, 2, 

The autocorrelation is p = O. 8 approximately . 

For reasons of efficiency (ef. Zellner [1962aJ) the two lines are estimated 

jointly by GLS regression. The linear model y = XI' + € is construeted as foIlows. 

C1 1 O Pi O &1 

C2 1 1 P2 P 2 

[" 
€2 

x-a + 
C3 1 O P 3 O €3 

C4 1 1 P4 P4 e~ö €4 

There are equivalent alternatives. 
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The first regressor in the example is the intercept regressor. The second 

regressor is a dummy variable indicating the even-numbered half-years. Both 

these regressors are designed . The third regressor reeords gross national prod­

uct . This regressor is observed. The fourth regressor is mixed . 

The even-numbered elements of the fourth, mixed, regressor are replicates 

of the corresonding elements of the third regressor. Arrangements with dummy 

variables and mixed regressors usually involve sueh replication of observed re­

gressor data. 

The distinction between designed and observed regressor data is relevant to 

the formulation of a consisteney problem in ~. It will also be referred to in the 

discussion of one type of aggregation in 3.1.5. 

2.3.4 The regression model 

The linear model treats any element of the regressor matrix as a known para­

meter. For designed regressor data this is natural, e. g . in the analys is of vari­

ance. It is less natural for observed regressor data, which are thought of as 

variable. The linear model can be modified as follows, so as to take account of 

the variability of the regressor matrix. 

The regression model is like the linear model except for the characterization 

of X. The regressor matrix X of the regression model is stoehastic . The regres­

sor data matrix actually given, at least partly from observation, is one realiza­

tion of it. The distribution of the disturbance vector € is independent of that of 

X. Thus equations (1), (2) and (3) of 2.3.1 hold for any realized X. 

The formal analysis in chapters 4 to 8 will be based on linear models . Re­

gression models will occur in ~. 

2.4 Least-squares estimation in the linear modet 

2.4 . 1 Estimable parameter functions 

Consider a linear model where the order of the regressor matrix X is n )( p. 

Consider a given linear function A l i3 of the p parameters of the model. Any n­

\'ector t defines a linear function t l Y of the regressand data, a linear estimator. 
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The parameter function A' ~ will be called unbiasedly estimable if and only if 

there exists an estimator t' y such that E (t ' y) = A' ~ identically in ~ . 

Proposition 2.4. 1 . A 

Let X be a given n )( p matrix. Let (l be a given p-vector. Assume a linear 

model where X is the regressor matrix and ~ is the parameter vector . Let A 

be a p-vector . 

A necessary and sufficient condition for the parameter function A' ~ to be 

estimable is that A is in the row space of X. g 

Necessity . Assume that A' ~ is estimable. Then for a certain n-vector t, 

E(t'y)=t'X~=A ' ~ identicallyin (l . Thus t'X=A' , i.e . A isintherowspace 

of X . 

Sufficiency . Assume that A' = t ' X for some n-vector t. Then E (t ' y) = t ' X~ = 

= A' ~ identicaIly in ~. O 

The above proposition is weIl known in least-squares theory . It holds even if 

the linear model assumed is incomplete. 

The next proposition states a connection between the concepts of uniqueness, 

identification, and estimability. 

Proposition 2 . 4 . 1 . B 

Let X be a given n )( p matrix. Let A be a p-vector . 

Let y be any n-vector . Let Q be any positive-definite n )( n matrix . Let b 

be a p-vector of unknowns . Consider the normal equation system X' QXb = X' Qy. 

CaIl this system NE. 

Let ~ be any p-vector. Consider any linear model where X is the regressor 

matrix and ~ the parameter vector . Call this model LM. 

The model LM may be incomplete . No relation is assumed to hold between Q 

and the covariance matrix of LM. 

Consider the foIlowing three statements . 

(i) The coefficient function A' b in NE is unique. 

(ii) The parameter function A' ~ in LM is identified. 

(iii) The parameter function A I ~ in LM is estimable . 

The three statements are either all true or all false. ~ 
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By P.2 . 2 . 4.A, P . 2.3.2, and P . 2.4 . 1.A, a necessary and sufficient condition 

for each of the three statements to be true is that A is in the ro\\' space of X. O 

The concept of uniqueness does not refer to a model The concepts of identifica­

tion and estimability do refer to a linear model, which may be incomplete . For 

a given regressor matrix X, the three concepts are co-extensive in the sense 

that A' b is unique if and on ly if A' i3 is identified, and if and only if A' i3 is esti­

mable . 

Unless the rank of X is p, there are coefficient functions A' b that are not 

unique and parameter functions A' i3 th at are not identified (or estimable). A 

remedy sometimes applied is to add suitable linear constraints Ri3 = O and 

Rb = O. This approach is discussed i.a. in Scheffe [1959J and Searle [1971J. 

2.4 . 2 Best linear unbiased estimation 

Assume the complete linear model. Consider a parameter function A' i3 . 

Any estimator t' Y will be called an unbiased estimator of A' i3 if and only if 

E (t ' y) = A' i3 identically in i3. 

An unbiased estimator t' Y of A' i3 will be called a best linear unbiased esti­
o 

~, abbreviated BLUE, of ).,' i3 if and only if it has the following propert y: 

For any other unbiased linear estimator t'y of ).,' i3 , Var (t ' y);;" Var (t'y) . 
o 

Only if A' i3 is estimable does it make sense to look for a BLUE. The answer 
-1 

turns out to involve the GLS(W l-regression of y upon X, where W is the 

standardized covariance matrix of the linear model. 

Proposition 2.4 . 2 

Assume the complete linear model (1) , (2), (3) . Consider the normal equations 

(4). The only stochastic components are e , y and b. 

(1) Y = Xi3 + E:, 

(2) E (e) = O , 

2 
(3) E(E:e:') = crW 

-1 -1 
(4) X'W Xb = X'W y. 

Let A' i3 be an estimable (identified) parameter function. Consider the analo­

gous coefficient function A' b . 
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(i) 
-1 

A'b = ,. ' y , where,. = W Xr, 
-1 

where r is any vector such that X' W Xr= A; 

and ,. is determined uniquely by A, X and W . 

(ii) E(A'b)=A'I3. 

(iii) A'b is the only BLUE of A'I3 . g 

(i) 

in (4). 

(ii) 

Since A' l' is estimable, by P. 2 .4.1. B A' b is a unique coefficient function 
-1 

Then P . 2.2.4.B is applicable with Q = W 
-1 

By (i) and the linear model, E (A ' b) = ,. ' XI3 = r ' X ' W XI' = A'I3 . 

(iii) Let t ' Y = (,. + d) ' y be an unbiased estimator of A' l' . Then by (ii) and 

the linear model , d ' XI' = O identicalIy in 13 . Thus d ' X = O, which by (i) implies 
2 2 2 

d ' W,. = O . Hence and by the linear model, Var (t ' y) = a t' Wt = a ,.' W,. + a d ' Wd. 

Since W is positive-definite, the variance is minimized if and only if d = O. O 

The above is a version of the well-known Gauss-Markov theorem on least-

squares. It says that A' b, which may be called the least-squares estimator of 

A' 13, is the BLUE of A' 13, given two conditions . First, A' l' must be estimable . 
-1 

Second, the G LS variant must be that defined by W 

The standard least-squares theory developed in 2.4 is too well-known for de­

tailed references to be required. The presentation chosen owes most to Graybill 

[1961J . Other sources of inspiration were Rao [1952J, Rao [1965J, and Searle 

[1971J . 

2.5 Regression in deviation form 

2.5 . 1 Means and deviations 

In generalized least-squares regression involving an intercept, certain gener­

alized means and deviations are useful . Before these are introduced, notation will 

be slightly modified . Throughout, j is an n-vector of unit elements , q = p-i 

and Q is an arbitrary positive-definite n x n matrix . 

The regressand n-vector is still written y . The n x p regressor matrix , 

earlier written X, is partitioned and re-written 

[j l X J, 
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where j is the intercept regressor vector, while X is the remaining n )( q re­

gressor submatrix. The p-vector of regression coefficients, earlier written b, 

is partitioned conformably, and the approximation vector is written 

A 

Y = ja + Xb , 

where a is the regression intercept, while b is the remaining subvector of q 

regression coefficients. 

The scalar y and the row q-vector x' defined as folIows 

- , -1, 
(y : x') = (j I Qj) j I Q [y ! X J 

will be called the regressand Q-mean and the vector of regressor Q-means. The 

regressand n-vector an? the n )( q regressor matrix of Q-deviations are defined 

as folIows, 

[y - jy ! X - jx' J . 
l 

Ordinary me ans and deviations are the special variants where Q = I . 
n 

The regression data [y - jy : X - jx' J will be said to be the regression data 
l 

[y i X J in deviation form. The deviation form data can be produced as folIows 

[ y - jy: X - jx' J = D [y: X J , 
I , 

where D is the n )( n deviation-producing matrix 

-1 
D = I - j (j' Qj ) j I Q . 

n 

Because j' QD = O, any vector of data in Q-deviation form is Q-orthogonal to the 

intercept regressor vector. Thus any vector of Q-deviation data has zero Q-mean . 

The deviation-producing matrix D for Q = I is formulated and studied in 
n 

Kloek [1961J. 

2.5 . 2 The deviation form normal equations 

Let y be a regressand n-vector and X an n )( q regressor matrix. Let Q be 

a positive-definite n )( n matrix. Let y and x' be the Q-means of y and x . 

The GLS(Q)-regression of y upon X and the intercept regressor will be called 

the raw form regression . The GLS(Q)-regression of (y - jy) upon (X - jx' ) 

with no intercept added will be called the corresponding deviation form regres­

sion. 
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The normal equations of the raw form regression are 

Ra: j I Qja + j I QXb = j I Qy , 

Rb: X'Qja + X'QXb = X'Qy, 

where Ra is a single equation, while Rb is the remaining subsystem of q equa-

tions. 

The normal equations of the deviation form regression are 

Db: (X - jx')' Q(X - jx')b = (X - jx')' Q(y - jY). 

In order to determine the intercept, they are complemented by 

Da: a = y - x'b, 

a well-known computing formula. 

The content of the following proposition is weIl known, at least for full rank 

ordinary least-squares regression. 

Proposition 2.5.2. 

Consider the GLS(Q)-regression of y upon X and the intercept regressor, the 

raw form regression, whose normal equation system is Ra and Rb. Consider also 

the corresponding deviation form regression, whose complemented normal equa­

tion system is Da and Db. 

The equation systems (Ra, Rb) and (Da, Db) are equivalent. g 

The equation system (Ra, Rb) can be written 

[
jlQj 

X'Qj 

jlQXJ 

X'QX 
[ aJ = [jl Qy] 

b X'Qy 

Premultiplication by the p x p matrix 

produces the equation system 

X' J rba ] 
(X - jx')' QX L 

Since (X - jx' ) I Qj = O , this is equivalent to 
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[~ -, J 
(X - jx')' ~(X - jx') [:] 

This is the equation system (Da, Db) . 

Since j' Q (X - jx') = O and j' Q ( y - jy) = O, the equation system (Da, Db) is 

equivalent to 

Premultiplication by the p x p matrix 

[
j'Qj 

X'Qj ~] 
q 

produces the equation system 

[
j'Qj. 

X'Qj 

j'QX] 

X'QX r:] 
This is the equation system (Ra, Rb) . O 

[ j'Qy. ] 
X'Qy 

A unique coefficient function in the raw form regression can be computed from 

any solution of the complemented normal equations of the corresponding deviation 

form regression . 

When the intercept (or, expressed differently, its regressor) is eliminated 

from (Ra, Rb), the outcome is Db. More regressors can be eliminated step-wise 

in an analogous manner. For full rank ordinary least-squares, this is discussed 

in Llitjohann [1970b]. 

2.5.3 The coefficient of determination 

Consider again a raw form GLS(Q)-regression and the corresponding deviation 

form regression. By P. 2.2.4 . A, both produce unique approximation and residual 

vectors. By P. 2.5.2., the two residual vectors are equal, for 

(y - jy) - (X - jx')b = y - j (y - x'b) - Xb = Y - ja - Xb. 

The deviation form regression decomposes its regressand vector into an ap­

proximation vector and a residual vector as follows . 
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(y - jy) = (X - jx')b -'- e . 

By P. 2 . 2.3, e is Q-orthogonal to each of the regressor vectors (X - jx'). Con­

sequentIy, the deviation form regression decomposes the total sum of squares 

as follows. 

(y - jy)' Q(y - jy) = b' (X - jx')' Q(X - jx')b + e'Qe 

The two parts are called the sum of squares due to regression and the residual 

sum of squares, respectively . Since Q is positive-definite, each of the three 

terms is non-negative. 

The coefficient of determination R2 of the deviation form regression is defin­

ed as follows. 

R2 = 1- e'Qe 

(y - jy)' Q (y - jy) 

In the degenerate case where y = jy, R2 is not defined. By the decomposition of 
2 

the sum of squares, O.,:; R .,:; 1. 

The above defines the coefficient of determination for a deviation form regres-
2 

sion. By convention, R for a raw form regression is (usually) defined to be 
2 

identical to R for the corresponding deviation form regression. The positive 

square root of R2 is called the coefficient of multiple correlation between the 

raw form regress and y and the set of raw form regress ors X. 

The coefficient of determination and related subjects are discussed at greater 

length e.g. by Theil [1971J, chapter 4 . The out line given will be sufficient for 

present purposes . The explicit generalization above to GLS(Q)-regression was 

formulated independently by Buse [1973 J and by Llitjohann [1970aJ. 

2.5.4 A decomposition of a moment matrix 

In the analysis of variance of a completely randomized design, the total sum 

of squares is decomposed into one sum of squares between the treatments and 

another sum of squares within them. A multivariate generalization will now be 

given. 

Consider an n x p data matrix X. The p variables can be regressors , re­

gressands, or both. Let the set of n units of analysis, and the rows of X, be 
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partitioned into m ~ 2 disjoint, exhaustive subsets . The number of units in the 

h'th subset is denoted ~, h = 1, ... , m. 

Let Q be a positive-definite n x n matrix. Let Q be such that, if it is parti­

tioned conformably with X, Q is block-diagonal. 

X= ~ 

X 
m 

Q= O 

O 

Since Q is positive-definite, so is each Qh . 

O O 

O 

O 

Let jn' jm and ~ , h = 1, ... , m, be column vectors of n, m and ~ unit 

elements, respectively. Let K be the n x m matrix formed by arranging block­

diagonally the vectors ~ . 

O 

K= O 

O O 

O 

O 

i 
m 

The relation Kj = j follows from the definition. 
m n 

Let Q be the m x m diagonal matrix defined as follows. 

Q = K'QK. 

The h'th diagonal element of Q is ih Qh \ > O, h = 1, ... , m. 

The Q-means over the n units of analysis are the row p-vector 

= -1 
x' = (j' Qj) j' QX . 

n n n 

The ~ -means over the ~ units of analys is that form the h I th subset of units, 

are the row p-vector 
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For h = 1, ... , m, Xb is the h'th row vector of the m x p matrix 

- -1 
X = (K'QK) K'QX. 

The matrix X can be regarded as a data matrix where each of the m subsets is 

represented by its Qh -means. Since jn = Kjm' K'QK = Q, and K'QX = K'QKX, 

= - -1 --
x' = (j I Qj ) j I Q X . 

m m m 

Thus the Q-means over the n units of analysis are also the Q-means over the m 

subsets . 

The data X in Q-deviation form are the n x p matrix 

X - j x' . 
n 

The data ~ in Qh -deviation form are the ~ x p matrix 

For h = 1, ... , m, ~ - \ x' is the h I th submatrix of the row-partitioned n x p 

matrix 

X - KX 

The subset data X in Q-deviation form are the m x p matrix. 

X - j x' 
m 

A related matrix of order n x p is 

K(X:...j x') 
m 

where the data for each unit of analysis are replaced by those for the subset to 

which the unit belongs . 

Since Kj = j , the deviation form data matrices are related as follows. 
m n 

(X-j ~I)=(X-KX)+K(X-j ~I) 
n m 

Since K' Q (X - KX) = O and K' QK = Q, this implies the following decomposition 

of the p x p total moment matrix. 
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(X-j ~')'Q(X-j ~I)= 
n n 

= (X - KX) I Q (X - KX) + (X - j ~I) I Q (X - j ~I) 
m m 

The two components can be called the with in subsets and between subsets moment 

matrices . Since Q is block-diagonal, the former can be further decomposed as 

follows . 

The h I th subcomponent is the moment matrix within the h I th subset of units of 

analysis . 

Proposition 2 . 5 . 4 . 

Under the assumptions and in the notation of 2 . 5.4 . , 
_ _ m 

(X - jnX')1 Q(X - jn X' ) = h~1 (~ - \X;y ~ (~- \ih) + 

The demonstration has been given in the text . O 

o 
o 

The analysis of covariance in a completely randomized design uses the above 

decomposition of the total moment matrix . For the case where p = 2 and Q = I 
n' 

this can be seen from Kendall [1948J , section 24.28 et seqq. 



66 

3 FlYE TYPES OF AGGREGATION OF REGRESSION DATA 

3.1. Four elementary types of aggregation 

3.1.1 Aggregation of regression data 

Regression analys is requires data that conform to a certain pattern, which 

was described in 2.2.1. Any set of data conforming to that pattern can be called 

a set of regression data. The pattern characterizing regression data can be said 

to have four "elements": the regressors, the regressand, the units of analysis, 

and the set of units of analys is. 

Regression data, like other data, can be aggregat ed . Four elementary types 

of aggregation of regression data will be introduced in!.:..!. Each of the four ele­

mentary types of aggregation affects one the four "elements" of the pattern of re­

gression data, but leaves the other three "elements" unaffected, as far as logi­

cally possible. A fifth, more complex, type of aggregation of regression data will 

be introduced in 3.2. 

The five types of aggregation are applied to micro data that form k sets of re­

gression data, where for some types k = 1 while for others k ~ 2 . The h I th set 

of micro regression data will be denoted 

where Yh is the h I th micro regress and vector and ~ is the h I th micro regres­

sor matrix . (When k = 1 , the index h is dropped.) 

Each of the five types of aggregation produces macro data that form one set of 

regression data. The macro regression data will be denoted 

I 

[u: Z J , , 

where u is the macro regressand vector and Z is the macro regressor matrix. 

The five types of aggregation are all segregated in the sense of ~. For 

brev ity , the two aggregating functions are re-named. The aggregating function 

for independent data G, which relates Z to ~ , h = 1, . . . , k, will be called the 

regressor aggregating function. The aggregating function for dependent data H, 

which relates u to Yh ' h = 1, .. . , k, will be called the regressand aggregating 

function. The two aggregating functions need not be linear. 
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The five types of aggregation are aggregations in the narrower sense indi­

cated in 1.1.4. No explicit reference will be made to micro or macro relations. 

The following is however tacitly understood. If there is a micro relation ~, then 

for any j and h it relates the j' th element of Yh to the j' th row vector of ~ . 

Similarly, if there is a macro relation w, the it relates the j' th element of u to 

the j' th row vector of Z . The micro and macro relations, if any, need not be 

linear. 

The five types of aggregation of regression data will not be defined rigorously . 

Rather , five characteristic patterns of data and relations will be indicated and 

given names . 

3. 1 . 2 Six related examples 

Each of the four elementary types of aggregation of regression data will be in­

troduced by me ans of an example. The fifth type of aggregation will be introduced 

by me ans of two examples. The six examples select micro data from a common 

pool of micro data. 

Examples 3.1. 2, micro data. Consider a fictitious cross-section study of how 

fertility in sheep is affected by more or less damp weather. Data are collected 

covering one gestation period, say from October to March. 

The units of analysis are small geographical regions, say parishes . 

There are two sets of units of analys is . One consists of all the rural parishes 

of all the counties of southern Scotland. The other one consists of all the rural 

parishes of all the counties of northern England. 

There are four regress ands . One is the number of black-faced ewe lambs born 

alive in the parish in Spring. The other three are the numbers of black-faced ram 

lambs, white-faced ewe lambs, and white-faced ram lambs born alive in the par­

ish in Spring . 

There are four regressors . One is the number of black-faced sheep alive in 

the parish af ter the Autumn slaughter. Another one is the number of white-faced 

sheep alive in the parish af ter the Autumn slaughter . The third regressor is the 

amount of rain fallen in the county to which the parish belongs , during the period 

of investigation. The fourth regressor is the amount of sno w fallen in the county 

during the same period, converted into inches of rain. 
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The parishes are indexed j . The counties are indexed i. For any i, the set 

of integers P. is such that j E P. if and only if the j I th parish belongs to the i I th 
l l 

county. The sets P S and P E are such that j E P S or j E P E if and only if the 

j' th parish is in Scotland or in England, respectively. The sets Cs and CE are 

such that i E Cs or i E CE if and only if the i'th county belongs to Scotland or 

England, respectively. 
BF BM WF WM 

The regressands are denoted y , y , y and y . The letters B, W, 

F and M indicate black-faced, white-faced, ewe (female) and ram (male) lambs, 
B W R S 

respectively. The regressors are denoted x , x , x and x . The letters B, 

W, R and S indicate black-faced sheep, white-faced sheep, rain and snow, re­

spectively. 

The rain and snow data are for counties . Thus if for a given integer i, 
R S 

ji E Pi and j2 E Pi' then xj and xj for j = ji are identical to those for j = j2' 

Consider the regression of the number of lambs upon the number of sheep, 

the amount of rain, and the amount of snow. If the regression is concerned with 

black-faced ewe lambs in southern Scotland, the regression data matrix consists 

of the row vectors 

( BF : i 
Yj : x~ x~ x~) 

J J J 
for all j E P S . 

There are eight such micro regression data matrices, one for each combination 

of black-faced or white-faced, female or male, Scotland or England. 

In the examples, a macro datum that is identical to a single micro datum 

keeps its micro notation in the macro data. 

Example 3.1. 2. i, macro data. Consider the micro regression data matrix for 

black-faced ewe lambs in southern Scotland. Let the distinction between rain and 
R S 

snow be dropped. Then the two micro regressors x and x are replaced by a 

single macro regressor z P, the amount of precipitation in the county to which 

the parish belongs . Formally , 

P R S 
z = x + x 

j j j 

The row vectors 

(
' BF : 1 
Yj : 

for all j E P S 

form a macro regression data matrix. 
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Example 3.1 . 2.2, macro data. Consider the two micro regression data matri­

ces for black-faced ewe lambs and black-faced ram lambs in southern Scotland . 

These two regression data matrices have a common set of regressors but differ­

ent regressands. Let the distinction between ewe lambs and ram lambs be drop-
. BF BM 

ped . Then the two mlcro regressands y and y are replaced by a single 
B 

macro regressand u ,the number of black-faced lambs born. Formally , 

B BF BM 
u . = y . + y. 

J J J 

The row vectors 

(u~ j 1 x~ x~ x: ) for all j E P S 

form a macro regression data matrix . 

Example 3 . 1.2.3, macro data. Consider the micro regression data matrix for 

black-faced ewe lambs in southern Scotland. Let the parishes be exchanged for 

the counties as units of analys is. The number of black-faced ewe lambs born in 

a county, uBF , is the sum of the numbers of black-faced ewe lambs born in those 

parishes that constitute the county. Similarly, the number of black-faced sheep 
B 

in a county, z , is a sum over the parishes of the county. Formally , 

B 
z . 

l 

B 
x. 

J 

The amounts of rain and snow fallen are for counties aiready. They are equal for 

all parishes within a given county . These data are retained unchanged, but nota­

tion is changed as follows . 

R R 
z. = X 

l j 

S S 
z. = X 

l j 

The row vectors 

for any j E P. , 
l 

for any j EP . 
l 

(U1B. F B R S) 
1 z i z i z i for all i E C S 

form a macro regression data matrix. 
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Example 3.1.2.4, macro data. Consider the two micro regression data matri­

ces for black-faced ewe lambs in southern Scotland and in northern England. 

These two regression data matrices are for the same regressand and regressor 

variables but for different sets of units of analys is. Let the distinction between 

Scotland and England be dropped. Then th e two sets of index values P S and P E 

are replaced by a single set, their union P S U P E . The row vectors 

(Y ~F i 1 x~ x~ x:) for all j E (P S U P E ) 

form a macro regression data matrix. 

Example 3.1.2.5, macro data. Consider the two micro regression data matri­

ces for black-faced ewe lambs and white-faced ewe lambs in southern Scotland. 

These two regression data matrices are for the same units of analys is and for 

analogous regress and and regressor variables. Let the distinction between black­

faced and white-faced ewe lambs and sheep be dropped. Then the two analogous 
BF WF F 

regressands Y and Y are replaced by a single regressand u , the number 

of ewe lambs born. Similarly, the two analogous regressors xB and xW are re­
N 

placed by a single regressor z , the number of sheep. Formally , 

F BF WF 
u. = y. + y. 

J J J 

N B 
z. = x 

] j 

w 
+x 

j 

The two regressors for rain and snow xR and xS are common to both micro re-

gression data matrices. These data are retained unchanged. The row vectors 

( Fl1 N u.. z. 
] : J x~ x:) for all j E Ps 

form a macro regression data matrix. 

Example 3.1.2.6, macro data. Consider the four micro regression data matri­

ces for black-faced ewe lambs, black-faced ram lambs, white-faced ewe lambs, 

and white-faced ram lambs in southern Scotland. These four regression data 

matrices are for the same units of analys is . Let the distinction between black­

faced and white-faced lambs and sheep be dropped. Let the distinction between 

ewe lambs and ram lambs be dropped. Let the distinction between rain and snow 



be dropped . Then the four micro regressands are replaced by a single macro 

regressand u, the total number of lambs born . Formally 

71 

Further , macro regressors zN and zP are formed as in examples 3.1. 2 . 5 and 

3 . 1.2.1, respectively. 

(
U : 1 z~ 

j : J 

The row vectors 

z~) for all j E P 
s 

form a macro regress ion data matrix . 

3 . 1 . 3 Aggregation of regressors 

Aggregation of regressors starts from a single micro regression data matrix 

[ y i X J. Macro regressors are formed as functions of the micro regressors . 

The regressand , the individual units of analysis, and the set of units of analys is , 

are not changed. The outcome is a macro regression data matrix [ u j Z J. 
Example 3 . 1 . 2 . 1 is a case of linear aggregation of regressors . Each macro 

regressor is a linear function of some of the micro regress ors . 

Linear aggregation of p micro regressors into q macro regressors is de­

scribed by the vector and matrix equations 

u = y , 

Z = XG, 

where G is some p x q matrix of constants . 

Whether any p x q matrix G should be considered to define a linear aggrega­

tion of regressors , is a matter of convention . Perhaps it is preferable to accept 

only those matrices G that satisfy the following two restrictions . First , no row 

vector of G is a zero vector . Second, the rank of G is q . 

A special class of linear aggregations of regressors, which satisfy the two 

restrictions, will be introduced in 3 . 1 . 7. Aggregation of regressors is the sub­

ject of 5.1 and 5.2. 
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3. 1.4 Aggregation of regressands 

Aggregation of regressands starts from k ;:" 2 micro regression data matrices 

[ Y. ~ x. J, i = 1, .. " k, each of which refers to the same units of analysis. A 
l: l 

macro regressand is formed as a function of the micro regressands . The regres-

sors are not changed, in the sense that the union of the k sets of micro regres­

sors is taken as the set of macro regressors . The individual units of analysis, 

and the set of units of analysis, are not changed. The outcome is a macro regres­

sion data matrix [u ! Z J. 
Example 3.1.2.2 is a case of linear aggregation of regress ands . The macro 

regressand is a linear function of the micro regressands . Further, in the exam­

ple the micro regressor matrices X. are equal by definition. 
l 

More generally , let two micro regressor vectors be considered identical if 

and only if they are equal by definition, not merely by numerical accident. Let 

the union of the k sets of p. micro regressors X. form the total micro regres-
l l . 

sor matrix X. Let the k micro regressand vectors y. form the micro regres­
l 

sand matrix Y. Linear aggregation of regressands is described by the vector 

and matrix equations 

u = Yh , 

Z=X 

where h is some k-vector of constants . 

Whether any k-vector h should be considered to define a linear aggregation 

of regressands , is a matter of convention. Perhaps it is preferable to accept on­

ly those vectors h that have no element equal to zero. 

Aggregation of regressands is the subject of~. 

3.1.5 Aggregation of units of analys is 

Aggregation of units of analysis starts from a single micro regression data 

matrix [y j X J. Macro units of analysis are formed as functions of the micro 

units of analys is , in the sense that the data for any macro unit are formed as 

functions of the data of some given micro units. The regressors and regressand 

are not changed, in the sense that any macro datum for a given variable is a 

function of micro data for that variable only. The set of units of analysis is not 
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changed, in the sense that the macro data are functions of the micro data only, 

while (usually) each micro unit is "represented" in at least one macro unit. The 

outeorne is a macro regression data matrix [u i Z J. 
The distinction between designed, observed and mixed regressors introduced 

in 2.3.3 may be relevant in aggregation of units of analys is. Let the micro and 

macro regress ors be partitioned 

x = [Xli; 
M: xO l X : J 

Z = [Zll i ZM: zO l 
I J , 

where X,:." XM and xO are the designed, mixed, and observed micro regres­

sors, while Zll, zM and zO are the corresponding subsets of macro regressors. 

Aggregation of units of analysis of ten treats the purely observed regressors XO 

in the same way as the regressand y, but may treat the designed and mixed 

regressors Xli and XM differently . 

Example 3 . 1 . 2 . 3 is a case of linear aggregation of units of analys is . Each 

macro datum is a linear function of some of the micro data. In the example, the 
B 

intercept regressor is designed, the regressor x , the number of sheep, is 
R S 

purely observed, and the regressors x and x , the amounts of rain and snow, 

are mixed because they contain replicated observed regressor data . In the exam­
B 

ple, further, the purely observed regressor x is treated like the regressand 

yBF, and the other regressors differently . 

Linear aggregation of n micro units of analys is into m macro units of analy­

sis is (incompletely) described by the matrix equation 

I O ' ° [u : Z J = T' [y : X J, 

where T is some n x m matrix of constants . The treatment of the designed and 

mixed regressors can sometimes be described by the matrix equation 

where S is some n x m matrix of constants . The matrix S is not necessarily 

uniquely determined by the process of aggregation. For example, if the intercept 

regressor is the only not pure ly observed micro and macro regressor, S is any 

matrix whose column sums are unity. 
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Whether any n x m matrix T, and any treatment of the designed and mixed 

regressors, should be considered to define a linear aggregation of units of analy­

sis, is a matter of convention . Perhaps it is preferable to accept only those ma­

trices T that satisfy the following two conditions. First, no row vector of T is 

a zero vector. Second, the rank of T is m. Whether the set of pure ly observed 

regressors XO should be permitted to be empty is another matter of convention. 

A special class of aggregations of units of analys is , which satisfy the two re­

strictions on T , will be introduced in 3. 1 . 8 . Aggregation of units of analys is is 

the subject of ~ and 6.2. 

3.1.6 Aggregation of sets of units 

Aggregation of sets of units starts from k ;" 2 micro regression data matrices 

[Yh l ~ J, h = 1, .. " k, each of which refers to the same variables. A macro 

set of units of analysis is formed as a function of the micro sets of units of anal­

ysis. The regressand and regressors are not changed . The individual units of 

analys is are not changed. The out come is a macro regression data matrix 

[u: Z J. 
Example 3 . 1.2 . 4 is a case of aggregation of sets of units. It may perhaps be 

characterized as linear, but it is difficult to imagine what a non-linear aggrega­

tion of sets of units might be like. The linear operation involved is not addition 

of scalars or vectors, but addition of sets. 

Aggregation of sets of units is described by the matrix equation 

I 

I ------T------
[u j Z J= Yh : ~ 

_____ .l.. __ . __ _ 

______ J.. _____ _ 

Yk I ~ 

The macro set of units is the union of the micro sets of units. 
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The micro sets of units have been taken to be, and to be treated as, disjoint. 

Generalization so as to permit overlapping micro sets is conceivable, but will 

not be discussed. 

Aggregation of sets of units of analysis is the subj ect of .§..:1. 

3.1.7 Partitioned aggregation of regressors 

An important special class of aggregation of p micro regressors into q macro 

regressors is as follows. Perhaps after areordering, the micro regressors are 

partitioned into q disjoint families of micro regressors , 

X= [X 
1 

X. 
l 

X l 
q" 

For i = 1, . . . , q, the i'th family has p. ;:o, 1 members. If p. = 1, the single mic-
l l 

ro regressor forming the i' th family will be called a bachelor regressor. The 

partitioning is exhaustive, Pi + ..• + p q = p . 

For i = 1, ... , q, the i' th macro regressor z . is a function of the members 
l 

of the corresponding family of micro regressors only. The members of~-

corresponding families do not influence z .• This class of aggregations of regres­
l 

sors will be called partitioned aggregation of regressors . 

Example 3.1.2.1 is a case of partitioned linear aggregation of regressors . 
. B 

The mtercept regressor and the regressor x , the number of sheep, are bache-

lor regressors . The regressors x R and x S, for rain and snow, form a third 

family. 

In partitioned linear aggregation of regressors , the transformation matrix G 

of 3.1.3 is block-diagonal. 

O O 

G= O O 

O O 
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For i = 1, ... , q, the order of the i I th diagonal block g . is p. xi . The matrix 
l l 

equation Z = XG decomposes into the vector equations 

z . = X.g . , i = 1, ... , q 
l l l 

The conventionaI restrictions on G suggested in 3. 1. 3 require that no element 

of any g. is zero . 
l 

The term "partitioned aggregation" is due to W. Fisher [ 1969 J, page 10 . 

3 . 1 . 8 Partitioned aggregation of units of analysis 

An important special class of aggregations of n micro units of analysis into 

m macro units of analys is is as follows . Perhaps after areordering , the micro 

units are partitioned into m disjoint subsets of micro units, 

, /:::" M' ° 
y 1 ' Xi I Xi I Xi 

- - - - - 1- - - - - -'- - - - - - -'- - - - - -
I J : 
J J J 

• , • J . , . 
__ • ___ J __ : __ __ : ___ • ____ _ ' _ _ : ___ _ 

I /:::, M' ° 
Yh : XI; : Xb : ~ 

, 1 -----1- -- - - -,- - --- - -,- -----
J J ' 
J J 

. : . : . '. 
------,- -- ---1----- - " - -----

: X/:::' ; XM : XO 
Ym I m' m, m 

For h = 1, . .. , m, the h I th subset has ~ ~ 1 members . The partitioning is ex­

haustive, ni + •. . + nm = n . 

For h = 1, . . " m, the h I th macro unit is a function of the members of the 

corresponding h I th subset of micro units only. This class of aggregations of units 

will be called partitioned aggregation of units of analys is . 

Example 3 . 1 . 2 . 3 is a case of partitioned linear aggregation of units of analy­

sis . The subset of micro units corresponding to the h I th macro unit consists of 

those parishes that belong to the h I th county. 

In partitioned linear aggregation of units of analys is , the transformation ma­

trix T of 3.1.5 is block-diagonal . 
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T= o 

o o 

o 

o 

t 
m 
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For h = 1, ... , m, the order of the h t th diagonal block \ is ~ x 1 . The matrix 
, O ' O 

equation [u: Z J = Tt [y: X J decomposes into the vector equations 

, O' , O 
[~: zh J = t~ [Yh: Xb J, h = 1, ... , m . 

The conventional restrictions on T suggested in 3.1.5 require that no element of 

any th is zero. 

If a linear aggregation of units of analysis is such that T is block-diagonal 

while the transformation matrix S of 3.1.5 cannot be chosen to be block-diago­

nal conformably with T, the term "partitioned" is not appropriate. 

Example 3.1.2.3 illustrates a particular kind of mixed regressors that may 

occur in partitioned aggregation of units of analysis. The macro regress or sub­

matrix ZM is logically prior to the micro regressor submatrix XM , which is 

constructed from ZM by repeating the h' th row ~ times, for h = 1, ... , m. 

Then 

where the matrix K is as in 2.5.4. Mixed regressors of this kind may be called 

repetitive. The intercept regressor, although purely designed, can be counted as 

a repetitive mixed regressor, because j = Kj . 
n m 

3 . 2 Aggregation of aspects 

3.2.1 Simple aggreg'ation of aspects 

Simple aggregation of aspects starts from k ;;. 2 micro regression data matri­

ces. Each matrix refers to the same n units of analysis and has the same number 

p + q of regressors . Each of the k matrices is concerned with a different aspect 
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of the units of analysis. Usually, the me aning of the micro regressand, or of the 

i' th micro regressor, is analogous in all aspects. 

The regressors of any aspect are of two kinds, p ~ O common regressors and 

q ~ O specific regressors . If the i' th regress or is common, then the i' th micro 

regressors of all k aspects are equal by definition . If the i' th regressor is spe­

cific, then the i' th micro regressors of the aspects are all different, except per­

haps by numerical accident . The micro regressands are specific to the aspects . 

Perhaps af ter a reordering of the regressors, the micro regression data ma­

trices can be written 

, e I s 
[ Yh; X : Xb J h = i, ... , k , 

e s 
where X are the p common regressors , and Xb are the q regressors specific 

to the h' th aspect. The aspect index h has been omitted from the regressor sub­
e 

matrices Xh ' which are all equal by definition . 

The k micro regression data matrices can be arranged into the three-dimen­

sional data block shown in Figure 3 . 2. i. Rows and columns correspond to units 

of analysis and variables, respectively. The layers of the data block correspond 

to the aspects. 

A macro regressand is formed as the function f of the micro regressands of 

the k aspects. If the i ' th regressor is common, it is retained as the i'th macro 

regressor. If the i'th regress or of every aspect is specific, the i'th macro re­

gressor is formed as the function f of the i' th micro regressors of the k aspects . 

The individual units of analysis, and the set of units, are not changed . The out-

come is a macro regression data matrix 

partitioned in the same way as the micro data matr ices. 

Example 3.1.2 . 5 is a case of simple linear aggregation of aspects . The func­

tion f is linear . There are two aspects, the black-faced sheep and the white-
. R S. 

faced sheep . The mtercept regressor and the regressors x and x , ram and 
B W 

snow, are common to the aspects. The fourth regressor x or x , number of 

black-faced or white-faced sheep, is specific to the aspects. The specific regres-
.. BF WF 

sor IS aggr egated m the same way as the regressand y or y , number of 
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Figure 3.2 . 1 The data block in simple aggregation of aspects 
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black-faced or white-faced ewe lambs, which is also specific. The specific vari­

ables have analogous me anings in the two aspects. 

Simple linear aggregation of aspects is described by the vector and matrix 

equations 

k 

u = hE1 :)lh ' 

ZC = XC 

where 

is some k- vector of constants . 

Whether any k-vector f should be considered to define a simple linear aggre­

gation of aspects, is a matter of convention. Perhaps it is preferable to accept 

only those vectors f that have no element equal to zero . 

Simple and more general aggregation of aspects is the subject of chapter 7 . 

3.2.2 Analysis in terms of regress ands and regressors 

Simple aggregation of aspects can be decomposed into two consecutive steps, 

each of which is one of the elementary types of aggregation. First, certain data 

matrices and group s of variables must be defined. 

The micro regressand vectors Yh' ordered h = 1, .. " k, form the micro 

regressand matrix Y of k columns. 

The common micro regressor vectors x., ordered i = 1, ... , p, form the 
C l 

common micro regressor submatrix X of p columns. 

Consider the i' th specific regressor of each aspeet. The k specific (usually 

analogous) micro regressor vectors 

specific micro regressor submatrix 

trices. 

~i' ordered h = 1, ... , k, form the i'th 

X~ of k columns. There are q such ma­
l 

The total micro regressor matrix is 

x* = [XC: X* ! 
: p+1: 

and has p + kq columns. 

x* l 
p+q .J 
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C 
The matrix X is a submatrix of every layer of the data block of Figure 

3.2 . 1. The matrices Y and X.*, i = p + 1, ... , p + q, are columns of the data 
l 

block, as shown in Figure 3.2.2. 

The p + kq micro regressors of X * are partitioned into p + q families as 

follows. Each common micro regressor x., i = 1, ... , p, is a bachelor regres­
l 

sor, and forms a single-member family. For each i = p + 1, ... , p + q, the k 

specific (usually analogous) micro regressors of X~ form a family. 
l 

The first step of simple aggregation of aspects is an aggregation of regres-

sands as described in 3.1.4 . It starts from the total micro data matrix C y i X * J . 
A macro regressand u is formed as a function f of the k members of the micro 

regressand matrix Y. If the aggregation is linear, then 

u = Yf . 

The outcome is a semi-aggregated regression data matrix C u i X * J, where the 

regressand vector is macro while the regressor matrix is micro. 

The second step of simple aggregation of aspects is a partitioned aggregation 

of regressors as described in 3.1.7. It starts from the semi-aggregated regres­

sion data matrix C u i x* J. A macro regressor is formed from each family of 

micro regress ors . For i = 1, ... , p, the i' th macro regressor z . is identical to 
l 

the i'th common micro regressor x., i.e. ZC = XC. For i = p + 1, ... , p + q, 
l 

the i' th macro regressor z . is formed as the function f of the k members of the 
l 

i' th family of specific (usually analogous) micro regressors X~ . If the aggrega­
l 

tion is linear, then 

z . = X.*f, i = p + 1, ... , p + q . 
l l 

The outcome is a macro regression data matrix 

. . C: S 
Cu! Z]=Cui Z : Z J 

which is analogous to the layers of the data block. If the aggregation is linear, 

the second step can be written Z = XG, where 
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O 

G= O 

o 

o O 

f O 

o f 

o O 

o 
O 

O 

f 

is a block-diagonal (p + kq) x (p + q) matrix . 

Simple aggregation of aspects is an aggregation of regressands followed by 

a particular partitioned aggregation of regressors . 

3 . 2 . 3 Analysis in terms of sets and units 
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Simple aggregation of aspects can be decomposed into two consecutive steps 

different from those of 3 . 2 . 2 . Again, each step is one of the elementary steps of 

aggregation . First, sub-units of analysis, and certain sets of sub-units, must be 

defined. 

There are k aspects and n units of analys is . Each combination of one aspect 

h and one unit of analysis i defines a sub-unit of analysis, double-indexed hi . 

The data for sub-unit hi are the row data vector 

(y : xi' .. . . x : x i ··· · · x ) h ' . . P I p+ p +q J 

This vector is found at the intersection of layer h and row in the data block. 

There are kn sub-units of analys is . 

For h = i , ... , k, a sub-unit belongs to the set Ah if and only if it belongs to 

the h' th aspect. For i = i , .. . , n, a sub-unit belongs to the set U. if and only if 
J 

it belongs to the j ' th unit of analysis . The total set of sub-units is denoted S . 

The sub-units and sets are indicated by Figure 3.2 . 3 which is, in a sense, the 

right hand surface of the data block. 

The first step in the alternative decomposition of simple aggregation of aspects 

is an aggregation of sets of units as described in 3 . 1. 6 . It starts from the micro 

sets of sub-units Ah ' h = i, . . " k . A macro set of units is formed as the union 

of the micro sets . The outcome is the total set S of sub-units of analys is . 
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F igure 3. 2 . 3 Sub-units and sets in simple aggregation of aspects 

The second steps is a partitioned aggregation of units of analysis as described 

in 3.1. 8. It starts from the total set S of sub-units of analysis. The total set is 

partitioned into the equally large subsets D. , j = i, ... , n. For any j, let 
: C: S J 

[ y . 'X. ' x. J denote the matrix formed by the k row data vectors for the sub-
J: J: J 

units that belong to D .. Then the partitioned regression data matrix is 
J 

The common regressors of 

, C, S 
Y i : Xi ' Xi 

-- - - - 1-- - - - 1- - - - --

• '" I" 
I" I: 

: :: :: - ----~ -- C· -, _. S- -
y. ,X. : x. 

J : J , J 
------- --- -~-----

• I I . 

;: :: , . 
• I. I. -- --- -~- -b- -:- - f;-
y ,x ,X 

n l n • n 

XC are equal for all sub-units with in any one subset 
* C 

X corre-
* 

D .. Thus, these regressors are repetitiv e mixed regressors, and 
] M 

sponds to X of 3. i . 8. 

The j I th macro unit of analysis is formed from the k mernbers of the subset 

D. of sub-units as follows. The regressand and the specific regressors are ag­
J 

gregated by means of a function f. For the common regressors, data are taken 



from any one member of U .. The outcome is a macro data matrix [ u Z C 
J 

of n rows . If the aggregation is linear, then 

I S S 
[u :, Z l = T ' [ u : X l ... J*: * J 

where 

f O O 

T= O f O 

O O f 

is a block-diagonal kn x n matrix. 

Simple aggregation of aspects can be regarded as an aggregation of sets of 

units followed by a particular partitioned aggregation of units of analys is . 

3 . 2.4 General aggregation of regressands and regressors 
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Simple aggregation of k aspects is, by 3 . 2 . 2, an aggregation of regressands 

followed by a partitioned aggregation of regressors . The micro regressors are 

of two kinds. Some are common to all aspects, while the others are specific, 

each to one aspect. The families of micro regressors are also of two kinds. 

Some consist of one common micro regressor . The others consist of k specific 

micro regressors , one from each aspect . 

Example 3 .1. 2 . 6 is a case of what might perhaps be called general linear ag­

gregation of aspects. There are four aspects , the four kinds of lambs . The inter-
R S cept regressor and the rain and snow regressors ,x and x , are common to all 

B W four aspects. Each of the two regressors for numbers of sheep, x and x , 

occurs in two out of the four aspects . No regressor is specific to one aspect. 

Example 3 . 1 . 2 . 6 can be decomposed into an aggregation of regressands follow­

ed by a partitioned aggregation of regressors . There are three families of micro 

regressors . One consists of the intercept regressor alone . The second family 

"t f B d W . conSIS s o x an x . The third family consists of the two mlCro regressors 
R· S 

x and x , which are common to all aspects . 

S A modified example, say 3 . 1.2 . 6 *, is obtained if the snow regressor x is 

excluded a priori from the two micro regression data matrices for ram lambs . 
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Then two of the aspects have four regressors , while the other hl'o aspects have 

only three regressors . 

Wheth er example 3.1.2.6, or 3. 1.2.6 *, should be called an aggregation of 

aspects, is a matter of convention. The term general aggregation of regressands 

and regressors is perhaps to be preferred. 

3.2.5 Types of aggregation in the literature 

The five types of aggregation are not in themselves an innovation, hm ~he 

names given to them in chapter 3 are new. Each of the five types is likely to be 

found in the literature under some different name, or perhaps with out a name. 

In aggregation of regressors , of regressands , or of aspects - unlike aggre­

gation of units, or of sets - no information on the strueture of the aggregation 

is gained by considering more than one unit of analys is. These three types of 

aggregation are often studied in the following context rather than that of regres­

sion analys is . Interest is focused on the micro and maero relations as theoreti­

cal models valid for any unit of analys is . The generic unit of analys is is eonsider­

ed. 

Outside the context of regression analys is , aggregation of regressors and re­

gressands are better ealled aggregation of independent and dependent variables. 

Partitioned aggregation of independent variables has been studied by many 

economists. A typieal name used is "grouping of variables in a single utiJity or 

production funetion". Green [1964 J. The eoneept of funetional separability men­

tioned in ~ is eoneerned with this type of aggregation. 

Partitioned aggregation of units of anal,vsis in a eontext of regression analys is 

is studied by Prais and A itehison [1954 J under the name of "grouping of observa­

tions", and by Cramer [1964J. As pointed out by Blaloek [19(;4J, the sociologi­

eal coneept of "ecological correlation", whieh will be touehed up on in 8.3.3, is 

coneerned with th is type of aggregation. 

Aggregation of sets of units is often calJed "pooling" . If the sPis are generated 

by different models . the aggregation t'ntails what Wold _ 1~) 10 __ I'aragraph 23 . 

ealls a "stratification effeet". Given standard assumptions, the homogeneity of 

the miero models can be tested by analysis of covarianee as sh 0\\ n by I\Ialim'aud 

[1964J, seetion 7.7. 
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A closely related complex of problems is raised by the alternative or joint 

use of cross section and time series data, or of a cross section followed over 

time. An uncommonly thorough empirical investigation of a cross section follow­

ed over time is Kuh [1963 J, chapter 5 . The relevance of the problem complex to 

econometric model construction is briefly indicated by Christ [1966 J, several 

sections of Part Two . Its relevance to econometric estimation is evident also 

from Kimbell [1970 J. The connection with aggregation is stated explicitly by 

Ringstad [1971J; cf. also Misra [1972J . In view of the great practical im­

portance of this complex of problems, it is remarkable how little most text­

books of econometrics have to say about it. 

Simple aggregation of aspects for the generic unit of analys is is probably the 

type of aggregation most studied byeconomists . Of ten , the unit of analys is under­

stood is a period of time, the aspects are households or firms, the micro rela­

tion is a micro-economic theory, and the macro data are macro-economic aggre­

gates. A name of ten used is "aggregation of economic relations", e.g. Green 

[1964J. Quite naturally, this is the type of aggregation primarily considered in 

a text-book of macro-economics, Ackley [1961], chapter XX, or in a textbook 

of econometrics, Theil [1971J, section 11.3 . 

In a context of regression analysis, Theil [1954 J distinguishes several types 

of aggregation. One of these is concerned with systems of simultaneous equa­

tions, and is very complex. Theil's other types of aggregation are as follows. 

"Aggregation over one set of individuals", Theil [1954J, chapter II, is simple 

aggregation over aspects. "Aggregation over several sets of individuals or com­

modities ", chapter III, is more general aggregation of regressands and regres­

sors . 

"Aggregation over time periods", chapter IV, is aggregation of units of anal­

ysis, if there are no lagged variables. The presence of time lags makes it much 

mor complex . 

"Aggregation in a changing economy", Th eil [1954 J, section 6. 1, is concern­

ed with a time series study of macro-economic data. The total set of time periods 

is partitioned into disjoint subsets of consecutive periods, say epochs. Each ep­

och is characterized by a different number of micro-economic entities and by 

different parameters . F irst, the micro-economic entities are aggregat ed within 
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each epoch. Second, the epochs are aggregated. In other words, this is a set of 

separate general aggregations of regressands and regressors , followed by an 

aggregation of sets of units. 
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4 A FORMAL ANALYSIS OF LINEAR AGGREGATION IN REGRESSION: 

ASSUMPTIONS AND PROBLEMS 

4 . 1 OutIine and linearity assumptions 

4.1.1 The formal analys is in outline 

Chapters 4 to 8 of this study apply a common scheme of formal analys is to 

each of the five ~ of aggregation of regression data introduced in chapter 3. 

The concepts involved in the scheme of analys is have been introduced in chapters 

1 and 2 . The assumptions and problems involved will be specified in the present 

chapter 4 . The analysis is performed in chapters 5, 6 and 7. Conclusions are 

stated in chapter 8, where certain related questions are also discussed . 

For each of th r ee types of aggregation, the scheme of analysis will be applied 

to two different variants of the type . The first variant is quite general, while the 

second variant is a special case of particular interest . The three types of aggre­

gation occurring in two variants are aggregation of regressors @..:..! and 5 . 2), 

aggregation of units of analys is (6 . 1 and~), and aggregation of aspects ~ 

and~). 

For each of the remaining two types of aggregation, the scheme of analysis 

will be applied to a singfe variant. These two types are aggregation of regres­

sands @.:1) and aggregation of sets of units (6 . 3). 

The scheme of analysis is concerned with two different problems. The first 

problem is a certain aggregation problem directly related to consistency as dis­

cussed in 1 . 2 . In particular , it is an articulated consistency problem in the sense 

of 1 . 2 . 4. This consistency problem will be introduced in ~. 

The second problem is less precise. It is about how to interpret the macro 

regression coefficients in micro terms as discussed in 1. 3 . In particular , wher­

ever possible thc interpretation will be by means of a model-free relation, and 

otherwise by means of an expectational relation , as discussed in 1.3.2. These 

two variants of interpretation will be introduced in i..:l and ±.:..!. 
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4.1. 2 Two linearity assumptions 

As a preliminary, four subjects are briefly recapitulated. First, by 1.1.4 

and 1.1.5 an aggregation is defined by four vector functions [G, H, cp, W}, and 

the latter two may be stochastic. Second , by 3. 1. 1 the data in each of the five 

types of aggregation conform to the following pattern. The micro data form k 

regression data matrices [Yh ! ~ J, h = 1, ... , k, where in some types k = 1 

and in others k ~ 2. The macro data form a single regression data matrix 

[ u j Z J. Third, in 2.3.3 a distinction was made between designed and observed 

regressor data. Fourth, in 2.3.1 the incomplete linear model was defined. 

The formal analysis in chapters 4 to 8 is based throughout on two assumptions 

of linearity . The first line ar ity assumption is in two parts as follows. The regres­

sor aggregating function 

G: Z=g(X1""'~'''''~) 

is linear in the sense that each observed macro regressor datum is a linear func­

tion of some observed micro regress or data. Similarly, the regressand aggregat­

ing function 

is linear in the sense that eaeh maero regressand datum is a linear funetion of 

some miero regressand data. (All regressand data are observed.) 

The second linearity assumption is in two parts as follows. Whenever a miero 

relation is assumed, or is otherwise considered, it is taken to eons ist of k in­

eomplete linear models , one for eaeh miero regression data matrix. 

~'. I Yh = ~ I3h + 6h ; I '" h=1, ... , k. 
E(\)=O, 

Similarly, whenever a maero relation is considered, it is taken to consist of an 

ineomplete linear model 

I u=ZÖ+1'l' W: '/' 

E (Tj) = ° . 
The eovarianee matriees of 6h and Tj are always left unspeeified. 
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Eaeh of the k linear models of q; will be ealled a miero model, and its para­

meter vector ~h a vector of miero parameters. The vector 

~ = (~' 
1 ~' h 

~' ) I 
k 

will be ealled the total miero parameter vector, also when k = 1 . The linear 

mode l of W will be ealled the maero model, and its parameter vector Ö the vee­

tor of maero parameters. 

4.1.3 On simultaneous linearity 

Consider the following example of simple aggregation of aspeets. The aspeets 

h = 1, ... , k are different households. The generic unit of analysis considered 

(eL 3.2.5) is a time period. The observed variables are 

~ = the disposable ineome of the h'th household, 

Yh = the demand for tea of the h I th household, 

z the joint disposable ineome of the k households, 

u = the joint demand for tea of the k households. 

The regressor and regressand aggregating funetions are 

k 
G: z = h~1 ~ 

k 

H: u = h~1 Yh 

The miero and maero relations are 

~h 
41: Yh=~~ ,h=1, ... ,k; 

Ö 
W: u='}'z. 

The miero and maero relations eons ist of eonstant-elastic demand funetions 

where priees are implicitly held constant. 

Alternatively , the data can be eonverted into natural logarithms, 
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* "h log ~ 

* Yh = log Yh ' 

z * log z 

* u log u 

The regressor and regressand aggregating functions, and the micro and macro 

relations can then be expressed as follows. 

k 
* * * G : z = log h~1 exp "h j 

H* : * k * u = log h~1 exp Yh 

* * Yh = log ~ + ~h ~ , h=1, ... ,kj 

w *: u * = log y + Ö z * . 

The transformed micro and macro relations are linear. 

The aggregation [G, H, cp, W} can be described as a linear aggregation of 

non-linear relations. The equivalent aggregation [G *, H *, cp *, W *} can be de­

scribed as, on the contrary, a non-linear aggregation of linear relations. 

A first linearity assumption for [G, H} and asecond line ar ity assumption for 

[q" w} we re stated in 4.1.2. Both are meant to apply simultaneously to specified 

data. As the example indicates, the simultaneity is not unimportant. (CL also 

2.2.2. ) 

4.2 A consistency problem 

4.2.1 The status of the four vector functions 

Section 4.2 introduces a consistency problem. Whenever this consistency 

problem is studied in chapters 4 to 8, the following applies. 

The regress or and regressand aggregating functions [G, H} are assumed to 

be given linear vector functions with numerically specified coefficients. 

Certain clas ses of micro and macro relations [q" w} are considered , but 

there is no assumption that any micro or macro relation is valid. 
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The micro relations .p considered eons ist of incomplete linear micro models 

in the sense of 4.1. 2. These micro relations are identified by their total micro 

parameter vectors 13. 

The macro relations W considered consist of an incomplete linear macro mod­

el. These macro relations are identified by their macro parameter vectors Ö. 

4. 2 . 2 A limitation 

Section ~ is the outcome of a conflict, where the desire for s implicit y partly 

defeated the desire for generality . The fundamental ideas invoked are applicable 

in a wider context . 

The notation and thetechnical details are tailor-made for the five types of ag­

gregation as delimited in chapters 5, 6 and 7. Even so, a certain modification 

will be needed in aggregation of units of analysis, in 6.1 . 3. 

Recall the concepts introduced in 2.3.3. A regressor vector is either design­

ed, observed, or mixed. This distinction is relevant to the formulation of the 

consistency problem (but not to the interpretation problem). For simplicity , the 

following limitation is maintained throughout. Whenever the consistency problem 

is considered , there are assumed to be no mixed micro regressor vectors. A 

partial exception is however made in partitioned aggregation of units, in 6.2.2 

and 6.2.4. 

4.2.3 The semi-aggregated and semi-disaggregated models 

The regressand aggregating function H is given. Any particular micro rela­

tion .p considered implies a semi-aggregated micro relation H.p in the sense of 

~. Because of the linearity assumptions of 4.1. 2, H.p can be written as an 

incomplete linear model. This can be done in more than one way, but for each 

type of aggregation a particular model formulation will be chosen. 

This model H.p will be called the semi-aggregated micro model. The matrix X A 

will be called the semi-aggregated (micro) regressor matrix. The vector ~ A 
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will be called the semi-aggregated micro parameter vector. The elements of ~ A 

are known linear functions of some elements of the total micro parameter vector 

~ of 4.1. 2. 

The regress or aggregating function G is given. Any particular macro relation 

W considered implies a semi-disaggregated macro relation wG in the sense of 

1.1.5. Because of the linearity assumptions of 4.1.2, wG can be written as an 

incomplete linear model. For each type of aggregation, a particular model for­

mulation will be chosen, which involves the semi-aggregated (micro) regressor 

matrix XA . 

I u = X A ÖD + T/ ' 
wG: 

E(T/)=O. 

This model wG will be called the semi-disaggregated macro model. The vector 

ÖD will be called the semi-disaggregated macro parameter vector. The elements 

of ÖD are known linear functions of some elements of the macro parameter vec­

tor Ö. 

The semi-aggregated regressor matrix XA will always be defined so as to 

have the following properties . It can be partitioned 

6.: O 
X A = [XA : X A J . 

Each element of the semi-aggregated designed regress or matrix X~ is designed. 

Some elements of the semi-aggregated observed regressor matrix X~ may be 

designed to be zero, but no column of X~ consists exclusively of such elements. 
O . 

Each element of X A that is not designed to be zero, is a known linear function of 

some observed micro regressor data. 

The parameter vectors of H <P and \}G are partitioned conformably with the 

semi-aggregated regressor matrix as follows 

The subvectors ~~ and öt will be called the semi-aggregated micro and semi-
O O 

disaggregated macro shift vectors. The subvectors ~ A and ÖD will be called the 
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semi-aggregated micro and semi-disaggregated macro slope vectors. Further, 

the two vectors (y A and YD defined as fo11ows 

[ 'l - X6 [,,6 : ö6 l 
(Y A: YD.J - A f.' A: D.J 

will be ca11ed the semi-aggregated micro and semi-disaggregated macro intercept 

vectors. 

The semi-aggregated micro and semi-disaggregated macro models can be re­

formulated as follows. 

o O 
H cp: EH cp (u) = 01. A + X A ~ A 

O O 
wG: E w G (u) = YD + X A ÖD 

These model formulations will be used whenever the consistency problem is stud­

ied in chapters 4 to 8. 

4 . 2 . 4 A set of independent micro data vectors 

Let the number of macro units of analysis be denoted m. The observed semi­

aggregated (micro) regressor matrix X~ has m rows. From the j I th row vector 
O 

of X A) omit any elements designed to be zero. Let the remaining subvector ) a 

row vector of order q. ) be denoted x~ . 
J J 

The independent micro data vector x of 1.1 and 1.2 will be identified with the 

following vector of 1 + q1 + , •• + qj + 

x = (1 : x~ Xl 

j 

+ q elements. 
m 

Xl ) I • 

m 

The first element of x is designed to be unity . 

The concept of consistency formulated in ~ refers to a set S of independ­

ent micro data vectors x. Such a set S will be said to be of full subvector rank 

if and only if it satisfies the following incomplete specification. For every 

j = 1) .. ') m one can select from ::=: qj + 1 vectors x such that the qj + 1 sub­

vectors of order q. ~ 1 
J 

(1 : x~) I 
J 

are linearly independent. 
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Whenever the consistency problem is studied in chapters 4 to 8, a set :;;: of full 

subvector rank is understoo<i. This means two things. First, the designed micro 

regressor data remain fixed, while the observed micro regressor data are vari­

able. Second, the observed micro regressor data are subject to no restriction 

favourable to consistency; that this is so will be shown in 4.2.6. 

In four out of the five types of aggregation, it is easy to see what the specifica­

tion of :;;: means in terms of the micro regress or matrices ~ , h = 1, ... , k. In 

the remaining type, aggregation of units of analys is , this matter must be given 

special attention; see 6.1.2. 

4.2 . 5 An indirect consistency problem 

An indirect consistency problem in the sense of 1.2.2 will now be formulated . 

This crude problem will be refined in 4.2. 7. 

The four vector functions {G, H, ~, IV} are as stated in 4.2.1. The independ­

ent micro data vector x is as in 4.2.4. There is a set :;;: of independent micro 

data vectors, and :;;: is of full subvector rank as defined in 4 . 2.4. In conformity 

with 1. 2.3, the term "consistency" is understood to me an expectational consist­

ency for all x E S . 

The total parameter vector p consists of the parameters of the micro and 

macro relations cp and IV. Thus (cf. 4.1. 2), 

p=(~I!ÖI)I, 

where ~ is the total micro parameter vector and ö is the macro parameter vec­

tor. The coefficients of the linear regressor and regressand aggregating functions 

G and H are not included in p, because they are assumed to be given and fixed . 

To the given set S of independent micro data vectors x there corresponds a 

set n (S) of total parameter vectors p such that the aggregation is consistent if 

and only if p E n on . The set n (:;;:) may be empty. 

The indirect consistency problem asks: What is the set II (S) ? In other words, 

what micro and macro models , identified by ~ and ö , combine into a consistent 

aggregation? 
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4. 2. 6 A gener al propos ition 

The semi-aggregated micro model H ip and the semi-disaggregated macro 

model WG both make the expected macro regressand vector E (u) a function of 

the semi-aggregated observed (micro) regressor matrix X~ . The aggregation is 

consistent if and only if 

whenever 'xO is admissible according to the set -A ~ of independent micro data 

vectors . 

The following proposition uses the notation and terminology introduced in 

4.2 . 3, 4 . 2.4 and 4.2.5. 

Proposition 4 . 2 . 6 

Consider an aggregation where the semi-aggregated micro relation H ip and 

the semi-disaggregated macro relation WG are the following incomplete linear 

modeis. 

o O 
H ~: EH ~ (u) = exA + X A ~ A . 

O O 
wG: E w G (u) = YD + X A ÖD . 

Let no column vector of the semi-aggregated observed micro regress or matrix 

X~ consist exclusively of elements designed to be zero. The aggregation is 

characterized by the semi-aggregated micro and semi-disaggregated macro in-
O O 

tercept and slope vectors [exA' ~ A' YD , ÖD} . 

Consider a set :;;: of independent micro data vectors x, where x consists of 

all elements of X~ not designed to be zero, plus a single element designed to be 

unity . Let the set:;;: be of full subvector rank. 

A necessary and sufficient condition for consistency is 

r-~~l ~ [--:~l o 
o 

Let the j t th elements of u , exA and YD be denoted u . , ex. and y .. Let the sub-
O J J J 

vector of x deriving from the j I th row of X A be denoted xj • Let the subvectors 
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of ~AO and ÖD O associated with x . be denoted ~. and Ö.' The pair tR.p, wG} of 
J J J 

m-vector equations consists of the m pairs of scalar equations 

ER (u.) = 0/. + x~ ~. 
.p J J J J 

E (u) = y + x ' Ö wG j j j j 

I j.i, . . " m, 

The aggregation is point-consistent for a certain x~ if and only if 

(i : x ' ) 
: j [[::-] . Rll = O 

for j = i, .. . , m . 

Necessit,y: . Assume consistency. 

Consider a particular j • Since E is of full subvector rank, there exist q. + i 
J 

linearly independent admiss ible subvectors (i : x~) of order q. + i . Let these 
, J J 

row vectors form a square matrix M .. Because of the consistency, 
J 

Thus since M. is non-singular , 0/. = y. and ~. = o .. 
J J J J J 

Repeat for j = i, ... , m . Since no column vector of x~ is designed to be a 

zero vector , every element of ~~ - Ö~ occurs in at least one ~. - o .. Thus 
O O J J 

0/ A = 'VD and ~ A = ÖD • 
O O 

Sufficiency . Assume that 0/ A = 'VD and ~ A = ÖD • Then 

for any matrix x~ of the appropriate order . D 

The elements of the semi-aggregated micro and semi-disaggregated macro in-
O O 

tercept and slope vectors tO/A' [; A ' YD' ÖD} are known functions of the elements 

of the total micro and macro parameter vectors t l' , Ö}. Consequently, P . 4 . 2.6 

provides the answer of the indirect consistency problem formulated in 4 . 2.5 . 

The set E of independent micro data vectors x has been specified to be of full 

subvector rank . If this specification we re favourable to consistency, the aggrega-
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tion could be expectationally point-consistent for every x E E, and expectationally 

point-inconsistent for at least one x outside E . The demonstration of P. 4.2.6 

shows that this cannot happen. If the aggregation is point-consistent for every 

x E E, the "necessity" part of the demonstration shows that the micro and macro 

parameters have certain properties . The "sufficiency" part shows that these 

properties imply expectational point-consistency for every x. Thus, as was stat­

ed in 4. 2 .4, the specification of E is not favourable to consistency. 

4. 2. 7 An articulated consistency problem 

The indirect consistency problem of 4.2.5 will now be refined into an articu­

lated consistency problem in the sense of 1.2.4. 

Consider the indirect consistency problem and a given total micro parameter 

vector ~. It mayor may not be possible to find a macro parameter vector Ö 

such that the aggregation is consistent. If this is possible, Ö must be chosen so 

as to fit ~. 

The total parameter vector p is partitioned into a subvector p 1 of critical 

parameters and a subvector P2 of discretionary parameters. In particular , 

p = ~ 
1 and P2 = Ö • 

The following two questions are asked. 

Principal question. For what cIass of total micro parameter vectors P is con­

cistency at all attainable? 

Corollary question. When consistency is attainable, how should the macro pa­

rameter vector Ö be chosen in order to attain it? 

Throughout chapters 4 to 8, this indirect and articulated consistency problem 

will be called the consistency problem. Indirectly, P. 4.2.6 provides the answer 

of the consistency problem. Attention will be focused on the principal question, 

because the corollary question will always be found to be rather trivial. 

4.2. 8 References to literature 

The consistency problem formulated in ~ is inspired by two similar problems 

formulated by Theil [1954J and Ijiri [1968J. 

Theil [1954J formulates in chapter 7 a Rule of Perfeetion, which is equivalent 
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to the concept of expectational consistency. He then formulates the following con­

sistency problem. The aggregating functions G and H are linear and given. The 

micro and macro relations q, and W consist of linear models . Does the aggrega­

tion satisfy the Rule of Perfection? 

For several different types of aggregation, Theil [1954J formulates necessary 

and sufficient conditions for the Rule of Perfection to be satisfied. The conditions 

are restrictions on the total micro parameter vector 13. They do not mention the 

macro parameter vector Ö. 

Ijiri [1968J formulates the following consistency problem. Let u, x and z be 

as e.g. in Figure 1.1.3, and let A and B be coefficient matrices of appropriate 

orders. Ijiri considers a general deterministic linear semi-aggregated micro re­

lation and a general linear aggregating function for independent data, 

Hq,: u = Ax j 

G: z = Bx • 

Is it possible to find a deterministic macro relation 

W: u = l/! (z) 

such that the aggregation is consistent ? 

Ijiri [1968J formulates a necessary and sufficient condition for a consistent 

macro relation to exist. The condition is a restriction on the coefficient matrices 

A and B. The derivation of the condition is made more explicit in Ijiri [1971 J, 

section 2.4. 

Ijiri's problem and solution can be generalized so as to permit stochastic vec­

tor functions H q, and W. Simply interpret u as the expected dependent macro 

data vector, and "consistency" as expectational consistency. 

When "stochasticized" as indicated, Ijiri's problem and solution include the 

consistency problem of 4.2.7 and its solution by P. 4.2.6 as the following special 

case. The aggregating functions are given. Thus the matrix B is given, and the 

matrix A is a function of the total micro parameter vector l' only. The consist­

ency condition in terms of A and B is read as a restriction on 13. 

In a cryptical footnote, Ijiri [1968J acknowledges the connection with Theil 

[1954J. 
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4. 3 Interpretation by a model-free relation 

4 . 3 . 1 The status of the four vector functions 

Section ~ introduces an interpretation of macro regression coefficients by 

means of a model-free relation. Whenever this model-free interpretation is 

studied in chapters 4 to 8, the following applies. 

The regressor and regress and aggregating functions [G, H} are assumed to 

be given linear vector functions with numerically specified coefficients . 

N o micro or macro relations [cp, IV} are as sumed . 

4 . 3 . 2 The macro and micro statistics considered 

Recall the concepts of model - free least-squares regression introduced in~. 

The macro data form an m-rowed regression data matrix [u! Z J. The macro 

statistics considered are the GLS(W) macro regression coefficients d, where W 

is a positive-definite m x m matrix. The vector d satisfies the system of ~ 

normal equations 

Z'WZd = Z'Wu , 

but d need not be unique. 

The micro data form ~ -rowed regression data matrices [Yh: ~ J, 
h = i, ... , k . The micro statistics considered are the GLS(~) micro regression 

coefficients bh ' where ~ is a positive-definite ~ x ~ matrix . The vector bh 

satisfies the h ' th system of micro normal equations 

but bh need not be unique. If k = 1, the index h is dropped throughout. 

Whenever the model-free interpretation is studied, the positive-definite ma­

trix W is arbitrary, uniess otherwise stated. The positive-definite matrices ~, 

on the contrary, are always chosen so as to fit W . 

4.3.3 The semi-aggregated and auxiliary statistics 

The semi-aggregated (micro) regressor matrix introduced in 4.2.3 and the macro 

regressand vector form an m-rowed regression data matrix [u ~ X A J. The 
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model-free interpretation is primarily in terms of the GLS(W) semi-aggregate 

regression eoeffieients b A ' where W is the positive-definite m x m matrix in­

volved in the maero regression eoeffieients d. The vector b A satisfies the sys­

tem of semi-aggregate normal equations 

but b A need not be unique. 

The model-free interpretation involves the eoneept of auxiliary regression. 

The auxiliary regressions are the GLS(W) regressions of eaeh of the p semi-aggre 

gated regressors X A up on the q maero regressors Z , where W is the positive­

definite m x m matrix involved in the maero and semi-aggregate regression eo­

effieients d and b A . The q x p matrix of auxiliary regression eoeffieients C 

satisfies the p systems of q auxiliary normal equations 

Z ' WZC = Z'WX A' 

but C need not be unique . 

The eoneept of auxiliary regression is due to Theil [ 1954J, Theil [ 1957J . 

4 . 3.4 A general proposition 

The maero regression eoeffieients d are now to be interpreted in semi-aggre­

gate terms . But the maero normal equations may not determine d uniquely. 

Therefore, attention is limited to those maero eoeffieient funetions /-, ' d that are 

unique in the sense defined in 2 . 2 . 4 . 

The following proposition eonfronts regressions of the maero regress and u 

upon two different sets of regressors . One set is the mae ro regressors Z , and 

the other set is the semi-aggregated miero regressor s X A . The proposition in­

terprets /-" d in terms of a semi-aggregate regression eoeffieient funetion A' b A . 

Proposition 4 . 3 . 4 

Let u be a regressand m-veetor . Let Z be an m )( q regress or matrix . Let 

X A be an m x p regressor matrix . Let W be a positive-definite m x m matrix. 

Let d be any q-veetor satisfying the normal equations for the GLS(W) regres-

sion of u upon Z , the maero regression. 
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Let b A be any p-vector satisfying the normal equations for the GLS{W) regres­

sion of u upon XA ' the semi-aggregate regression. 

Let C be any q x p matrix satisfying the normal equations for the GLS{W) re­

gressions of X A upon Z , the auxiliary regressions. 

Let JJ. be a q-vector such that JJ.' d is a unique coefficient function in the macro 

regression. 

(i) The p-vector A = C' JJ. is uniquely determined by the auxiliary normal equa-

tions. 

(ii) A' b A is a unique coefficient function in the semi-aggregate regression. 

(iii) If there exists a p x q matrix M such that X A M = Z , then 

(iv) If there exists a p ~ q matrix M such that X A M = Z , then 

M' A = tl . o 
o 

(i) Let A. be the i' th element of A. Let C. and X. be the i' th column vec-
l l l 

tor s of C and X A . Since tl' d is a unique coefficient function in the macro regres-

sion, by P.2.2.4.A JJ. is in the row space of Z. Therefore by P.2.2.4.A 

A. = JJ.' C. is a unique coefficient function in the auxiliary regression of X . upon 
l l l 

Z . The argument is repeated for i = 1, .. . , p. 

(ii) The demonstration is divided into two steps. 

(ii:1) Since JJ.' d is a unique coefficient function in the macro regression, by 

P.2 . 2.4.B there exists at least one q-vector s such that Z'WZs = JJ.. For any 

such vector s, by the auxiliary normal equations, A' = tl' C = s' ZWZC = 

= s'Z'WXA . Thus ).,' = t'XA for t = WZs, Le. A is in the row space of XA . 

(ii:2) Therefore by P. 2.2.4. A A' b A is a unique coefficient function in the 

semi-aggregate regression. 

(iii) The demonstration is divided into three steps. 

(iii:1) Since JJ.' d is a unique coefficient function in the macro regression, by 

P. 2 . 2.4. B there exists at least one q-vector s such that Z' WZs = tl, and for 

any such vector s, JJ.' d = s' Z' Wu. Further, for any such vector s, by the aux­

iliarynormalequations, s'Z'WXA =s'Z'WZC=JJ.'C=A'. 

(iii:2) Since X A M = Z and by the semi-aggregated normal equations, 
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Z'Wu = M'X' Wu = M'X' WX b = Z'WX b 
A A AA AA' 

(iii:3) Therefore ,,' d = s' ZWu = s' Z I WX b . = "b , ,.,. A A A A' 

(iv) Since iJ.' d is a unique coefficient function in the macro regression, by 

P.2.2.4.B there exists at least one q-vector s such that Z'WZs = iJ.. For any 

such vector s, by the auxiliary normal equations and because X A M = Z , 

M'A = M'e'iJ.= Mle'Z'Wzs = M'X~ WZs = Z'WZs = iJ.. D 

An analogous proposition is found in 4.4.3 below. 

4.3.5 The weight-sum relations 

If the aggregating functions G and H imply th at X A M = Z for some matrix M , 

then by P. 4. 3.4 any unique macro coefficient function iJ.' d can be interpreted as 

a unique semi-aggregate coefficient function A I b A' where A = e' iJ.. The vector 

A is also related to the vector iJ. by the equation M' A = iJ. . 

In a practical situation, the macro regression data [u! Z J and the matrix M 

may be all that is known. Then the auxiliary regression coefficients e cannot be 

computed, and the vector A corresponding to a given vector iJ. cannot be deter­

mined in practice . In such situations, the relation M' A = iJ. is helpful. It cannot 

in general be solved for A, but it provides the following partial information. 

Let M. be the i'th column vector of M. Let iJ.. be the i'th element of iJ.. 
l l 

Then for i = 1, ... , q, 

M~A= iJ. .. 
l l 

These restrictions on the weight vector A will be called the weight-sum relations. 

4.3. 6 An interpretation in two steps 

Three kinds of regressions were introduced in 4.3.2 and 4.3.3, macro, semi­

aggregate, and micro. There are three corresponding kinds of coefficient func­

tions, macro iJ.' d, semi-aggregate A' b A' and micro Ah bh ' h = 1, ... , k. 

The desired model-free interpretation will be achieved, if at all, in two steps. 

The first step is as follows. A uniqe macro coefficient function /1.' d is shown to 

be equal to a unique semi-aggregate coefficient function A' b A ' where A is deter­

mined by iJ.. The second step is as follows. A unique semi-aggregate coefficient 

function A' b A is shown to be equal to the sum of micro coefficient functions 



Ah bh ' h = 1, .. . , k, where Ah are determined by A . Thus 

k 
Jl'd=A'bA =h~1Ahbh' 
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and the weight vectors Ah of the implied micro coefficient functions are ultimate­

ly determined by the macro weight vector Jl. 

A simple first step of the interpretation requires a simple relation between 

the macro data [u i Z J and the semi-aggregated data [ u : X A J. A fair ly gener­

al class of such helpful relations has been found . If there exists a matrix M such 

that Z = X A M, then P . 4 . 3.4 prov ides the first step of the interpretation . 

A simple second step of the interpretation requires a simple relation between 

the semi-aggregate data [u i X A J and the micro data [ Yh i ~ J , h = 1 , . . . , k . 

No general class of such helpful relations has been found . Two very particular 

relations will be used in 5 . 1.3 and 6 . 3 . 3 . 

Whether the implied micro coefficient functions are unique is discussed in 

4.4 . 5 below . 

4 . 4 Interpretation by an expectational relation 

4 . 4.1 The status of the four vector functions 

Section 4 . 4 introduces an interpretation of macro regression coefficients by 

means of an expectational relation . Whenever this expectational interpretation is 

studied in chapters 4 to 8, the following applies . 

The regress or and regressand aggregating functions [G, H} are assumed to 

be given linear vector functions with numerically specified coefficients. 

The micro relation cp is assumed to consist of incomplete linear micro models 

in the sense of 4.1 . 2 . The total micro parameter vector i3 is not assumed to be 

known. 

No macro relation W is assumed . 

4.4 . 2 The macro statistics and the semi-aggregated model 

The statistics to be interpreted are the GLS(W) macro regression coefficients 

d introduced in 4 . 3 . 2. The vector d satisfies the macro normal equations 
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Z'WZd = Z'Wu 

but need not be unique. The positive-definite matrix W is arbitrary. 

The interpretation is based on the semi-aggregated micro model introduced in 

4.2.3, which is now written as follows. 

The semi-aggregated micro parameter vector l' A is a known function of the total 

micro parameter vector 13. 

4.4.3 A general proposition 

The macro regression coefficients d are now to be interpreted in semi-aggre­

gated (micro) model terms. As in 4.3 . 4, attention is limited to unique macro co­

efficient functions Il' d . 

The following proposion confronts a regression and a linear model both involv­

ing the macro regressand vector u. The regression is of u upon the macro re­

gressors Z . The mode l relates u to the semi-aggregated micro regressors X A . 

The proposition interprets Il' d in terms of a semi-aggregated micro parameter 

function A' l' A . 

Proposition 4 . 4 . 3 

Let u be a regressand m-vector. Let Z be an m x q regressor matrix. Let 

X A be an m x p regressor matrix . Let W be a positive-definite m x m matrix. 

Let d be any q-vector satisfying the normal equations for the GLS(W) regres-

sion of u upon Z, the macro regression. 

Let u and X A be related by the semi-aggregated micro model 

whose parameter p-vector l' A is not assumed to be known. 

Let C be any q x p matrix satisfying the normal equations for the GLS(W) re-

gressions of X A upon Z , the auxiliary regressions. 

Let Il be a q-vector such that J.1.' d is a unique coefficient function in the macro 

regression. 
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(i) The p-vector A = C' /.L is uniquely determined by the auxiliary normal 

equations . 

(ii) A' 13 is an estimable (or identified) parameter function in the semi-aggre­
A 

gated micro model. 

(iii) The semi-aggregated micro model implies that 

E (/.L'd)=A'13 
H~ A . 

(iv) If there exists a p x q matrix M such that XAM = Z, then 

(i) The same demonstration as for P.4. 3 . 4 (i) . 

(ii) The demonstration is divided into two steps. 

(ii :1) As in (ii :1) of the demonstration for P.4.3 . 4 (ii), A is in the row space 

of XA . 

(ii:2) Therefore by P . 2 . 4.1. A (or P . 2 . 3.2) A' 13 A is an estimable (or identi­

fied) parameter function in the semi-aggregated micro model. 

(iii) The demonstration is divided into three steps . 

(iii:1) As in (iii:1) of the demonstration for P . 4 . 3 . 4 (iii), for certain vectors 

s, iJ.'d= s'Z'Wu and s'Z'WXA =A" 

(iii:2) By the semi-aggregated micro model, E (Z'Wu) = ZIWX 13 
H~ A A' 

(iii :3) Therefore E (/.L ' d) = E (s'Z'Wu) = s'Z'WX 13 = >,.'13 • 
'H~ H~ A A A 

(iv) The same demonstration as for P. 4 . 3 . 4 (iv) . O 

By the semi-aggregated micro model, E (/.L'd) = >,.'I3A . If, in addition, the 
H~ 

aggregating functions G and H are such that X A M = Z for some matrix M, then 

there are also the weight-sum relations M'), = iJ. . As indicated in 4 . 3 . 5, these 

may be helpful. 

Essentially. P. 4.4.3 is a generalization of the analysis of specification errors 

due to Theil [1957J. If the macro regress or vectors are linearly independent, 

every element of the macro coefficient vector d is unique. The auxiliary regres­
-1 

sion coefficients are also unique, C = (Z I WZ ) Z I WX A . If further W = r, then 

by P . 4 . 4 . 3 (iii), 

-1 
EH~(d) = (Z'Z) Z ' XAI3A . 

This is the central result of Theil [1957J. 



4.4.4 An interpretation in two steps 

The desired expectational interpretation is achieved in two steps. The first 

step is as folIows. The expectation of a unique macro coefficient function /.L' d is 

shown to be equal to an estimable semi-aggregated micro parameter function 

>..' ~ A ' where A is determined by /.L. The second step is as folIows. An estimable 

semi-aggregated micro parameter function A' ~ A is shown to be equal to the sum 

of micro parameter functions Ah ~h ' h = 1, ... , k, where Ah are determined by 

A. Thus, 

k 

EH cp O,,' d) = A' ~ A = h~1 Ah ~h ' 

and the weight vectors Ah of the implied micro parameter functions are ultimate­

ly determined by the macro weight vector /.L. 

The first step of the interpretation is always provided by P. 4 . 4 . 3 . It is impor­

tant to note that the first step evaluates the expectation according to the semi-ag­

gregated micro model H cp of a ~ coefficient function u' d . No macro model 

has been assumed . 

The second step of the interpretation runs as folIows. The elements of the 

semi-aggregated micro parameter vector ~ A are known linear functions of the 

elements of the total micro parameter vector ~, i. e. of the elements of the mic­

ro parameter vectors ~h' h = 1, ... , k. Therefore any semi-aggregated micro 

parameter function A' ~ A is easily "separated" into a sum of k micro parameter 

functions Ah ~h . 

Whether the implied micro parameter functions are estimable is discussed in 

4.4.5. 

4.4.5 On uniquenes s and estimability 

The model-free interpretation of 4.3 . 6 produces implied micro coefficent 

functions Ah bh . The expectational interpretation of 4.4.4 produces implied micro 

parameter functions Ah~h . It remains to discuss whether these are, respectively, 

unique and estimable (or identified) . 

First consider the expectational interpretation. By P . 2.2.4.B /.L'd = rr'u, 

where the vector rr is determined by /.L. The elements of the macro regressand 

vector u are known linear functions of the elements of the micro regressand 



vectors Yh ' h = 1, ... , k. Therefore any macro "estimator" 7T' u is easily 

"separated" into a sum of k micro estimators T1lh ' where Th are determined 

by 7T. Thus, 
k 

J.l ' d=7T'U= L: T'y 
h=1 h h ' 

and the weight vectors Th of the implied micro estimators are ultimately deter­

mined by the macro weight vector J.l . The implied micro estimators are not nec­

essarily GLS estimators . 

The expectational interpretation holds identically in the total micro parameter 

vector ~ . Therefore, it can be "separated" into components as follows . 

For each h, the h I th implied micro estimator is an unbiased estimator of the 

h I th implied micro parameter function . Thus by the definition in 2 . 4 . 1, the im­

plied parameter functions are estimable . 

Now consider the model-free interpretation, which assumes no models . For 

the sake of the argument, consider hypothetical linear micro models ~ . These 

imply a (hypothetical) expectational interpretation. The two interpretations are 

written as follows. 

k M' 
J.l ' d = L: A b 

h=1 h h 

By the argument above, the hypothetical implied micro parameter functions 
E' 

Ah ~h are (hypothetically) estimable. Therefore, if 

M E 
Ah = Ah ' h = 1 , ... , k , 

then by P . 2.4 . 1 . B the implied micro coefficient functions A:' bh are unique. 

Ii is not self-evident that the two sets of weight vectors >..: and >..: are identi­

cal. In the two cases where model-free interpretations are given below, in 5 . 1.3 

and 6 . 3 . 3, they are identical. Further, in these two cases the implied micro 

"estimators" are GLS estimators . 
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4.4.6 Three critical assumptions 

The following three assumptions are of critical importance for the interpreta­

tion in micro terms of a unique macro coefficient function Il' d . 

Assumption M. The macro and semi-aggregated micro regressor matrices 

are related by an equation X A M = Z . 

Assumption P. The semi-aggregate and micro regression data are so simply 

related that there is a known relation b A = LPhbh between the semi-aggregate 

and micro regression coefficients (if Qh are chosen to fit W). 

Assumption ~. There are linear micro models such that ER ~ (u) = X A 13 A . 

Assumption M guarantees a model-free interpretation A' b A in semi-aggregate 

terms, and weight-sum relations M' A = Il . 

Assumptions M and P jointly guarantee a model-free interpretation L: Ah bh in 

micro terms. In favourable cases, M' A = Il can be read as weight-sum relations 

for the micro weight vectors Ah . 

Assumption ~ guarantees an expectational interpretation LAh I3h in micro 

terms, but no weight-sum relations. 

Assumptions ~ and M jointly produce LAh I3h and M' A = Il. In favourable 

cases, the latter relation can be read as weight-sum relations for the micro 

weight vectors ~ . 

4.4. 7 References to literature 

The larger part of Theil [1954 J is concerned with expectational interpretation 

of the kind formulated in 4.4.4. This is however not clearly explained in the text, 

where it is said that macro parameters are "interpreted" as the expected macro 

regress ion coefficients . Th at Theil [1954 J actually defines the macro parameters 

as the (micro-) expected macro regression coefficients is stated explicitly in 

Kloek [1961J, Theil [1962J and Misra [1967J, but only as it were in passing. It 

is emphasized in Liitjohann [1972J; cL also Wu [1973J. 

That Theil [1954 J is actually concerned with expectational interpretation is 

easier to see from the summary given in Theil [1971 J, section 11.3. The nota­

tion used there gives a clear indication of the fact . The term "macro parameter" 

is never mentioned . 
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The expectational interpretation assumes no macro model. The model-free in­

terpretation formulated in 4 . 3 . 6 is the outcome of an attempt to eliminate the 

micro models too. Both kinds of interpretation were described in Llitjohann 

[ 1971J . 



5 A FORMAL ANALYSIS: 

AGGREGATION OF REGRESSORS OR OF REGRESSANDS 

5 . 1 Linear transfonnation of regressors 

5. 1. 1 Definition and notation 

The micro data form the n x (1 + p) regression data matrix [y ! X], where 

n ~ 1 and p ~ 1. The maero data form the n x (1 + q) regression data matrix 

[u i Z ], where q ~ 1. For j = 1, .. " n, the j I th macro unit of analysis is identi-
1. 

eal to the j I th miero unit of analys is . 

The regressor and regressand aggregating funetions are 

G: Z = XG, 

H: u = y, 

where G is a given p x q matrix of eonstants . Eaeh maero regressor is a given 

linear funetion of the miero regress ors . 

Linear transformation of regressors ineludes eases that it may not be natural 

to call aggregations j ef. 3. 1. 3. 

The micro and maero relations 

~: y = X~ + E j E ( E ) = O , 

W: u=Zö+ryj E(ry)=O 

are sometimes considered. 

Designed and observed regressors are sometimes distinguishedj ef. 4.2.2. 
l:, O . 6: O, 

There are p ~ O designed and p ~ O observed mlCro regressors X = [X : X J' 

where pI:, + p O = p . There are ql:, ~ O designed and q O ~ O observed maero regres-
1:,' O l:, O 

sors Z = [Z : Z J, where q + q = q . 

The regressor aggregating funetion is partitioned aeeordingly . 

By definition, the designed maero regressors ZI:, are not affeeted by the observed 

miero regressors XO . The observed maero regressors zO may be affeeted 

(translated) by the designed miero regressors Xl:,. 



The micro and macro parameter vectors are partitioned aceordingly . 

ep : E (y) = X6~6 + XO~O , 

'it : E (u) = Z6ö6 + zOöO . 

The semi-aggregated regressor matrix is defined to be identieal to the micro 

regressor matr ix; cf . 4.2.3 . 

6 : O 6: O 
XA = [ XA : XA J = [ X : X J = X . 

The designed submatrices are identical. The observed submatrices are identical. 

5 . 1 . 2 The consistency problem 

The semi-aggregated micro and semi-disaggregated macro relations are 

where 

O O 
Hep: E Hep (u) = CiA + XA~ A ' 

O O 
'itG : E 'itG (u) = 'YD + X A ÖD ' 

The following proposition answers the consistency problem . Note that the micro 

parameters ~ are critical and the macro parameters Ö discretionary; cf . 4 . 2 . 7. 

Proposition 5. 1.2 

Consider linear transformation of regressors, where the transformation ma­

trix G is partitioned as above. 

A necessary and sufficient condition for consistency to be attainable is that the 

following two state ments are both true. 

(i) The micro parameter subvector ~O associated with the p O observed mi-

ero regressors is such that 
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for at least one q ° -vector Ö ° . 
(ii) The designed micro regress or submatrix X6 and the micro parameter 

subvector ~6 associated with the p6 designed micro regressors are such that, 

for some öO satisfying (i), 

for at least one q6-vector ö6 . g 

This is a special case of P.4. 2.6. O 

Statement (i) taken alone is a necessary condition for consistency to be attain­

able. The micro parameter subvector ~O must be in the column space of GO . 

5.1.3 A model-free interpretation 

The macro regression data [u i Z J and the semi-aggregate regression data 

[ u ! X A J are related by the equation X A G = Z . 

The semi-aggregate regression data [u! XA J and the micro regression data 

[ y ! X J are identical. Thus any vector b A of GLS(W) semi-aggregate regression 

coefficients is also a vector b of GLS(W) micro regression coefficients, and con­

versely; cf. 4.3.6. 

The following proposition provides a model-free interpretation. Note that, by 

P . 4 . 3.4, the semi-aggregate coefficient function A I b A is unique. 

Proposition 5. 1.3 

Consider linear transformation of regressors . Let d, b A and b by any vec­

tors of GLS(W) macro, semi-aggregate, and micro regression coefficients, re­

spectively. Let e be any matrix of GLS(W) auxiliary regression coefficients. 

Let /-L be a q-vector such that /-L'd is a unique macro coefficient function. De­

fine the p-vector A = e' /-L. Then: 

(i) /-L'd = A'b = A'b 
A 

(ii) G'A = /-L • o 
o 

This is a special case of P. 4 . 3.4, except for the second equation of (i), which 

follows because b A = b. O 

In the terms of 4.3.2, this mOdel-free interpretation chooses Q = W. 
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5 . 1 . 4 An expectational interpretation 

The miero model E (y) = X~ implies the semi-aggregated micro model 

where XA = X and ~A =~ . As before, XAG= Z . 

The following proposition provides an expectational interpretation . Note that, 

by P.4 . 4 . 3, the semi-aggregated micro parameter function A' [3A is estimable . 

Propositon 5 . 1 . 4 

Consider linear transformation of regressors . Let d be any vector of GLS(W) 

macro regression coeffieients. Let C be any matrix of GLS(W) auxiliary regres­

sion eoefficients . 

Let /.L be a q-vector such that J..L' d is a unique maero coefficient function . De­

fine the p-vector A = C'/.L . Then: 

(i) E (iJ'd)=A'[3 =A'[3 
H~ A ' 

(ii) G'A=J..L. o 
o 

This is a special case of P . 4 . 4 . 3, except for the second equation of (i), which 

follows beeause [3 A = [3. O 

The implied miero parameter funetion A' [3 in P. 5 . 1 . 4 has the same weight 

vector A as the implied micro coefficient funetion A' b in P. 5 . 1 . 3 j ef . 4 . 4.5. 

5 . 1. 5 An example 

Let the miero and macro regression data matrices be as follows . 

[ yl X]=[y! x6; O , 
l 

I X ]= [ y: j: X 1 X 2 -' , 
I z6: O ' I' U: Z]= [ u; Z J= [ u; j i z] 

L : 

The intercept regressor is the only designed micro and macro regressor. There 

are two observed micro regress ors and one observed maero regress or . The re­

gressand aggregating function H is u = y . Let the regressor aggregating funetion 

G be as follows . 
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, 
= [j : x 

I 1 x l [-~--:-:-J 2" , 
I 

O ! 2 

For simplicity , let the rank of Z be q = 2 . Then all macro and auxiliary regres­

sion coefficients are unique. 

The micro and macro parameters and GLS(W) regression coefficients are de­

noted as follows . 

[~ibJ 

The GLS(W) auxiliary regression coefficients are denoted as follows. 

The auxiliary regressions are of X upon Z . 

Consider the consistency problem. By P. 5 . 1 . 2 consistency is attainable if 

and only if there exist scalars f? and ö6 such that 

[::J . ~O" GOöO. [:] öD. 

j~6=x6~6=x6 (G6ö6 + GTöO)=jö6 

The critical condition is the first one, which requires that ~2 = 2~ 1 . 

Consider the problem of interpreting the macro coefficient function 

~'HO 1) [::] "dO. 
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i. e. the macro slope. The implied micro coefficient and parameter functions are 

denoted as follows. 

[ 6' 6] [b6 : 136] ': , b: 13 , ----~----
, 'l 6 O l --- _'o - - - 6, l ' 

A [b: 13 J = [A : A J O: O = [A : A1 ).,2 J b 1 : 131 
b ,13 b : 13 

2: 2 

The weight vector A considered is A = C' Il, i. e. 

By P. 5 . 1. 3 and P . 5 . 1. 4 , 

Further, there are the weight-sum relations G' A = Il, i. e. 

o 
1 

That A 6 = O is seen from>.. = C' Il even if the observed micro data are unknown . 

The second weight-sum relation says that 

>.. + 2>.. = c + 2c = 1 
1 2 1z 2z 

whatever the observed micro data. 

5.1 . 6 A special case: Omission of regressors 

Omission of regressors is a special linear transformation of regressors . For 

simplicity , let there be a single designed regressor, the intercept regressor. The 

first q O < P O observed micro regressors x~ are retained as macro regressors . 

The remaining micro regressors x~ are simply omitted . The regressor aggre­

gating function G is as follows, 
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[ ' :ZO'=[':XO XO , [~-' -;0] . J: .J J: Z O.J 

O O 

where l° is the unit matrix of order q ° . Omission of regressors is hardly a 

case of aggregation, but is of interest nevertheless. 

The micro parameter subvectors associated with X~ and X~ are denoted 

~~ and ~~ . The GLS(W) micro regression coefficient subvectors are indexed · 

analogously, and so are the subvectors of A . The matrix of GLS(W) auxiliary 

regression coefficients can be taken to be 

also when C is not unique . 

Consider the consistency problem . By P . 5,1.2, a necessary condition for 

° ° consistency to be attainable is that there exists a q -vector Ö such that 

° The condition requires that ~O = O; the omission of relevant regressors causes 

inconsistency . 

° Consider the problem of interpreting the q macro GLS(W) regression coef-

ficient functions 

M' d • [O j Pl [~: ] 
i. e . the macro slopes . The weight vectors A of the q ° implied macro coefficient 

° ° and parameter functions are the q column vectors of the p x q matrix 

A= C'M. 
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In this case, the weight-sum relations G' A = M provide no additional informa-

tion. 

If the macro slopes are unique, then by P . 5.1 . 3 and P.5.1.4, 

dO=A'b=bO+C bO 
Z OZ O' 

° ° ° E (d) = A' ~ = ~ + C ~ 
H~ Z OZ ° 

The elements of the qO x (pO - qO) matrix COZ are the slopes in the GLS(W) 

° ° auxiliary regression of the omitted Xo on the retained X z . 

Omission of regressors is an error of specification. rts consequences are 

sho\\'Il by the two interpretative relations . A least the expectational relation is 

due to Theil [1957J . Both relations are given by Goldberger [1964J, section 

4 . 10. Some applications are found in Griliches [ 1957J, Nerlove [1958bJ, Gold­

berger [1961J, Haitovsky [1966J, and Box [1966J. 

5.2 Unweighted partitioned aggregation of observed regressors 

5.2. 1 Definition and notation 

Unweighted partitioned aggregation of observed regressors will now be definedj 

eL 3.1 . 7. What was said in 5.1.1 - 5 . 1.4 applies, and is specialized as follows. 

The p micro regressors are partitioned into q disjoint, exhaustive families . 

For i = 1, ... q, the i I th macro regressor is the sum of the members of the i I th 

family of micro regress ors . Some families have a single member, a bachelor 

regressor. The p6 designed micro regress ors X6 and the first r observed 

micro regressors X~ are bachelor regressors, and are "aggregated" into 

q6 = p6 and r macro regress ors Z6 = X6 and Z~ = X~ . The remaining p O - r 

observed micro regressors form s = q ° - r families . For h = 1, . . " s, the 

h I th family ~ has P~ :2: 2 members, and their sum is the macro regressor z~ 
Let r6 and rB denote the unit matrices of orders p6 and r. For h = 1, ... , s, 

let ~ denote the P~ -vector of unit elements . The regress or aggregating func­

tion G is as follows. 



The transformation matrix G is block-diagonal. 

, 
I tI : o O . . . .• o 

---- ~--if--------------

0,1 0 ..... 0 
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O o O 

o 

i 
s 

O O O O 
The subvectors of b associated with XB and ~ are denoted bB and bh ' 

O 
and similarly for l' and X. The subvector and elements of d associated with Z 

O O O B 
and zh are denoted dB and .<lh ' and similarly for Ö . 

The matrix of auxiliary regression coefficients can always be taken to be 

It, O 

O IB 

e= O O 

O O 

et, 
1 

eB 
1 

I CH 

c t 

is 

et, 
s 

eB 
s 

c t 

si 

c ' 
ss 

o 
also when e is not unique . The submatrix c~k is a row vector of order Ph 

5 . 2. 2 The consistency problem 

The semi-aggregated micro and semi-disaggregated macro models are as in 

5 . 1 . 2, where now 

DtA 

O 
~A 

Xtll3 t1 

--~ö -- -

B 

~O 
1 

~O 
s 

Xtlöt, 

---~o---

B 

i öO 
1 1 
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Proposition 5 . 2.2 

Consider unweighted partitioned aggregation of observed regressors . 

A necessary and sufficient condition for consistency to be attainable is that for 

h = 1, ... , s, the micro parameter subvectors ~~ are such that 

o 
for some scalars Öh . o 

o 

This is a special case of P. 5 .1. 2. Some parts of the condition stated there 

are automatically fulfilled, and have been omitted . O 

The consistency condition can be reformulated in words . For any non-bachelor 

family of observed micro regressors , the micro parameters associated with the 

members must all be equal . 

5 . 2.3 Model-free and expectational interpretations 

Interpretations will be given for two kinds of macro regression coefficients . 

The first kind d~ is associated with a macro regressor that is the sum of 
O . 

Pk ;;, 2 observed mlcro regressors; k = 1, .. . , s. 

Proposition 5.2.3. A 

Consider unweighted partitioned aggregation of observed regressors . Let d 

and b be any vectors of GLS(W) macro and micro regression coefficients. Let 

C be any matrix of GLS(W) auxiliary regression coefficients. 

If d~ is a unique coefficient function in the macro regression, the following 

three statements are true. 

(i) 

(ii) 

(iii) 
if h=k, 
if hrik. 

o 
o 

Let ~ be a q-vector whose (q6 + r + k)' th element is unity , while all other 

elements are zero. Then d~ = l1k. d, and Åk = C' ~ is the transposed 



(i' + r + k) ' th row vector of e . 
Statements (i), (ii) and (iii) are special cases of P . 5 . 1. 3 (i), of P . 5 . 1. 4(i), 

and of P . 5 . 1 . 3 (ii) = P . 5 . 1. 4(ii) , respectively . O 

The second kind of macro regression coefficient d is associated with a 
m 

bachelor regressor . The corresponding micro regression coefficient and para-

meter are b and ~ For any m = 1, . . . , pli + r, let the m ' th row vector of 
m m 

e be denoted 

[ t' 
m 

c' 
1m 

c' 1 sm.J , 

where t ' is the m ' th row vector of the unit matrix of order pli + r, while chm 
m O 

is a row vector of order Ph . No distinction is made between designed and ob-

served bachelor regressors . 

Proposition 5. 2 . 3 . B 

The same assumptions as in P.5 . 2. 3 . A. 

If d is a unique coefficient function in the macro regression, the following 
m 

three statements are true. 

(i) 
s O 

d = b + L: c' b 
m m h=1 hm h 

(ii) 

(iii) L' c = O , h = 1, . . " s. 
h hm 

o 
o 

Let Il be a q-vector whose m'th element is unity, while all other elements 
m 

are zero . Then d = Il ' d, and X = e ' Il is the transposed m'th row vector 
m m m m 

of e . 
The same demonstrations as for P . 5 . 2 . 3 . A. O 

The expectational interpretations w ill now be described in words . Recall the 

concepts of corresponding and non-corresponding families introduced in 3. 1 . 7. 

The description is incomplete, but is valid for both P.5 . 2 . 3.A and P . 5 . 2.3 . B . 

The micro expectation of a unique macro coefficient is the sum of q weighted 

sums of micro parameters, one for each family of micro regressors . The sum 

of the weights for the corresponding family is unity, also when this family has a 
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single member . The sum of the weights for any non-corresponding family is zero, 

also when the family has a single member . The micro parameters of non-corre­

sponding bachelor regress ors are therefore never effectively included . 

5.2.4 On the connection with Theil' s analys is 

The expectational interpretation of 5 . 2.3 very much resembles Theil [1954 J, 
Theorem 1. The weights are auxiliary regression coefficients exactly as in Theil. 

The weight-sum relations are the same as in Theil. 

An important difference is that 5 . 2 is about partitioned aggregation of regres­

sors , while Theil's Theorem 1 is about simple aggregation of aspects . As was 

pointed out in 3 . 2 . 2, simple aggregation of aspects is an aggregation of regres­

sands followed by a partitioned aggregation of regressors . As will be seen in 

~ and 7. 2, the aggregation of regressands is quite harmless , and it is the ag­

gregation of regressors that causes all the difficulties. 

A less important difference is that Theil [1954 J treats all regressors alike, 

except the intercept regressor. As was seen above, as far as interpretation is 

concerned, all bachelor regressors behave analogously . The intercept regressor 

is the most frequently occurring bachelor regressor. Theil' s formulation is cor­

rect but less informative. 

5 . 3 Aggregation of regressands 

5 . 3 . 1 Definition and notation 

The micro data form k ~ 2 regression data matrices [Yi: Xi J of orders 

n x (1 + p.), where n ~ 1 and p . ~ 1, i = 1, . .. , k. Let the i'th set of micro 
l l 

regressor vectors be called R . . The union of the k sets R. has p ~ max p . 
l l l 

members . These form the n x p total micro regress or matrix X j cf. 3.1.4. 

The k micro regress and vectors form the n x k micro regress and matrix Y • 

The macro data form the n x (1 + p) regression data matrix [u i Z J . For 

j = 1, . . " n , the j' th macro unit of analysis is identical to the j' th micro unit 

of analys is . 
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The regressor and regressand aggregating functions are 

G: Z = X, 

H: u = Yh , 

where h is a given k-vector of constants. The macro regressand is a given linear 

function of the micro regressands . The set of macro regressors is the union of 

the sets of micro regressors . 

The micro and macro relations 

~: Yi = Xi [:\ + t\ ' E U\) = O, i = 1, "" k , 

w: u = Z 6 + 1/, E (1/) = O 

are sometimes considered . Alternatively , the k micro models are expressed in 

terms of the common total micro regressor matrix as follows, 

~ : y. = X~ ~ + e., E ( e. ) = O, i = 1, ... , k. 
l l l l 

The augmented micro parameter vectors ~~ are defined as follows . Those ele­
l 

ments of ~~ that are associated with the set R. of regressors, are equal to the 
l l 

corresponding elements of ~ .. All other elements of ~.* are defined to be zero. 
l l 

The k augmented micro parameter vectors ~~ form the p x k augmented 
l 

micro parameter matrix B *. The k micro models are written jointly 

~: E(Y)=XB*. 

Sometimes , pLI;", O designed regressors XLI = Z LI and p ° ;", O observed regres­

sors xO = zO are distinguished , where pLI + p ° = p. The augmented micro para­

meter matrix and the macro parameter vector are partitioned accordingly. 

~: E (Y) = XLlB*LI + XOB*O , 

W: E (u) = ZLl6L1 + ZOöO . 

The semi-aggregated regressor matrix is defined to be identical to the total 

micro regressor matrix. 

X = [XLI : xO l = [ XLI: XO J = X . 
A At A.J : 

The designed and observed submatrices are identical, respectively . 
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5 . 3 . 2 The consistency problem 

The semi-aggregated micro and semi-disaggregated macro relations are 
O O O O 

ER cp (u) = Q' A + X A ~ A ' and E IltG (u) = l'D + X A ÖD ' where 

The following proposition answers the consistency problem. 

Proposition 5 . 3 . 2 

In aggregation of regress ands , consistency is always attainable . g 

P . 4 . 2 . 6 applies . For any B *, consistency is attained by choosing Ö = B *h . D 

5 . 3. 3 An expectational interpretation 

The micro models E (Y) = XB * imply the semi-aggregated micro model 

* EHcp(U) = XA~A' where XA = X and ~A = B h . Further, XA = Z . 

For any p-vector Il, let Il . be the subvector corresponding to the set R . of 
l l 

regressors . Let h. be the i ' th element of h . The following proposition provides 
l 

an expectational interpretation . 

Proposition 5 . 3.3 

Consider aggregation of regressands . Let d be any vector of GLS(W) macro 

regression coefficients . 

Let Il be a p-vector such that Il' d is a unique macro coefficient function . For 

i = 1, . .. , k define the p .-vector X. = h.ll .. Then: 
l l l l 

k 
E Hcp (Il'd) = Il' ~A = i~1 X~ ~i • 

o 
o 

Since X A = Z , one can take the matrix of auxiliary regression coefficients to be 

C = lp ' Then by P . 4.4 . 3, ER cp (u'd) = Il' ~A . Further, from ~A = B*h =Thi~; 



l~ö 

it follows that /-L'I3A = L:h . /-L'I3 .* = ZX~ 13 . • n 
l l l l 

In particular , if h = jk' then the weight veCtor \ of the i' th implied micro 

parameter function is simply the subvector of /.L corresponding to the set R . of 
l 

regressors. 

Except for special cases such as when all R. are equal, there is no simple 
l 

model-free interpretation. 
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6 A FORMAL ANALYSIS: 

AGGREGATION OF UNITS OF ANALYSIS OR OF SETS OF UNITS 

6. 1 Linear transformation of units of analysis 

6 . 1 . 1 Definition and notation 

, 
The micro data form the n x (1 + p) regression data matrix [ y i X J, where 

n ;o, 1 and p ;o, 1 . The macro data form the m x (1 + p) regression data matrix 

[ u ! Z J, where m;o, 1 . For i = 1 , .. . , p, the i' th macro regressor corresponds 

to the i 'th micro regressor. Designed and observed regressors are distinguish-

6 . ° ed . There are p ;o, O deSIgned and p ;o, O observed regressors , where 

6 ° . 6 ' ° 6 ° P +p =p; X=[X:X JandZ=[Z i Z J. 
For simplicity , in the general case of aggregation of units of analysis in .§.:.i 

there are assumed to be no mixed regressors . A particular class of mixed re­

gressors will be admitted in the special case in.§.:3.. 

The regressor and regress and aggregating functions are 

G: 

H: 

l Z 6 = g6 ( X6 ) , 

zO = TIXO , 

u = Tly , 

where g6 is a given matrix function and T is a given n x m matrix of constants . 

As far as the regressand and the observed regressors are concerned, each macro 

unit of analys is is a given linear function of the micro units of analysis . The func­

tion g6 will be left unspecified, but is sometimes also linear; eL 3 . 1.5 . 

Linear transformation of units of analysis includes cases that it may not be nat­

ural to call aggregations j cf. 3. 1 . 5 . 

The micro and macro relations 

~: y = X6~6 + XO~O + e, E (€) = O , 

w: u=z6ö6+z0öO+T/' E(T/)=O 

are sometimes considered . 

The semi-aggregated regressor matrix and its two submatrices are defined to 

be as follows . 



128 

" O , , O X = [XL> I X l = [T I XL> , T I X l = T I X 
A A: A.J : .J . 

The observed semi-aggregated regressor submatrix X~ is thus identical to the 

observed macro regressor submatrix zO . The designed submatrices X~ and Z6 

may differ. 

6. 1 . 2 On the me aning of full subvector rank 

The consistency problem refers to a set :;;: of independent micro data vectors 

x . As explained in 4.2.4, the vector x is a function of the observed semi-aggre­

gated regressor submatrix X~ . In aggregation of units of analys is , the latter 

matrix is the function X~ = T I xO of the observed micro regressor submatrix 

xO . The set:;;: is specified to be of full subvector rank. The meaning of this 

specification in terms of X~ is stated in 4 . 2.4 . lts me aning in terms of the ob­

served micro regressor data xO is not immediately obvious. 

To begin with, a particular set of matrices XO will be described. Next, the 

corresponding set of matrices X~ will be shown to satisfy that part of the speci­

fication of :;;: which ref ers to the first row vector of X~ . Finally , a generaliza­

tion will be indicated. 

O' O ° ° Let z be the first row p -vector of X A = Z . Let t 1 be the first column 

1 ° n-vector of T. Let t 1 and X be partitioned as follows. 

where x~ I is the first row p O -vector of XO. With out loss of generality , assume 

that t 11 f o. 
. O 

Conslder p + 1 different matrices 

O 
h=1, ... ,p +1 

which differ as to their first rows only. Assume that the vectors 

° h=1, .. . ,p +1 
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are linearly independent. These row vectors form the (p ° + 1) x (p ° + 1) matrix 

where j is the (p ° + 1 )-vector of unit elements. 

Each matrix ~ implies a vector z ~~ . Define Z' = t ' XO . Then 
2 12 2 

, 0 ' , 0 ' ° 
( 1 l z lh ) = (1: t 11 x 1h + z;), h = 1, ... , p + 1 

These row vectors form the (p ° + 1) x (p ° + 1 ) matrix 

where j is as above . 

Proposition 6 . 1 . 2 

Notation and assumptions as in the text . In particular, t 11 of O, and the 

° , p + 1 row vectors of [j : X1 J are linearly independent. 

Then the p ° + 1 row vectors of [ji Z 1 J are linearly independent. D 

I 

Assume the opposite ! Then there exists a vector vof O such that Vi [j: Z 1 J = 

= (O ! O) . Consequently, 0= V ' Z 1 = t 11 V ' X1 + v'j z; = t ii V ' X1 . Thus since 

t 11 of O, Vi [j ! X1 J = (O! O), and the row vectors of [j ! X1 J are linearly de­

pendent contrary to assumption . 

Thus the row vectors of [j l Z 1 J are linearly independent . D 

The demonstration does not require that z; of O or t 12 of O • 

The reasoning is easily generalized . For any given j = 1, ... , m, a set M. of 
J 

observed micro regressor submatrices xO can be indicated such that the corre-

sponding set of observed semi-aggregated regressor matrices x~ satisfies that 

part of the specification of !?: which refers to the j I th row vector of X~ . The 

° union of the sets Mj implies a set of matrices X A of full subvector rank . 

6 . 1 . 3 The consistency problem 

The semi- aggregated micro and semi-disaggregated macro relations are not 

quite as stated in 4 . 2.3 . There, H ~ and \}G express u as two different functions 

of [X~ j X~ J. In aggregation of units of analys is , H ~ and 'l!G instead express 
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u as two different functions of [x!:.l X~ J. The two relations are 
O O O O 

= (YA + XA ~ A and EwG (u) = ')ID + XA ÖD ' wher€ 

E (u) = 
H~ 

The following proposition answers the consistency problem. 

Proposition 6 . 1 . 3 

Consider linear transformation of units of analysis. 

A necessary and sufficient condition for consistency to be attainable is as fol­

lows . The designed micro regressor submatrix X!:. and the associated micro 

parameter subvector ~!:. are such that 

for at least one p!:.-vector ö!:. . o 
o 

This is a special case of P.4 . 2.6 . O 

If there are no designed micro or macro regress ors , consistency is always 

attained by choosing Ö O = ~ O. Cf. the end of 6 . 1. 4 . 

6 . 1 . 4 An expectational interpretation 

The micro model E (y) = X!:.~!:. + xO~O implies the semi-aggregated micro 
!:.!:. O O !:.!:. O O 

model EH~(U) = XA~A + XAf:lA ' where f:lA = f:l , and f:lA = f:l . 

If the matrix C of auxiliary regression coefficients is partitioned conformably 

with XA = [Xi; x~ J and Z = [Z!:.: zO J, then because x~ = ZO, C can always 

be taken to be 

C = t~~~-~;öJ 
where p is the unit matrix of order 

O 
P . 



The vectors )" and J.L are partitioned conformably with XA and Z , and the 

subvectors are denoted accordingly . 
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The following propos ition prov ides an expectational interpretation . There are 

however no weight-sum relations for A , because there is no matrix M such that 

Proposition 6. 1 . 4 

Consider linear transformation of units of analys is . Let d be any vector of 
, . O' 

GLS(W) macro regression coefficients . Let [ CM : C6 J' be any matrix satis-
; 

fying the normal equations of the GLS(W) auxiliary regressions of X~ upon 

[ z6 i ZO ] . 

Let /J. be a p-vector such that 

cient function . Define the p6_ and 

' A O' O 
J.L'd=/J.6 d"+/J. d 

O 
p -vectors 

[ M' (:;, 60' O] C /J. + C J.L 

IJ.0 " 

Then 

is a unique macro coeffi-

This is a special case of P . 4.4.3, except for the second equation which follows 
6 6 O O 

because ~ A = i3 and ~ A = ~ . O 

If there are no designed micro or macro regressors , the interpretation is 

simple, )" = J.L . 

The results of 6 . 1 . 3 and 6 . 1.4 may be summed up as follows . In linear trans­

formation of units of analys is as delimited in 6.1 . 1, it is the designed regressors 

that cause all the difficulties . Normally there is at least one designed micro and 

macro regressor, the intercept regressor . 

6 . 1 . 5 An example 

There are n observations (Yt' xt ), t = 1,2, . .. , n, generated by the follow­

ing linear model . 



E(Wt)=O, 

2 2 
E (Wt ) = T , 

E (W w ) = O Wlless s = t , 
s t 

\p\ < 1 • 

The disturbances ~\ follow a first order autoregressive scheme, whose para­

meter p is assumed to be kIiOwn . 

The data are transformed into n new observations (Ut' Zt) as follows. 

u1=~Y1' 
z =~x 1 V 1 - p- l' 

Ut = Yt - OYt _1 ' I 
t=2,3, ... ,n. 

Zt = xt - pXt _1 

The intercept h and slope d of the common least-squares regression of U upon 

z are interpreted as estimators as follows . 

E (h) = (1- p)a, 

E (d) = I:l • 

This procedure is recommended e.g. by Wonnacott and Wonnacott [1970J, sec­

tion 16-4. 

The procedure is tantamount to a linear transformation of the n micro units 

of analys is into n macro units of analys is . The aggregating functions for the re­

gressand and for the observed regress or are U = T I Y and z = T I x, where 



~ il1-p- O 

- P 1 

T' O -p 

o O 

O 

O 

1 

O 

O 

O 

O 

O 

O 

O •••• • -p 1 

There is one designed regressor vector XD. = ZD. = j 
n 

The semi-aggregated and macro regressor matrices are 

/2: r-z 
il 1 - p-: il 1 - 0- xi 

X =[T'j T'xJ= A n 
1 - p 

1 - p 

1 

1 

Z=[j zl= n J 
1 

1 

Assume that the rank of Z is 2 . 

The 2 x 2 matrix of auxiliary regression coefficients is 

where cM ~ 1 - P and cD.O ~ O, at least if n is large. 
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By P. 6.1.3, a necessary condition for consistency to be attainable is that for 

some scalar ÖD. 



T' j et = j Ö6 . 
n n 

Because of the first element of T' j ,consistency is not attainable. 
n 

By P . 6 . 1 . 4, the macro intercept and slope are to be interpreted as follows. 

E (h) = cM et Ho;. , 

E (d) = c60 et + 13 Ho;. 

The recommended interpretations are only approximately correct . 

Consistency can be made attainable, and the recommended interpretations 

exact , by either of two modifications of the procedure . The first alternative is to 

omit the first macro unit of analysis. This wastes some information . 

The second alternative is to exchange the macro intercept regressor jn for 
- 1 

another designed macro regressor (1 - p) T' j • This complicates the compu­
n 

tation of h and d, but makes these BLUEs . 

6 . 1. 6 A special case : Weighted regression 

Weighted least-squares regression is a special case of linear transformation 

of units of analys is . A weight k . > O is associated with each micro unit, 
J 

j = 1, ... , n . Each micro unit is transformed into a macro unit . For s implicit y , 

let there be a single designed regressor, the intercept regressor . The micro 
• I O 

data are [y: j : X J . 
I n, 

Let K be the n x n diagonal matrix , and k the n-vector , whose j' th (diagonal) 

elements are both k. , j = 1, ... , n . The aggregating functions for observed var­
J 

iables are 

The designed macro regressor vector is defined to be k . (Note that in general 

k f- j . ) The macro data are [u: k i Z O J. Since Kj = k, the semi-aggregated 
n • n 

micro regressor matrix [Kjn l KXO J agrees with the macro regressor matrix . 

The matrix of auxiliary regression coefficients can always be taken to be C = I . 
P 

Consider the consistency problem. The micr o and macro parameters associat-

ed with the designed regressor are 136 and ö6 • By P. 6 . 1. 3, a necessary and 
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sufficient condition for consistency to be attainable is that there exists ascalar 

ö6 such that 

This is always the case; choose ö6 = ~6 . 

Consider the interpretation problem . In spite of the consistencY I there is no 

simple model- free interpretation . Since C = I the expectational interpretation p ' 

has A=J.L, Le . EHip(J.L ' d)=J.L'~ ' 

When the micro relation ip is a heteroskedastic linear model with disturbance 

covariance matrix er 2 K- 2 I weighted regression provides BLUEs. One must not 

forget to replace the intercept regressor by k I however . 

6 , 2 Unweighted partitioned aggregation of non-designed units 

6 . 2. 1 Aggregation by summation: Definition and notation 

Unweighted partitioned aggregation by summation of non-designed units of 

analys is will now be defined; cf. 3. 1. 8 , A variant I aggregation by averaging I is 

introduced later I in 6.2 . 4 below. What was s aid in 6 . 1 . 1 - 6. 1 . 4 is modified as 

follows. 

The n micro units are partitioned into m disjoint , exhaustive subsets . For 

h = 1 I .. . I m I the h' th macro unit is formed from the ~ ~ 1 members of the 

° h' th subset. The regressand and the p ;" O observed regressors are aggregated 
M 

by summation over the ~ micro units . There are p ;" O repetitive mixed re-

gressors . These are constant across the members of any given subset of micro 

units , Their values for the h' th macro unit are equal to those for any member of 

the h' th subset of micro units , Finally , there is at most a single designed regres­

sor, the micro and macro intercept regressor , 

The micro and macro regression data matrices are denoted 

[ I 'xM:"XOl y : j : " , n' 
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The subvectors of ~, A, ö, Il associated with the three subsets of regressors 

/:::, M ° are denoted ~ , ~ , ~ , and so on. 

For h = 1, .. " m, let \ denote the ~ -vector of unit elements. Define 

ii 

O 

T= 

O 

O 

i 2 

O 

O 

O 

i 
m 

The n x m transformation matrix T is block-diagonal. 

In aggregation by summation, the aggregating functions for purely observed 

variables are 

The repetitive mixed regress ors satisfy the "converse" relation 

M ° The basic observed regressor data are Z and X ; cf. 3.1 . 8. 

Finally, let N be the m x m diagonal matrix, whose h'th diagonal element is 

~, h=1, .. . , m. Notethat N=T'T. 

6 . 2.2 The consistency problem 

In aggregation by summation, the semi-aggregated micro and semi-disaggre­

gated macro relations are 

E (u) = T' j ~/:::, + NZM~M + T'XO~O , 
Hq, n 

E (u)=j ö/:::'+zMöM+T,XOöO. 
WG m 

M' O' M 
Let ~ , zh and zh denote the h' th element and row vectors of u, Z and 

zO = T'XO . The two m-vector equations H~ and WG consist of the following m 

pairs of scalar equations, h = 1, .. " m. 



The following proposition answers the consistency problem. 

Proposition 6.2.2 

Consider unweighted partitioned aggregation by summation of non- designed 

units of analys is . 

Consistency is always attainable if either or both of (i) and (ii) is true, and 

never otherwise . 

(i) 
M 

There is no intercept, and p = O. 

(ii) o ni = n2 = . .. = nm . o 

i37 

Analogously with the demonstration of P.4. 2 . 6, the aggregation is consistent 

if and only if for h = i, ... , m 

~~6 Ö6 
------ --

~ 
~M öM 

---------

~O öO 

This can be achieved by an appropriate choice of Ö if and only if (i) or (ii) is true, 

or both. O 

The consistency conditions of P . 6.2.2 are in effect not restrictions on the 

micro parameters. 

6 . 2.3 An expectational interpretation 

In aggregation by summation, the semi-aggregated micro relation is 

. M · O 
E (u) = [T I j I NZ I T I X 1 ~ 
H~ n I : ~, 

i. e . ~A = ~, while the macro regressor data are [j : zM i ZO J. The matrix m, I 

of GLS(W) auxiliary regression coefficients is 
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where P is the unit matrix of order p O The following proposition provides an 

expectational interpretation. As in 6.1.4 there are no weight-sum relations. 

Proposition 6. 2. 3 

Consider unweighted partitioned aggregation by summation of non-designed 

units of analys is . 

If Jl' d is a unique macro coefficient function, then 

6, 6, M' M O' O 6, 6, M' M O' O 
EHq,(Jl d +Jl d +Jl d )=A fl +A fl +A fl , 

where 

This is a special case of P. 4.4.3 . O 

This propos ition is not particular ly illuminating . 

Now consider the special case where 

Then T'j =nj , NZ M =ilZM , and T'XO = ZO . Thus C is block-diagonal, 
n m 

cM = ii, and CMM = il f1 , where f1 is the unit matrix of order pM . Conse­

quently A in P . 6. 2. 3 is as follows. 

In spite of the consistency demonstrated in P . 6 . 2 . 2, and in spite of the simplici­

ty of the expectational interpretation, there is no simple model-free interpreta­

tion . 
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6.2.4 An alternative: Aggregation by averaging 

Unweighted partitioned aggregation by averaging of non-designed units of anal­

ysis will now be briefly discussed. The notation is as in 6.2.1. Note that 
-1 -1 

N T'j =j and N T'T=l 
n m m 

In aggregation by averaging, the regressand aggregating function is 
-1 

H: u = N T'y. The aggregating function for observed regressors is similar, and 

the designed and mixed regressors can also be taken to be aggregated in the same 

way. In summary 

[ U;· : ZM : zo 1= N- 1T' [ :. : XM : xO 1.J 
! Jm f ~.J Y : Jn : f 

where the relation XM = TZM is used. 

The semi-aggregated micro and semi-disaggregated macro relations are 

E (u) = j ~6 + ZM~M + N-1T'XO~O , 
H~ m 

E (u) = j ö6 + ZMöM + N-1T'XOöO . 
II-G m 

The macro and semi-aggregated micro regressor matrices are identical, Z = XA . 

Further , ~ A = ~ . 

Proposition 6. 2.4 

Consider unweighted partitioned aggregation by averaging of non-designed 

units of analysis. 

(i) Consistency is always attainable. 

(ii) If Il' d is a unique macro coefficient function, then 

EH~(Il'd)=Il'~A =Il'~· 
o 
o 

(i) P.4.2.6 applies. Consistency is attained by choosing Ö = ~. 

(ii) PA.4.3 applies. Since XA = Z, one can put C = lp. Further, ~A = ~. O 

In spite of the consistency, and in spite of the s implicit y of the expectational 

interpretation, there is no simple model-free interpretation; but cf. 6.4.3. 

Less formal statements essentially equivalent to P. 6.2.4 are found in Prais 

and Aitchison [1954J. 
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6.3 Aggregation of sets of units 

6.3. 1 Definition and notation 

There are one regressand and p regressors . There are k ;;, 2 disjoint miero 

sets of units of analys is . The data for the h I th set of ~ ;;, 1 units form the 

~ x (1 + p) regression data matrix [Yh i ~ ], h = 1, ... , k. There is one 

maero set of units of analys is . The data for the maero set of n units form the 

n x (1 + p) regression data matrix [u! Z]. 

The regressand and regress or aggregating functions are as folIows. 

H, G: [u i Z J = 

I 

Y1 ; Xi 
-----"---- --

I • 
I • 
I • 
I -----1-----

Yh : ~ 
I 

-----+-----
I 
I • 

I • 
_____ l ____ _ 

I 

Yk : ~ , 

The maero set of units is the union of the micro sets of units, and 

n = ni + n2 + ••. + nk; ef. 3. 1.6. 

The miero and macro relations 

cp : y h = ~ ~h + €h; E ( €h ) = O, h = 1, ... , k, 

u = Zö +17; 

are sometimes eonsidered. 

The semi-aggregated regressor matrix is defined as folIows, 

O O 

O 

O O ..... ~ 
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i . e . as the n x kp block-diagonal arrangement of the micro regressor matrices . 

The total micro parameter vector is the kp-vector ~ = (~~ ••• ~h ' .. ~k)' as in 

4 . 1 . 2. Defining y = u, the micro relation can be written 

~ : E (y) = X A ~ • 

Sometimes p6 ~ O designed and p ° ~ O observed regressors are distinguish­

ed, where p6 + p ° = p . The micro and macro regressor matrices and parameter 

vectors are partitioned accordingly, as follows . 

~: E (Yh) = ~~~ + ~~~ , h = 1, ... , k , 

w: E(u) = Z656 +Z050 • 

Analogously with X A and ~, define 

X~ ..... 0 O 

X 6 = 
A 

o O 

O O 6 .... ·Xk 
6 _ 6' 6' 6' , ° ° and ~ - (~1 .... ~h .. . . ~k) , and similarly X A and ~ . In terms of these, 

the micro relation can be written 

~: E (y) = X6 1'6 + x O ~O 
A A 

6 ° 6 ° the orders of XA and X A are n x kp and n x kp 

Finally, define the kp x p matrix . 

L=[r r .. ..... r]' 
p p P 

6 6 ° ° 6 ° and the analogous kp x p and kp x p matrices L and L . The aggregat-

ing functions can be reformulated 
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H* : 

z = X L 
A ' 

u = y . 

Also, z6=X~LÖ, and ZO=X~LO 
The reformulation [G *, H *} transforms aggregation of sets of units into, 

formally , a special kind of aggregation of regressors . 

6.3 . 2 The consistency problem 

The semi-aggregated micro and semi-disaggregated macro relations are 
O O O O 

EH~ (u) = exA + XA ~A and E,yG (u) = ')ID + XA ÖD' where 

[-~~- ] 
The following proposition answers the consistency problem. 

Proposition 6.3 . 2 

Consider aggregation of sets of units of analysis. 

A necessary and sufficient condition for consistency to be attainable is that 

statements (i) and (ii) are true. 

If the rank of every ~ is pÖ, statements (ii *) and (ii) are equivalent. 

(i) 
O O O 

~ 1 = ~2 = ..... = ~k . 

(ii) The designed regressor data and associated micro parameters are such 

that 

for at least one pÖ -vector öÖ . 

(ii *) o 
o 
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This is a special case of P. 4 . 2 . 6 or of P . 5 . 1 . 2, whose statement (i) : 

~ O = LO 50 has been broken into k parts, while statement (ii) has been retained . 

Equations (ii) say that ~ ~~ = ~ 56 for h = 1, . .. , k . If the rank of an ~ 
is p6 that ~ can be "divided out" . O 

6 . 3.3 A model-free interpretation 

Throughout 6.3 . 3 . , the n "n matrix W is restricted to be block-diagonal as 

follows . For h = 1, . . . , k, let Wh be a positive-definite ~ x ~ matrix . Define 

W as the block-diagonal arrangement 

o o 

W= o o 

o o 

The matrix W is positive-definite. 

For h = 1, .. . , k, let bh be any p-vector satisfying the normal equations 

Xh Wh ~ bh = Xh WhYh for the h' th (GLS(Wh)) micro regression . Define the total 

micro coefficient vector b of order kp as follows, 

i. e . analogously with the total micro parameter vector ~ of 4.1. 2. The k micro 

normal equation systems can be written jointly 

The block-diagonality of W is essential here . The situation differs from that in 

Zellner [1962a], where the point is that W is not block-diagonal. 

The p< kp matrix of GLS(W) auxiliary regression coefficients will be parti­

tioned C = [ C 1 .... Ch . . .. Ck J conformably with the columns of X A . The aux­

iliary normal equation system Z' WZC = Z' WX A can be decomposed as follows . 
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k 
(iE1 X~WiXi )Ch = XbWh~ , h = 1, . . . , k 

The block-diagonality of W is essential here too . 

The macro regression data [u 1 Z J and the semi-aggregate regression data 
, 

[u : X A J are related by the equation X A L = Z • 

The semi-aggregate regression data [ u i XA J and the total set of micro re­

gression data [y ! XA J are identical. Thus any vector b A of GLS(W) semi­

aggregate regression coefficients is also a total micro coefficient vector b , 

where bh is GLS(Wh ), h = 1, ... , k , and conversely ; cf . 4 . 3.6 . 

The following propositionprovides a model-free interpretation . 

Proposition 6 . 3 . 3 

Consider aggr egation of sets of units of analysis . Let the matrix W be block­

diagonal conformably with X A . Let d, b A and b be any vectors of GLS(W) 

macro, semi-aggregate , and total micro regression coefficients. Let C be any 

matrix of GLS(W) auxiliary regression coefficients . 

Let f..L be a p-vector such that f..L' d is a unique macro coefficient function . De-

fine the 

(i) 

(ii) 

kp-vector >.. = C I f..L with subvectors 
k 

"'d=>..'b = 2: ).'b ,.. A h=1 h h 

o 
o 

>"h = Ch Ii of order p . Then : 

This is a special case of P.4 . 3.4 or of P . 5 . 1. 3 . The second equation of (i) 

follows because b A = b, and b has the subvectors bh . Equation (ii) is a refor­

mulation of L ' >.. = Il . O 

In the terms of 4 . 3.2, this model-free interpretation chooses Qh = Wh ' 

h = 1, ... , k . The block-diagonality of W is essential. For another model-free 

interpretation see 6.4.2. 

If the rank of Z is p, all macro and auxiliary coefficients d and C are unique . 

Then by P.6.3 . 3, d = 2: Ch bh' where 2:Ch = lp ' Any macro coefficient is a weight­

ed sum of all micro coefficients . Group the kp micro coefficients into p families , 

each associated with a separate regressor . The sum of the weights for any one 

family is zero, with one exception. The sum of the weights of the corresponding 

family of k micro coefficients is unity. 



A similar model-free interpretation is given in Klevmarken [1972J section 

5 . 1 . 3.3, for aggregation of sets with partly different regressors , and under 

linear constraints. 
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That a unique macro coefficient need not fall between the small est and largest 

corresponding micro coefficients is shown by an example in Larson and Barr 

[ 1972J. 

6 . 3 . 4 An expectational interpretation 

In 6.3.4, the matrix W need not be block-diagonal. 

The micro models ep imply the semi-aggregated micro relation E H ep (u) = 

= X A i3 A ' wh ere i3 A = i3. A s before, X A L = Z . 

The following proposition provides an expectational interpretation . 

Proposition 6 . 3 . 4 

Consider aggregation of sets of units of analysis . Let d be any vector of 

GLS(W) macro regression coefficients. Let C be any matrix of GLS(W) auxiliary 

regression coefficients. 

Let Il be a p-vector such that Il' d is a unique macro coefficient function . De­

fine the kp-vector A = C 'Il with subvectors Ah = Ch Il of order p . Then : 

k 
(i) E (Il' d) = A' i3 = ~ A' i3 

Hep A h=1 h h 

k 
(ii) h~1 Ah = Il 

o 
o 

This is a special case of P. 4.4 . 3 or of P. 5 . 1. 4 . The second equation of (i) 

follows because i3 A = i3, and i3 has the subvectors i3h . Equation (ii) is a refor­

mulation of L' A = Il. O 

If W is block-diagonal as in 6 . 3.3, then th e implied micro parameter functions 

Ah i3h in P. 6 . 3.4 have the same weight vectors Ah as the implied micro coeffi­

cient functions Ah bh in P. 6 . 3.3 j cf. 4.4.5. 

6.3 . 5 A special case: Individual micro models 

A special case of aggregation of sets of units occurs when each unit of 

analys is has its own incomplete linear model with parameter vector i3h , i. e. 
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ni = .... = nk = 1 . For simplieity, assume that the only designed regress or is 

the intereept regress or . Then by P. 6.3.2 eonsisteney is attainable if and only if 

all Sh are equal, i. e . there is a single ineomplete linear model common to all 

units of analys is. 

Model-free interpretation by P. 6.3.3 is hardly of interest here, for when 

~ = i and P? 2 every bh is underdetermined. An expeetational interpretation 

is always provided by P. 6 . 3 . 4. Sueh an interpretation is derived for the case 

where d is unique and W = I by Z ellner [1962b J. 
n 

6 . 4 A modeI-free interpretation in deviation form regression 

6 . 4. 1 Two fundamental relations 

Seetion 6.4 is based on 2.5 . 4 above . Please read 2.5.4 again! The block­

diagonality of the matrix Q is essential. 

The following abbreviated notation is introdueed for the p x p deviation form 

moment matriees . 

ByP.2.5.4, MT=MWi + .... +MWm +MB . 

The p variables are partitioned into q = p - i regressors and one regressand, 

indicated by the symbols x and y. The moment matriees are partitioned accord­

ingly, 

and similarly for MWh and MB . 

Consider the following m + 2 regressions, all in deviation form in the sense 

of 2 . 5.2. 
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The normal equations of the GLS(Q) total regression are 

where bT is the q-vector of total regress ion (slope) coefficients . 

For h = 1, .. . , m, the normal equations of the GLS(Qh) regression with in the 

h' th subset are 

where bh is the q-vector of regression (slope) coefficients with in the h' th subset. 

The normal equations of the GLS( Q) regression between subsets are 

where bB is the q-vector of regression (slope) coefficients between subsets . 

The regression between subsets treats the m subsets as units of analysis. The 

data for each subset are formed from those of the ~ member units by averag­

ing in the sense of 6 . 2.4. 

By P . 2.5.4, 

xy mxy xy 
MT = h~1 MWh + MB 

By substitution of the m + 2 systems of normal equations, 

(R) 

Further, by P . 2 . 5 .4, 

(S) 

The fundamental relation (R) holds for any q-vectors bT , bh' bB satisfying the 

respective normal equations systems. The fundamental relation (S) may be called 

a set of weight-sum relations . 

Two special cases are of interest. In the first special case, Q = I , so that 
n 

all ~ are also unit matrices . The total and within-subsets regressions are by 

common least-squares . The between-subsets regression is by weighted least­

squares . The weight in MB of the h' th subset is ~ . 

In the second special case, Q = Im' and all ~ are scalar matrices. The 



between-subsets and within-subsets regressions are by common least-squares. 

The total regression is by weighted least-squares. The \\-eight in MT of each 
-1 

member of the h' th subset is ~ . 

6.4 . 2 Aggregation of sets 

In aggregation of sets of units, the macro coefficients are the deviation form 

total regression coefficients bT . If these are unique, the follo\\'ing proposition 

provides a kind of a model-free interpretation . Not only micro terms are involv-

ed. 

Proposition 6.4.2 

Consider aggregation of sets of units. Let Q, Qh and Q be as in 2 . 5.4. As­

sume that the rank of the total regressor moment matrix M;X is q . 

Let bT be the q-vector of GLS(Q) total regression coefficients . For 

h = 1, ... , m, let bh be any q-vector of coefficients in the GLS(Qh) regression 

within the h' th subset. Let bB be any q-vector of coefficients in the GLS( Q) re­

gression between subsets . 

Let AT be any q-vector. Define the q-vectors 

Then: 

(i) A~ bh' h = 1, " ' , m, and A~ bB are unique coefficient functions in the 

respective regressions . 

(ii) 

(iii) 

m 
A'b = L:A'b +A'b 

T T h=1 h h B B 

m 

h,h Ah + AB = AT 
o 
o 

The vectors Ah and AB are unique, and are in the row spaces of M: and 

M~, respectively. By P. 2.1.2. A and P. 2.2.4. A this implies (i). 
xx -1 

If (R) and (S) of 6.4.1 are premultiplied by A' (MT ) ,the outeorne is equa-
---- T 

tions (ii) and (iii). O 
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6 . 4.3 Partitioned aggregation by averaging of units 

In partitioned aggregation by averaging of units of analysis, the macro coeffi­

cients are the coefficients bB in the deviation form regression between subsets . 

If these are unique, the following proposition prov ides a kind of a model-free in­

terpretation. Not only micro terms are involved. 

Proposition 6.4.3 

Consider partitioned aggregation by averaging of units of analys is . Let Q, ~, 

and Q be as in 2.5.4. Assume that the rank of the between subsets regressor 

moment matrix M; is q. 

Let bB be the q-vector of coefficients in the GLS( Q) regression between sub­

sets. For h = 1, ... , m, let bh be any q-veetor of eoefficients in the GLS(~) 

regression within the h I th subset. Let bT be any q-veetor of GLS(Q) total regres­

sion eoeffieients. 

Let )..B be any q-ve et or . Define the q-veetors 

xx xx-1 
)..h = - MWh (MB ) )..B ' h = 1, ••• , m , 

Then: 

(i) )..~ bh ' h = 1, ... , m, and )..~ bT are unique eoeffieient funetions in the 

respeetive regressions. 

m 
(ii) )..~ bB = h~1 )..~ bh +)..~ bT 

(iii) o 
o 

The veetors )..h and )..T are unique, and are in the row spaees of M~ and 

M;, respeetively . By P. 2. 1.2. A and P. 2.2.4. A this implies (i). 
xx -1 

If (R) and (S) of 6.4.1 are premultiplied by )..~ (MB ) , the outcome is equa-

tions (ii) and (iii). O 
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6.4.4 On analogous expE)ctational interpretations 

Consider an attempt to establish an expectational interpretation for aggrega­

tion of sets of units, analogous to the model-free interpretation of 6.4.2. The 

following m + 1 incomplete linear micro models must then be assumed . A model 

~ with parameter vector I3h is valid for the ~ members of the h' th subset of 

units. This is so for h = 1, .. " m . A model <I>B with parameter vector I3B is 

valid for the m subsets , when these are treated as units of analys is in the regres­

sion between subsets . 

As a rule, these assumptions are not mutually consistent. In the regression 

between subsets , the h' th subset is represented by data obtained from its ~ 

members by averaging. Therefore by the reasoning in 6.2.4, the model <I>h is 

valid for the h'th subset average. On the other hand, the model <I>B is also as­

sumed to be valid. By the reasoning in 6.3.2, inconsistency is avoided only if 

13 1 = ... = 13m = I3B • 

Consider also an attempt to establish an expectational interpretation for par­

titioned unweighted aggregation by averaging of non-designed units of analys is , 

analogous to the model-free interpretation of 6.4.3. The following m + 1 incom­

plete linear micro models must then be assumed. A model ~ with parameter 

vector I3h is valid for the ~ members of the h' th subset of units . This is so for 

h = 1, ... , m. A model <I>T with parameters I3T is valid for all the n units of 

analys is . 

As a rule, these assumptions are not mutually consistent. By the reasoning 

in 6.3.2, inconsistency is avoided only if 131 = ... = 13m = I3T . 
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7 A FORMAL ANALYSIS: 

AGGREGATION OF ASPECTS 

7 . 1 General aggregation of regressands and regressors 

7. 1 . 1 Definition and notation 

There are n units of analys is . The miero data form the k ~ 2 regression data 

matriees [y. : x . J of orders n x (1 + p.), i = 1, . . . , k . The union of the k sets 
l , l l 

of miero regressors forms the n x p total miero regressor matrix X, and the 

k miero regress ands form the n x k miero regressand matrix Y ; ef. 5.3 . 1. 

The maero data form the n x (1 + q) regression data matrix [ u ; Z J. 
The regressor and regressand aggregating functions are 

G: Z = XG , 

H : u = Yh 

where G is a given p x q matrix of con.stants, and h is a given k-veetor of con­

stants i ef. 5. 1. 1 and 5 . 3 . 1. 

General aggregation of regressands and regressors ineludes cases that it may 

not be natural to call aggregations; cf. 3 . 2.4. 

The micro and maero relations 

~: y . =Xjl.+e:.i E(e: . )=Oi i=1, .. . ,k, 
l l l l l 

u =ZÖ+1)i 

are sometimes eonsidered . Alternatively , the k miero models are written jointly 

~ : E(Y)=XB*, 

where the augment ed micro parameter p x k matrix B * and its eolumn veetors 

~~ are defined as in 5.3.1. 
l -----

Designed and observed micro and macro regressors are sometimes distin-

guished . The regressor aggregating funetion beeomes 

G: [ 
G6 : GT ] ' o 'O ' [ Z6 'z l = [X6 , X l ----~--- .. :.J :.J I O 
O : G 

The joint miero relations and the macro relation beeome 



.p : E (Y) = X6B * 6 + xO B * ° 
w: E (u) = Z6Ö6 + ZOÖO 

Cf. 5 . 1. 1 and 5.3 . 1, respectively . 

The semi-aggregated regressor matrix and its designed and observed sub­

matrices are defined to be identical to the total micro regress or matrix and its 

6: ° : ° submatrices, X = [X . X 1 = [ X6 'x 1 = X A A: AJ : J . 

7.1 . 2 The consistency problem 

The semi- aggregated micro and semi-disaggregated mae ro relations are 
00 00 

EH.p(U) =aA +XA~A and EwG(U) = 'Yn + XAÖn ' where 

[ ;~] 

cf. 5 . 3 . 2 and 5 . 1. 2 respectively . The following proposition answers the eons ist­

ency problem . 

Propositon 7 . 1 . 2 

Consider general aggregation of regressands and regressors . 

A necessary and sufficient condition for consistency to be attainable is that the 

following two statements are both true. 

(i) The total micro parameter submatrix B * ° associated with observed re­

gressors is such that 

B*Oh = GOöO 

° ° for at least one q -vector ö . 

(ii) The designed total micro regressor submatrix X6 and the associated 

total micro parameter submatrix B*6 are such that, for some öO satisfying (i), 



for at least one q6 -vector 1)6. o 
o 

This is a special case of P. 4 . 2.6. O 
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Statement (i) taken alone is a necessary condition for consistency to be attain­

able. In particular, if h = ik , then B*Ojk = L~tO must be in the column space 

° of G • 

7. 1 . 3 An expectational interpretation 

The micro models E (Y) = XB * imply the semi-aggregated micro model 

EH~(U) = XA~A' where XA = X and ~A = B*h j eL 5.3.3. Further, XAG= Z j 

eL 5 . 1.4 . 

For any p-vector e, let e. be the subvector corresponding to the micro re­
l 

gressor subset included in X. j eL 5 . 3.3. Let h. be the i' th element of h . The 
l -- l 

following proposition provides an expectational interpretation. 

Proposition 7.1.3 

eonsider general aggregation of regressands and regressors . Let d be any 

vector of GLS(W) macro regression coefficients. Let e be any matrix of GLS(W) 

auxiliary regression coefficients. 

Let 1.1. be a q-vector such that 1.1.' d is a unique macro coefficient function. De­

fine the p-vector e = e' 1.1.. For i = 1, ... , k, define the p.-vector A. = h.e .. 
l l l l 

Then: 

(i) 

(ii) 

k 
E (l.I.'d)=e'~ =.LA~~. 
H~ A 1=1 l l 

G' e = 1.1.. o 
o 

This is a special case of P.4.4. 3, except for the second equation of (i), which 

follows since e' ~A = e' B*h = L:h.e' ~~ = Lh.e~~.. O 
l l l l l 

In particular, if h = ik , then A. = e., i = 1, ... , k. 
l l 

Except for special cases such as when X = X for every i, there is no simple 
i 

model-free interpretation. 



7.2 Unweighted simple aggregation of aspects 

7.2. 1 Definition and notation 

Unweighted simple aggregation of aspects will now be defined . As a prelimi­

nary, please read 3.2.1 - 3.2.2 again! What '.vas said in 7.1. applies, and is 

specialized as follows. 

There are n units of analysis and k ;" 2 aspects. The micro and macro data 

form k + 1 similarly partitioned n x (1 + p + q) regression data matrices 

, 'C' S 
[y : X6 : X i Xb J h = 1, ..• , k , 

6' C 6' C C C where [X : X J and [Z i Z J correspond to X and Z of 3.2. 1. 

There are p6 ;" O designed and p C ;" O observed micro regressors X6 and 
C 6 C 

X common to the aspects, and p + p = p. There are q;" O observed micro 

regress ors ~ specific to each aspect h = 1, ... , k, and p + q ;" 1 . For sim­

pli c ity , there are no designed specific regressors . Cf. Figure 3.2. 1. 

The micro regressand vectors Yh' ordered h = 1, ... , k, form the micro 

regressand n x k matrix Y . For each i = 1, ... , q proceed as follows. Select 

the (p + i) I th regressor vector from each micro regression data matrix. Order 

these h = 1, ... , k to form the i I th specific micro regressor n x k submatrix 

X* .. The total micro regressor matrix is 
p+l 

X* = [X6 : XC : X* ' 
, 'p+1 

of order n x (p + kq). Cf. Figure 3.2.2. 

X* l 
p+q~ 

The colurnn vectors of the n x q macro regressor submatrix zS will be de­

noted z S ., i = 1, ... q. Let 16 and F denote the unit matrices of orders pD 
p+l 

and p C. As usual, let jk denote the k-vector of unit elements. The regressor and 

regressand aggregating functions are as follows. 



G: 
, C: s 

[ Z6:,Z 'z , p+1 

H: u = Yjk . 

S l = Z p+q.J 

X* l 
p+q .J 

16 O 

O { 

O O 

O O 

O 

O 

jk 

O 
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O 

O 

O 

The transformation (p + kq) x (p + q) matrix of G is block-diagonal . Each of the 

last q diagonal blocks is jk. Cf. 5.2. 1 and 5,3. 1. 

For brevity , the regress or aggregating function can be written 

G: Z = X*G , 

where Z is the macro regressor matrix and G the transformation matrix . 

The micro and macro relations 

~: 
66 CC ss 

y h = X ~h + X ~h + Xb I3h + \, E ( Sh ) = O, h = 1, ... , k , 

IV: Z 6ö6 zCöC zSöS u = + + +T/, 

are sometimes considered . Alternatively, the k micro models are expressed 

jointly in terms of the total micro regressor matrix as follows. 

~ : E (Y) = [X6 : XC : X * : 
, : p+1 

X* l 
p+q.J 

B* 
p+1 

There are q + 2 micro parameter submatrices . The p6 x k matrix Bt'> consists 

of the p6 -vectors ~~ ordered h = 1, .. . , k. The p C x k matrix BC consists of 

C C * the p -vectors ~h ordered h = 1, ... i k . Each of the k x k matrices B " 
p+l 

i = 1, ... , q, is diagonal . For h = 1, . , . , k, the h t th diagonal element of B * . 
p+l 
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is the i t th element of 13~ • The (p+kq) x k parameter matrix in ~ is an augmented 

miero parameter matrix in the sense of 5.3. 1. 

For brevity , the miero relations can be written 

~: E (Y) = X*B , 

where B is the total (augmented) miero parameter matrix. 

For later purposes define 

13* - B* . 
p+i - p+i Jk ' i=1, ... ,q 

Since B* . is diagonal, 13* . is its main diagonal k-veetor. 
p+l p+l 

The semi-aggregated miero regressor matrix is defined to be identieal to the 

total miero regressor matrix, X A = X * . Partitioning, 

X* l 
p+q" 

The matrix of auxiliary regression eoeffieients can always be taken to be as 

follows, where I is the unit matrix of order p = p6 + p e 
p 

I e1 e 
p q 

o t et 

C= 
cH q1 

O et et 
1q qq 

The submatriees c t are row k-veetors. Cf. 5.2.1. 
sr 

7.2.2 The eonsisteney problem 

The semi-aggregated micro and semi-disaggregated macro relations are 
00 00. S 

EH~(U)=O'A +XA13A andsEWG(U)=Yn+XAÖn' Forl=1, ... , q, letöp-'-i 

note the i t th element of Ö . Then 

de-



fY A X6B6jk 

~o 
A 

---C~--­

B Jk 

~;+1 

~* 
p+q 

. S 
. Ö 
Jk p+q 
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Cf. 5 . 3.2 and 5.2.2. The following proposition .answers the consistency problem. 

Proposition 7. 2. 2 

Consider unweighted simple aggregation of aspects. 

A necessary and sufficient condition for consistency to be attainable is that 

S S 
~ 1 = ..... = ~k . 

o 
o 

This is a special case of P. 7 . 1 . 2 . Some parts of the condition stated there 

are automatically fulfilled, and have been omitted . The critical part is the re­

quirement that for i = 1, . . . , q the total micro parameter subvector ~ ;+i is such 

that 

* . S 
P p -'- i -= Jk Öp +i 

S 
for some scalar Ö .• This is so if and only if the i I th elements of 

p~ . 
are all equal . The argument is repeated for i = 1, . .. , q. O 

SS 
~1 ' ... , ~k 

The consistency condition can be formulated in words. For any given 

i = 1, ... , q, the following must be true . The micro parameters associated with 

the (p + i) I th micro regressors specific to the k aspects are all equal. The micro 

parameters associated with regressors common to the aspects, e . g. the inter-
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eepts, are not restrieted . The k miero models are parallei hyperplanes in the 

spaee of the regressand and the q speeifie regressors . 

7. 2. 3 An expeetational interpretation-

The micro models E (Y) = X*B imply the semi-aggregated miero model 

EH~ (u) = XAf'A' where XA = X* and 

* f' A = I3p +1 

For r = 1, ... , p, let the r I th element of f' A be denoted L: f'hr' where the sum 

is over h = i, ... , k . Further, X A G = Z • 

Expectational interpretations will be given for two kinds of macro regression 
S 

coefficients; ef . 5 . 2.3 . The first kind, d ,r = i, ... , q, is associated with a 
----- p+r 

macro regressor that is the sum of k micro regressors specific to the aspects. 

Proposition 7. 2. 3 . A 

Consider unweighted simple aggregation of aspects . Let d be any veetor of 

GLS(W) macro regression coeffieients . Let C be any matrix of GLS(W) auxiliary 

regression coefficients . 
S 

If d is a unique eoeffieient function in the maero regression, then 
p~ . . 

S q * 
(i) E (d ) = L: c ' f' 

H~ p+r i=1 ir p+i ' 

(ii) jk' c . lr 

1 if i=r 

o if ifr. 

o 
o 

As in the demonstration of P. 5 . 2.3. A, d:+r = J.J.~+r d, and Ap+r = C' J.J.p+r is 

the (p + r) 'th row vector of C . 

The proposition is a special case of P. 7 . 1 . 3 , except that e' ~ A is not explicit­

ly deeomposed into k implied miero parameter functions . D 
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C 
The second kind of macro regression coefficient, d , r = 1, ... , p, is asso­

r 

ciated with a designed or observed regressor common to the aspects. For 

i = 1, . . . , q, let c~ denote the r' th row vector of the submatrix C. of C . rr . l 

Proposition 7. 2 . 3 . B 

The same assumptions as in P . 7.2 . 3. A. 

If dC is a unique coefficient function in the macro regression, the 
r 

C k q 
(i) d - '-" + ,.,* 

EH .;,( r)-h~1f'hr i~1Cirf'p+i ' 

(ii) J"c =0 i=1, . .. , q . 
k ir ' 

o 
o 

C 
As in the demonstration ofP.5.2.3.B, d =/.l'd, and A =C'j.L isther'th 

r r r r 
row vector of C . 

The same argument as for P,7.2.3.A. D 

The expectational interpretation can be formulated in words. The micro ex­

pectation of a unique macro coefficient d , r = 1, .. . , p + q, is the sum of 
r 

p + q terms. Each of the first p terms is a weight times the sum of the k micro 

parameters associated with a regressor common to the aspects. If i = r , the i' th 

weight is unity, otherwise zero . Each of the other q terms is a weighted sum of 

the k micro parameters associated with a set of corresponding micro regressors 

specific to the aspects. If p + i = r , the i' th weight sum is unity, otherwise zero. 

CL 5.2.3. 

As a rule, there are no analogous model-free interpretations. 

A simple and instructive demonstration of a somewhat simplified version of 

P . 7.2.3 . A and P.7.2.3B is given by Kloek \1961J. 

7.2.4 A model-free interpretation in deviation form 

Consider unweighted simple aggregation of aspects where p = 1, and the sin­

g'le common regressor is the intercept regressor. Consider a unique intercept­

free coefficient function Il' d in the GLS( I ) macro regression. Then j.L' d can be 
n 

computed from the deviation form macro regression, and interpreted in two 

steps as follows. Not only micro terms are involved . 

Recall the analysis of 3.2.3, especially Figure 3.2.3. In the terminology of 
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6 .4.1, the macro regression is the regression between units in the figure. 

First, if the macro regression is of full rank, then P.6.4.3 interprets it in 

terms of the n regressions within units and the total regression. Second, if the 

total regression is of full rank, then P . 6 . 4 . 2 interprets it in terms of the k re­

gressions within aspects (i. e. the micro regressions) and the regression bet\\'een 

aspects . The distinction between partitioned aggregation of units by summation 

and by averaging causes no complications . 

The suggested interpretation is model-free but hardly useful. 

7 . 2.5 Analysis in terms of regress ands and regressors 

Unweighted simple aggregation of aspects can be decomposed into two consec­

utive steps as follows j cf. 3 . 2.2 . 

The first step starts from the micro data [Y : X* J and performs an unweight­
~ 

ed aggregation of regress ands u = Yjk producing the intermediate data [u i X * J. 
The second step starts from the intermediate data [u j X * J and performs an 

unweighted partitioned aggregation of regressors Z = X*G producing the macro 

data [u ! Z J. 
In the first step, consistency is easily achievedj cf. P . 5.3.2. The joint micro 

models E (Y) = X* B imply the intermediate model E (u) = X * 13 A ' where the inter­

mediate parameter vector 13 A = Bjk is as in 7.2.3. 

In the second step, consistency is not automatic . Since the second step is a 

partitioned aggregation of regressors , P . 7.2.2 is a special case of P. 5.2.2. 

The expectational interpretation in 7.2.3 is primarily in terms of the inter­

mediate parameter vector 13 A . Since the second step is a partitioned aggregation 

of regressors , P. 7.2.3. A and P. 7.2 . 3. B are special cases of P. 5.2 . 3 . A and 

P.5 . 2.3.B . 

An analogous model-free interpretation would be primarily in terms of an 

intermediate coefficient function in the regression of u upon X *. Since the first 

step is an aggregation of regress ands, such an interpretation could not be brought 

further j eL 5 . 3 . 3 and 4 . 3 . 6 . 
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7.2.6 The connection with Theil 's analysis 

Unweighted simple aggregation of aspects is more general than "Aggregation 

over one set of individuals" , but less general than "Aggregation over several 

sets of individuals or commodities", as defined by Theil [1954 J. Let the latter 

be simplified as follows, in Theil 's notation. For some A, H = 1 . For the other 
A 

X, HA = I, and it is known that ~Xh, i = O except when i = h . The outcome of the 

simplification is unweighted simple aggregation of aspects. 

If Theil [1954 J Theorem 9(ii) is simplified as just indicated, the outcome is 

P . 7. 2 . 2. If Theil [1954J Theorem 2 is similarly simplified, the outcome is 

P . 7 . 2 . 3 . A and P . 7 . 2 . 3. B, except that Theil distinguishes explicitly only one 

micro regressor common to the aspects, the intercept regressor; cf. 5 . 2.4. 

In Theil's terminology, the intermediate parameters ~ A = Bjk are "derived 

microparameters" . 
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8 A FORMAL ANALYSIS : 

DISCUSSION AND SOME CONCLUSIONS 

8. 1 The nature of the macro relation derived by Theil 

8 . 1.1 A summary of the formal analysis 

The formal analysis is now concluded. It has been concerned with two prob­

lems and five types of linear aggregation . 

The consistency problem was formulated in!:3., especially 4 . 2 . 7. An answer 

h as been provided for each type and variant of aggregation considered . 

The interpretation problem has occurred in two variants . The model-free in­

terpretation was introduced in ~. , especially 4.3.6 . Simple model-free inter­

pretations have been provided for two sub-types of aggregation only. One is par­

titioned aggregation of regressors, P . 5 . 2.3.A and P.5.2 . 3.B . The other one is 

aggregation of sets of units when the macro GLS matrix W is block-diagonal, 

P. 6.3 . 3 . The model-free interpretations suggested in ~ and 7. 2 . 4 are not ex­

clusively in micro terms. 

The expectational interpretation was introduced in 4.4, especially 4.4.4. An 

expectational interpretation has been provided for each type and variant of aggre­

gation considered. The weights of the implied micro parameter function(s) we re 

often found to be subject to simple weight-sum relations. 

The following summary considers six sub-types of linear aggregation. First, 

unweighted partitioned aggregation of regressors , ~. Second, aggregation of 

regressands, ~. Third, unweighted partitioned aggregation by summation of 

units of analys is , 6 . 2. 1 - 6.2.3 . Fourth, ditto by averaging, 6.2.4. Fifth, ag­

gregation of sets of units, ~. Sixth, unweighted simple aggregation of aspects, 

7.2. 

The restriction in several cases to "unweighted" aggregation could easily be 

removed. Generalization to the more general variants of aggregation of regres­

sors , 5.1, of units of analysis, ~, and of aspects, 7 . 1, would meet with no 

problems of principle. 

The results of the formal analysis are collected in Table 8.1.1. The model­

free interpretation is however not covered . 
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Consistency will be said to be automatic when, whatever the total micro para­

meter vector ~, a macro parameter vector Ö can always be found such that con­

sistency is attained . Otherwise, consistency will be said to be exception al. 

The expectational interpretation will be called data-free when the weights >.. 

(or ~h ) of the implied micro parameter function(s) are fully determined by the 

weights 11 of the interpreted macro coefficient function. Otherwise the expecta­

tional interpretation will be called dependent on the micro regressor data and on 

the macro GLS matrix. 

Table 8. 1 . 1 The results of the formal analys is 

Sub-type of 
Consistency 

Expectational Weight-sum 
aggregation interpretation relations 

unw . partit. exceptional dependent yes 
of regressors P.5 . 2.2 P .5.2 . 3 . A/B 

of regressands 
automatic data-free 
P.5 . 3.2 P.5.3 . 3 

unw. part. by impossible dependent no 
sum . of units (or automatic) (or data-free) 

P.6 . 2.2 P . 6 . 2 . 3 

unw . part. by automatic data-free 
ave . of units P . 6 . 2.4 P.6 . 2.4 

of sets 
exceptionai dependent yes 
P.6 . 3 . 2 P . 6 . 3 . 4 

unw. simple exceptional dependent yes 
of aspects P.7 . 2 . 2 P. 7. 2 . 3 . A/B 

In those sub-types of aggregation where consistency is exceptional, consisten­

cy makes the otherwise dependent expectational interpretation data-free. 

The further discussion in ~ and ~ is primarily about those types of aggre­

gation where consistency is exceptional, the expectational interpretation is de-
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pendent on the micro data, and there are simple weight-sum relations for the im­

plied micro parameter function(s) . This is the case in (unweighted) simple aggre­

gation of aspects, in (unweighted) partitioned aggregation of regressors, and in 

aggregation of sets of units. The discussion applies also to inconsistent unweight­

ed partitioned aggregation by summation of units of analysis. 

8 . 1 • 2 A fundamental question 

Consider simple aggregation of aspects, or partitioned aggregation of regres­

sors , or aggregation of sets of units . Consistency is exceptional, the expecta­

tional interpretation is dependent on the micro regressor data, and there are 

weight-sum relations. 

Assume given linear regressor and regressand aggregating functions G and 

H . Consider a given p-columned macro regressor matrix Z such that each 

macro regression coefficient d. , i = 1, ... , p, is a unique macro coefficient 
l 

function. 

The expectational interpretation assumes a micro relation ~ that consists of 

k ~ 1 incomplete linear models with parameter vectors I'h' h = 1, ... , k. It in­

terprets the macro regression coefficients as follows. 

k 
EH~(di)=h~1Alhl'h ' i= 1, ... , P . 

As a rule, the weight vectors \h of the implied micro parameter functions are 

dependent on the (macro and) micro regressor data, and on the macro GLS ma­

trix W. 

As stated in 1. 3.3, Theil [1954J postulates a linear macro relation in the 

macro variables, say WT , whose parameters are 

As a rule, Theil's macro parameters are thus functions of the micro regressor 

data. Theil discusses this propert y of ÖTi in Theil [1954 J, section 2.5. 

Theil's use of the expectational interpretation should be confronted with the 

consistency problem. 

The consistency problem considers a micro relation.;, as above, and a macro 
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relation W that consists of an incomplete linear model with parameter vectorö . 

It establishes conditions that [~1"'" ~k} must satisfy if there is to exist a Ö 

consistent with them. These conditions are very restrictive. 

The following conclusion can be dra\\11. As a rule, Theil's maero relation WT 

cannot be an incomplete linear model. In partieular , its disturbanee terms, say 

T)Tj' cannot be those of an incomplete linear model. Theil diseusses their prop­

erties in Theil [1954 J, seetion 6.3 . See also Wu [1973 J. 
What kind of a relation is the macro relation WT derived by Theil ? 

8.1.3 An algebraieal example 

The fundamental question just asked will be discussed in the remainder of 8.1, 

and in 8.~. The diseussion will be in terms of simple aggregation of aspects; 

this is rather customary. Analogous arguments apply to partitioned aggregation 

of regressors, and to aggregation of sets of units; eL the end of 8. 1.1. 

Consider unweighted simple aggregation of k;:, 2 aspeets indexed b = 1, ... , k . 

There are the intercept regressor and a single observed regressor speeifie to 

the aspeets. There are n;:, 3 units of analysis indexed j = 1, ... , n. The rank of 

the n x 2 macro regressor matrix is assumed to be 2. 

The regressor aggregating funetion G, the regressand aggregating function 

H, and the miero relation ~ are as follows. 

k 
G: z j = h~ 1 ~j , j = 1, .•. , n . 

k 
H: Uj = h~1 Yhj , j = 1, ... , n . 

~: 
/::, O 

Yhj = ~h + ~h~j + ehj ; E(~j) = O; h= 1, ... , k; j = 1, ... , n. 

By P. 7.2.2, a necessary condition for consistency to be attainable is that 

~~ = •.•• = P~ . This condition is assumed E.2!. to be satisfied. 

Only common least-squares will be considered. The macro regression line 

fitted by common least-squares regression is denoted 

/::, O 
u=d +d z. 

The common least-squares auxiliary regressions, say A, and their residuals , 

are denoted 
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A: 

The auxiliary regressions are model-free . The macro regression, coefficients 

can be interpret ed by me ans of the micro relation, .p . 

Theil's macro slope and intercept parameters are defined by the expectational 

interpretations of the macro slope and intercept coefficients . These interpreta­

tions, and the associated weight-sum relations, are given by P. 7 . 2 . 3. A and 

P. 7.2.3. B . The macro parameters derived by Theil are thus as follows. 

öO = 
k O O 

T h~1 ch 13h , 

k O 
where h~1 ch = 1 

(T) 
k D. k D. O 

öD. = 
T h~1 13h + h~1 ch i3h 

where 
k D. 

h~1 ch = O 

Via the auxiliary regression coefficients, ö~ and ö~ are dependent on the micro 

regressor data . 

If the auxiliary regressions A are substituted into the semi-aggregated micro 

relation H ~, the outcome is the following linear relation in the macro variables. 

H~A : Uj = h~1 i3~ +S1 c~13~ + (h~1 c~i3~) Zj + 

k O k 
+ h~1 i3h vhj + hE1 ehj , j = 1, . . " n . 

The intercept and slope of H ~ A are Theil 's ö~ and ö~ . 

The relation H ~A derived from ~ is the macro relation -v. .=d.;;;e,;;.r;:.iv;,.,;e:..:d;....::;b"-y_T;:.h;;.e;:.l~·l. . T-
In symbols, 

This analysis of IVT is implicit in Theil [1954 J. Perhaps the first explicit state­

ment of it is Allen [1956 J, section 20.2, where however the micro disturbances 

~j are omitted. The complete version is found La . in Kloek [1961J. 

Theil's macro relation can be written as follows. 
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T 

It may be represented in figures by the line 

~ O 
u=Ö +15 z 

T T 
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j = 1, .. " n . 

The macro relation ~T is derived from the micro relation ~. It remains to in­

vestigate what properties of ~T follow from those of ~. 

8.1.4 Three numerical examples 

The algebraical example of ~ will no,,' be specialized into three different 

numerical examples. Throughout, "lf ( €) " denotes any homogeneous linear func­

tion of the micro disturbances €hj 

Examples 8.1.4.1 and 8.1.4.2. k = 2 and n = 4. The micro parameters are 

as fo11ows. 

15 + x 
1j 

Example 8.1.4.1. The micro and macro data are as in Table 8.1.4.1. A. The 

following results are easily verified. 

o 1 
d =-2"+lf(€), 

O 1 
ÖT = - 2"' 

O 3 
c = --

2 2 ' 

" 
c~ = - 38 

1 

L c = 38 
2 

The relations (T) of 8.1.3 are satisfied. The disturbances of the macro relation 

~T are as in Table 8.1.4.1.B. 
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Table 8 . 1.4 . 1 . A Micro and macro data in example 8.1 . 4 . 1 

x 1j y 1j x 2j Y2j z. u. 
J J 

1 8 23 + €11 11 27 + € 
21 

19 50 + € 11 + €21 

2 11 26 + € 
12 

8 21 + € 
22 

19 47 + €12 + €22 

3 13 28 + € 
13 

8 21 + € 
23 

21 49 + €13 + €23 

4 16 31 + € 
14 

5 15 + € 
24 

21 46 + €14 + €24 

Table 8. 1.4. 1. B Macro disturbances in example 8. 1.4. 1 

v 1j v 2j 1)Tj 

1 
3 3 3 

2 2 2 + €11 + €21 

3 3 3 
2 

2 2 -2+€12+€22 

3 3 3 
3 

2 2 2 + € 13 + €23 

4 
3 3 3 
2 2 -2+€14+€24 

Example 8.1.4.2. The micro and macro data are as in Table 8.1.4.2.A. The 

following results are easily verified . 

° d =1+lf(€), 

Öo = 1 
T ' 

d Li = 32 + lf ( € ) 

ö6 = 32 j 
T 

cLi = _ 12 . 
1 ' 
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The relations (T) of 8.1. 3 are s atis fied • The disturbances of the macro relation 

WT are as in Table 8.1.4.2.B . 

Table 8.1.4.2 . A Micro and macro data in example 8. 1.4.2 

x1j y 1j x Y2j z. u. 
2j J J 

1 5 20 + €11 12 29 + € 
21 

17 49 + € + € 
11 21 

2 7 22 + € 
12 

12 29 + € 
22 

19 51 + € + € 
12 22 

3 9 24 + €13 12 29 + € 
23 

21 53 + € 13 + €23 

4 11 26 + €14 12 29 + € 
24 

23 55 + € + € 
14 24 

Table 8. 1 .4. 2. B Macro disturbances in example 8. 1 . 4. 2 

v 1j v 2j T)Tj 

1 O O €11 + €21 

2 O O €12 + €22 

3 O O € 13 + €23 

4 O O €14 + €24 

Examples 8 . 1.4 . 1 and 8 . 1.4.2 simplified. The analysis above remains valid 

when €hj = O for h= 1,2 and j = 1,2,3,4. Figure 8·.1.4.A illustratesthis sim­

plified (or degenerate) situation. 
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u 
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"- ..... 
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45 

I I • t I I I I I t z 
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x -------- data and relation in example 8. 1. 4 . 1 

o ----------- data and relation in example 8.1 . 4 . 2 

plausible relation, see 8. 2 . 1 

Figure 8.1. 4.A Macro data and relations in examples 8.1.4.1 and 8.1.4.2 

when all micro disturbances vanish 
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Example 8. 1.4.3. k = 4 and n = 5 . The micro parameters are as follows. 

15 + x 1j ; 

5 + 2X2j ; 

E Y - r;;.6 + r;;.0 x - 5 + 3x . 
q, 3j -"'3 .., 3 3j = - 3j , 

6 O 
Eq, Y4j = ~4 + ~4 x4j == - 15 + 4x4j 

The miero and maero data as as in Table 8 . 1.4.3.A. The following results are 

easily verified. 

öO 5 
ö6 = O =- , ; 

T 2 T 

O 9 6 
e 1 = 10 ' e 1 = - 25 ; 

O 6 6 c =-- c = 31 ; 2 10 ' 2 

O 6 e 3 = O , c = 13 ; 
3 

O 7 e 6 = _ 19 c =- , 
4 10 4 

The relations (T) of 8, 1 ,3 are s atisfied. The disturbanees of the maero relation 

WT are as in Table 8, 1 ,4 , 3 , B. 

Table 8.1.4 . 3.A Miero and maero data in example 8.1.4.3 

x1j x2j x3j x4j Ey 1j EYZj EY3j EY4j z, Eu. 
J J 

1 6 11 13 6 21 27 34 9 36 91 

2 9 8 13 8 24 21 34 17 38 96 

3 15 3 13 9 30 11 34 21 40 96 

4 11 8 13 10 26 21 34 25 42 106 

5 14 5 13 12 29 15 34 33 44 111 
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Table 8 . 1.4 . 3 . B Macro disturbances in example 8 . 1.4 . 3 

v 1j v2j v3j v 4j 7'JTj 

1 
14 16 2 

1 + L ~1 10 10 
O 

10 

2 2 4 
1 + L€ 2 

10 10 
O 

10 h2 

3 
40 40 

O O - 4 + L~3 10 10 

4 
18 22 4 

1 + L€ 
10 10 

O 
10 h4 

6 4 2 
1 + L€ 5 

10 10 
O 10 h5 

The analys is above re mains valid when ~j = O for h = 1,2, 3,4 and 

j = 1, . . . , 5. Figure 8. 1. 4 .. B illustrates this simplified (or degenerate) situation . 

u 

110 
x 

x 
105 

100 

x x 
95 

x 
90 

85 

I I I I I ) z 
34 36 38 40 42 44 46 

Figure 8. 1.4 . B Macro data and relation in example 8.1 . 4.3 when all micro 

disturbances vanish 
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8 . 1.5 Systematic disturbances and variable parameters 

The macro relation WT der ived by Theil will now be compared with the in­

complete linear model of 2.3. 1, and with certain generalizations of the latter . 

The incomplete linear model is concerned with a given n-rowed regressor 

matrix Z . With each row vector z ~ of regressor data occurring in Z there is 
) 

associated a stochastic regressand element u . . The incomplete linear model 
) 

partly specifies the distribution of u . as follows. 

u . = z ~ Ö + 11. , 
) J ) 

) 

E (11. ) = O 
J 

The same parameters Ö apply to each row j = 1, ... , n of Z . The disturbances 

11. have zero expectation . 
) 

In the macro relation W T of 8 . 1.3, the micro relation ~ implies that as a 

rule 

Examples 8 . 1. 4 . 1 and 8 . 1. 4 . 3 illustrate this propert y of W T' see F igures 

8. 1.4 . A and 8 . 1.4 . B . The macro disturbances are in this sense systematic . 

If the specification E (11- ) = O is simply dropped, the incomplete linear model 
) 

of 2 . 3.1 'becomes vacuous . The following generalization permits E ( '!'l. ) i O but 
---- "~J 

avoids vacuity . There exists a single-valued function f (. ) such that 

u . = z ~ Ö + 11., E ( 11. ) = f (z ~ ) . 
) ) J J ) 

The expected value of u . is then still uniquely determined by the vector z ~ . 
J J 

In the macro relation WT of 8.1. 3, there need not exist such a function f (. ) . 

Example 8.1.4 . 1 illustrates this, see Figure 8. 1.4 . A . The expected macro dis­

turbance E ('!'lT') is a function of the micro regress or data aggregated into the 
~ " J ---

corresponding macro data z~ . 
J 

When the linear model is applied in practice, and the regress ors are not all 

designed (2 . 3.3) , the following generalization is usually taken for granted . Many 

row vectors z' of regressor data that did not occur in Z could have done so; 
r 

but it is hardly ever stated precisely what vectors z' are eligible . Associated 
r 

with any such vector z' there would be a stochastic regressand element u . 
r r 

The linear relation u = z' Ö that is valid for the given n units of analysis would 
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be valid for any new units of analysis too . This generlization is probably inspir­

ed by the regression model (2 . 3 . 4) . 

In the macro relation ~T of 8 . 1 . 3, the macro parameters å~ and å~ deriv­

ed by means of the micro relation ~ are not independent of the regressor data . 

Examples 8 . 1 . 4 . 1 and 8. 1. 4.2 j ointly illustrate this propert y of ~ T' see Figure 

8 . 1.4 . A . The total micro parameter vector ~ is identical in the two examples, 

but the macro parameters differ . 

The macro parameters åT are functions, via the auxiliary regression coeffi­

cients , of the total set of micro regressor data . If in example 8 . 1 . 4 . 2, units 

j = 1 and j = 4 are replaced by replications of units j = 2 and j = 3, then the two 

examples have identical macro regressor matrices . Yet the mae ro parameters 

differ . The mae ro parameters are in this sense variable . 

In summary, the micro mode Is ~ imply the following two important properties 

of the macro relation ~T derived by Theil. 

The first propert y is for a given set of micro regressor data. The macro dis­

turbances are systematic . The usually non-zero expected value of the macro dis­

turbance of a given unit of analys is is affected by the micro regressor data of the 

unit. Thus the macro relation ~T in the mae ro variables does not provide unbi­

ased forecasts of the macro regressand . 

The second propert y is concerned with changing the micro regressor data. 

The macro parameters of ~T are not determined by the micro parameters of ~ 

alone . They are affected also by the total set of micro regressor data given . As 

a rule, two different sets of micro regressor data give different macro parame­

ter vectors åT' and in fact different macro disturbanee vectors 17T too . Thus 

when the set of micro regressor data is changed , nothing in the macro relation 

~T need remain permanent. 

The macro relation ~T is presumably intended for use also when the micro 

regressor data underlying the actual macro regress or data are not known . Its 

parameters åT are however not invariant w . r . t. the unknown micro regressor 

data . To call åT macro parameters may therefore by rather misleading . 
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8.1 . 6 On zero means and correlations 

The macro relation WT derived by Theil is not a generalized linear model in 

the sense discussed in 8.1.5. It is perhaps tempting to argue that it is neverthe­

less essentially equivalent to a linear model in the following sense. "The macro 

disturbance 1'/T has zero mean, and zero correlation with any non-intercept mac­

ro regressor . " Is this argument correct? 

Two kinds of means and correlations must be distinguished. First, if x and y 

are two random variables, their joint distribution determines two means J.L and 
x 

J.L ' and a correlation p • Such means and correlations will be called distribu-
y xy 

tional. Second, if x. and y. , j = 1, .. " n, are two series of given numbers, one 
---- J J 
can compute from them two means x and y, and a correlation r Such means 

xy 
and correlations will be called model-free (or descriptive) . 

Again, the explicit attention will be limited to the c1ass of aggregations consid­

ered in 8.1.3. Three different models of the form 

will be compared. One of them is Theil's model WT . There, the macro disturb-

ance is 

where vhj are residuals from the auxiliary regressions. 

First, consider a regression model in the sense of 2.3.4. The standard as­

sumptions are as follows. For any j , the distributionaI mean of 'rI. is zero. For 
J 

any j and k, inclusive of k = j , the distributionaI correlation between 77. and 
J 

zk is zero. On the other hand, consider a given realization (77., z.), j = 1, ... , n 
J J 

of the regression model. As a rule, the model-free mean 1i and the model-free 

correlation r ,computed from the realization, are not exactly zero. 
1'/z 

Second, consider a linear model in the sense of 2.3.1. The standard assump-

tions are as follows. For any j , the distributionaI mean of 1'/j is zero. Since zk 

is a non-stochastic constant, the distributionaI correlation between 1'/j and zk is 

zero by definition. On the other hand, consider a given realization 17- ' 
J 

j = 1, ... , n, of the linear mode l for given z. , j = 1, ... , n. As a rule, the 
J 

model-free mean ti and the model-free correlation r ,computed from the 
77 z 
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realization, are not exactly zero. 

Third, consider Theil's model IVT and the model-free properties of a given 

realization TlT" j = 1, .. . , n, for given z . , j = 1, . . . , n . By P . 2.2 . 3(ii), for 
J J 

h = 1, . . . , k the following is true . The model-free mean of the h' th auxiliary 

residual vh is zero, and so is its model-free correlation with z. But for 

h = 1, .. " k the following is also true . The model-free mean of the h' th micro 

disturbance e:h is not exactly zero, nor is its model-free correlation with z . 

Thus the model-free mean of TlT , and its model-free correlation with z, are 

both as a rule not zero. 

Fourth, consider IVT and the distributionai properties of its disturbances 

TI Tj , j = 1, . .. , n. Since zk is a non-stochastic constant , the distributionai cor­

relation between TlTj and zk is zero by definition. But the distributionai mean 

of T/Tj' as determined by ~ , is as a rule not zero . 

Is IVT essentially equivalent to a linear model in the sense indicated at the be­

ginning of 8. 1.6? The model-free mean of nT and its model-free correlation 

with z are not relevant to this question. Moreover, they are not zero. It is the 

distributionai means of 'T/Tj and their distributionai correlations with zk that 

matter . The distributionai correlations are indeed zero by definition. But the 

distributionai means of 'T/Tj are not zero. Therefore WT is not essentially equiv­

alent to a linear model. 

8. 1. 7 A simple reinterpretation 

Once more, the explicit argument will be in terms of the class of simple ag­

gregations of aspects of 8. 1. 3 . Analogous arguments apply to other clas ses and 

types of aggregation. 

The parameters of the macro relation IVT according to Theil are derived by 

me ans of two consecutive operations . The first operation computes the macro 

regression coefficients dO and dÖ . The second operation takes the micro expec­

tations EH~(dO) and EH~(dÖ) of the macro regression coefficients. Both ope­

rations are linear in the macro regress and data u. , j = 1, . .. , n . If the order 
J 

of the two operations is reversed, the result remains unaffected. 

Let the order be revers ed . The first operation takes the micro expectations 

E H (u.) of the macro regress and data, 
~ J 
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By substitution of the auxiliary regressions, 

Compare with HepA of 8.1. 3. 
O. t::. 

The second operation computes the slope ÖT and mtercept öf in the regres-

sion of EH~ (u) upon z. Since for h = 1, ... , k the h' th auxiliary residual vh 

has zero model-free mean and correlation with z, the outcome is as follows. 

The second operation is a model-free regression computed from the data 

j = 1, ... , n . 

The regress and has been derived by means of the micro models ~, but the re­

gression itself refers to no model. 

Three examples of the model-free regression of EH~ (u) upon z are shown in 

Figures 8.1.4 . A and 8.1.4. B. 

A simple reinterpretation of Theil's macro parameters ÖT can now be formu­

lated in general terms . The macro parameters derived by Theil are the regres­

sion coefficients in the model-free regression of EH~ (u) upon Z, where EH~ (u) 

is the micro expectation of the macro regressand, and Z is the set of macro 

regressors. 

8.2 The concept of aggregation bias 

8. 2 . 1 Some terminology 

The macro parameters derived by Theil are Ii near functions of the micro 

parameters. If the aggregation is sufficiently simple, it is tempting to guess the 

weights of those functions. Thus in the class of simple aggregations of aspects 
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introduced in 8. 1.3, the following linear functions have som intuitive appeal . 

Macro parameters defined by such a priori plausible weight systems will be 

called plausible mae ro parameters. 

No attempt will be made to formulate a general definition of plausible macro 

parameters. It is doubtful whether such a rule could be agreed upon even for 

simple aggregation of aspects, unIess the aggregation is unweighted . The discus­

sion below in !:3. is limited to the c1ass of aggregations of 8.1 . 3. 

The difference between a macro parameter as derived by Theil, and the cor­

responding plausible macro parameter, is called by Theil [1954 J, moment 6.4.5, 

an aggregation bias. In 8. 1 . 3 there are the following two aggregation biases . 

o O O k 010 
e = 0T - 0p = h~1 (ch - k ) ~h ' 

6 6 6 k 6 O 
e = 0T - Op = hE1 ch ~h 

Because of the weight-sum relations for the auxiliary regression coefficients, 

these aggregation biases can be expressed in terms of certain model-free covar­

iances across the aspects, between auxiliary regression coefficients and micro 

parameters . See Theil [1954 J, moment 2 . 3.3. 

The aggregation biases in the three examples of 8.1.4 are listed in Table 

8.2.1. 

Table 8 . 2.1 Aggregation biases in examples 8 . 1.4.1 - 8.1.4.3 

example 
O 

00 
°T p 

8.1.4.1 
1 3 
2 2 

8.1.4.2 1 
3 
2 

8.1.4 . 3 
5 5 
2 2 

O e 

- 2 

1 

2 

o 

58 

32 

o 

20 38 

20 12 

o o 
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The plausible macro relation 

/::, ° 1V :u=ö +6 z p p p 

common to examples 8 . 1 . 4 . 1 and 8 . 1 . 4 . 2 has been drawn into Figure 8 . 1 . 4 . A . 

In example 8 . 1.4 . 3, Figure 8 . 1.4 . B, 1Vp coincides with 1VT . 

8 . 2 . 2 Two conflicting points of view 

In standard statistical terminology, a bias is the expected difference between 

an estimator p and the parameter TT estimated, E (p) - TT. It is natural to try to 

inter pr et the term "aggregation bias" accordingly . The estimator is a macro re­

gression coefficient. For example, p = dO and E (p) = 6~ . As to what is the 

par ameter estimated, two different points of vieware possible . 

The first point of view is that the parameter estimated is the corresponding 

plausible macro parameter , TT = 6~ . The aggregation bias e ° is then a bias in 

the ordinary sense of the word . If this point of view is adopted , the macro para­

meter 6~ derived by Theil loses its status as the real macro parameter. 

The second point of view is that the parameter estimated is the macro para­

meter ö~ derived by Theil. If th is point of view is adopted, the estimator dO 

is unbiased , and the aggregation b ias is not a bias in the ordinary sense of the 

word . The plausible macro parameter öO and the aggregation bias e ° lose 
p 

most of their interest . 

A somewhat sharp formulation of the two conflicting points of view is as fo1-

lows . Either the macro parameters derived by Theil are not parameters, or else 

the aggregation biases are not biases . 

8 . 2 . 3 Aggregation bias and consistency 

The interrelations of three possible properties of an aggregation will now be 

discussed . Again, the discussion is limited to the class of aggregations of 8.1. 3 . 

The first propert y is that consistency in the sense of 4.2.4 is attainable . By 

p . 7 . 2 . 2, a necessary and sufficient condition is as follows. 

~ ~ = = ~~ = • • ••• = ~~ 



180 

This propert y will be abbreviated CA (consistency attainable). 

The second propert y is that the expected disturbances in the macro relation 

'liT vanish. From 'liT of 8.1. 3, 

k O 
E ~ ( 77Tj ) = h~ 1 f'h v hj = O , j = 1, ... , n . 

This propert y will be abbreviated VMD (vanishing macro disturbances) . 

The third propert y is that the aggregation biases vanish . From 8. 2 . 1, 

O k O 1 O 
e = h~1 (ch - k ) f'h = o , 

to k to O 
a = h~1 ch f'h = o 

This propert y will be abbreviated VAB (vanishing aggregation biases) . 

If the auxiliary regressions A of 8. 1. 3 are summed over the aspects, the 

result is 

By the weight-sum relations in (T) of 8.1.3, this implies 

j = 1, ... , n . 

This is a restriction on the auxiliary residuals . 

By the restriction on the auxiliary residuals , CA implies VMD . By the 

weight-sum relations (T) for auxiliary regres sion coefficients, CA implies V AB. 

Example 8 . 1.4 . 2 shows that VMD implies neither VAB nor CA. CL Figure 

8. 1.4 . A and Table 8 . 2 . 1. 

Example 8.1. 4 . 3 shows that V AB implies neither VMD nor CA. CL Figure 

8. 1.4 . B and Table 8.2 . 1. 

Thus either of VMD and V AB is a necessary but not sufficient condition for 

CA. In particular, vanishing aggregation biases do not imply cons istency . 

8. 2 . 4 Some references to literature 

Theil [1954J assumes a micro relation ~ that consists of linear models , and 

derives a macro relation 'liT = H~A . That 'liT is not an incomplete linear model 
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is made clear in Theil [1954], moment 6.3.4. 

Both ~ and WT consist of linear equations plus disturbances. To economists 

and other non-statisticians the formal differences between ~ and WT may not 

appear important. Such neglect of statistical technicalities as in fact encouraged 

by Theil [1954J himself in section 6.1 on "aggregation in a changing economy". 

As stated in 3.2.5 above, this is a sequence oftwo aggregations. The first stage 

produces intermediate relations of the type WT • These are then aggregat ed in 

the second stage just as if they were linear models . Further, in the second stage 

Theil uses the model-free approach of 6.4.2 to establish an expectational inter­

pretation, which is also, by 6.4.4, questionable. 

Boot and de Wit [1960J study empirically a simple aggregation of aspects. 

The authors replace the unknown miero parameters by their least-squares esti-
A 

mates. They then deeompose eaeh estimated macro parameter QTi or disturb-

anee ryTj into three parts, on a "true" parameter or disturbanee, the second one 

an aggregation bias, and the third one an implied sampling error. In the notation 

of~, the "true" parts correspond to 

while the aggregation biases correspond to 

and 

Since 8.1. 3 is in model terms, the implied sampling errors have no counterpart 

there. 

The numerical decompositions of the estimated maero parameters and disturb­

ances are given in Boot and de Wit [1960J, Tables 3 and 6. The authors then pro­

ceed to compute the model-free variances and covariances across the n units of 

analys is of the three components of the estimated macro disturbance, Table 7. 

This procedure sweeps under the carpet the differenee between the "true" maero 

disturbanee )~ eh " whieh is stoehastic, and the "aggregation bias" 2: ~Ov , , 
fl J h h h] 

which is not; ef. 8.1.6. Generalization to other data would therefore be question-

able. 

An analogous empirical study is Gupta [1971 J. That 2:h ehj is stoehastie while 
O 

2:h ~h vhj is not is indieated in Theil [1954J, moment 6.3.5. 
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The term "aggregation bias" is used differently by certain other authors . A 

test for the absence of aggregation bias in Zellner [ 1962aJ, section 4, is a test 

for consistency in simple aggregation of aspects . The test is unnecessarily re­

strictive , for the hypothesis tested inc1udes that the micro intercept parameters 

agree j cf. the end of 7.2.2. The aggregation bias referred to by ljiri [1971J, 

section 4 . 2, is the bias in the prediction of the macro regressand caused by the 

aggregation . 

8 . 3 On the coefficient of determination in aggregation 

8. 3 . 1 On the coefficient of determination in the linear model 

The coefficient of determination R2 was defined in 2.5 . 3 . lts definition makes 

no reference to a linear model. 

Consider a given regressor matrix X and a complete linear model as defined 

in 2 . 3 . 1 . The parameters of the model are the parameter vector i3, the covari-
• -- 2 
ance matrix a W, and (cf. 2.3 . 4) the regressor matrix X . 

Corresponding to (almost) any realization of the regressand vector y, there 

is a coefficient of determination R2 . Such an R2 characterizes primarily the set 

[y : X J of regression data from which it is computed . , 
2 

Attempts have been made to define an additional parameter P for the com-
2 

plete linear model (not the regression model ! ), such that P is somehow a the-

oretical counterpart of R2 . One alternative is suggested by Barten [1962J, an-

other one by Koerts and Abrahamse [1969J . 

The latter authors show that the distribution of R2 implied by the normal 
. 2 

linear model depends on X . They warn agamst the use of R to compare differ-

ent linear models, Koerts and Abrahamse [1969J, section 8.7 . 
2 

The coefficient of determination R is a model-free concept. lts conceptual 

relation to a postulated linear model is not simple . 

8. 3 . 2 On aggregation of aspects 

Grunfeld and Griliches [1960J refer to an empirical study of simple aggrega­

tion of eight aspects . They consider three kinds of fitted relations . 
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The first set of relations consists of a fitted micro relation CPh for each as­

pect h = 1, ... , k. The coefficients of determination will be denoted r~ , 
h = 1, ... , k . 

The second relation is a fitted macro relation ~. The authors call this the 
2 

aggregate relation. Its coefficient of determination will be denoted R 
a 

A 

The third relation is the indirectly fitted semi-aggregated micro relation Hq, 

defined by the regressand aggregating function and the fitted micro relations. The 

authors call this the composite relation . lts coefficient of determination will be 
2 

denoted R . 
c 

First, the authors find that, somewhat unexpectedly, 

They manage to find an explanation in terms of the joint behaviour of the micro 

regress ors . The explanation is model-free; see Grunfeld and Griliches [1960 J, 

appendices A to E. 

Second, the authors find that, very unexpectedly, 

They fail to find an illuminating model-free explanation of this phenomenon. In­

stead, they argue that inclusion of the macro regress ors in the set of micro re­

gressors for every aspect would be likely to change the relation between the ag­

gregate and composite coefficients of determination. Their tentative conclusion is 

that the micro mode Is are probably mis-specified and should include the macro 

regressors. See Grunfeld and Griliches [1960J, section IV. 

The second finding has been further considered by Green [1964J, section 12.4, 

and by Gupta [1969J. 

The question why in simple aggregation of aspects sometimes R2 > R2 is 
a c 

quite intriguing. At least three different kinds of answers may be sought. The 

first kind is entirely model-free. The second kind involves the k micro models 

but keeps the micro regressor data fixed . The third kind of answers would asso­

ciate a probability distribution with the micro regressor data too. It is important 

to be clear as to what kind of answer is sought . The analysis of Grunfeld and Gri­

licher [1960 J is not explicit on this point. 
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8. 3 . 3 On aggregation of units 

The common correlation squared is a special case of the coeffic1ent of deter­

mination . 

Sociologists sometimes study the following kind of partitioned aggregation by 

averaging of units of analys is . The micro units are individuals • The macro units 

are disjoint groups of the individuals . The variables may, but need not, be dum­

my variables that allot the value 1 to an individual who has a certain propert y , 

and O to one who has not. If so, the macro data are percentages . 

A correlation between two variables computed from the micro data is called 

an individual correlation . A similar correlation computed from the macro data 

is called an ecological correlation . 

There seems to have been some tendency earlier to use the ecological corre­

lation as an approximation to the individual correlation . On the other hand, the 

ecological correlation has often been found to increase steadily as the individuals 

are grouped into fewer and larger groups . A striking non-sociological example 

of this tendency is given in Yule and Kendall [1950J, sections 13 . 2-13 . 7, where 

the "modifiable units" of analysis are geographical regions . A sociological ex­

ample is Slatin [ 1969 J. 

Is there a simple relation between ecological and individual correlations? For 

simple correlations, the answer is given by Robinson [1950J. The answer uses 

the same algebraical relations as 6 . 4 above, and the concept of correlation ra­

tios . Robinson's answer is completely model-free . 

Ecological correlation and regression is further discussed i. a. in Blalock 

[1964J, Alker [1969J, and Hannan [1971J. 
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9 A WIDER PERSPECflVE 

9. 1 Miscellaneous reflections on aggregation and models 

9.1.1 On aggregation versus dis aggregation 

Statistical data give a numerical picture of some segment of the real world. 

Data that giv e pictures of different degrees of detail are said to refer to different 

levels of aggregation. 

A theory about the real world is represented in statistics by a model. The the­

ory, and thus the model, refers to some more or less clearly specified level of 

aggregation. Data referring to the proper level of aggregation are required, if the 

model is to be estimated or tested . Forecasts by the model are state ments about 

data referring to the proper level of aggregation. Sometimes , however, data re­

ferring to the proper level are not available, except perhaps at prohibitive cost. 

Sometimes, it is not even known for certain what is the proper level of aggrega­

tion. 

Suppose that a certain model is thought to apply to data referring to a specified 

level LM of aggregation. Suppose that the only data available refer to a different 

level LD of aggregation. Two questions arise. First, what can the data tell about 

the model? How, if at all, can data on level LD be used to estimate or test the 

modelon level LM ? Second, what can the model tell ab out the data? How, if at 

all, can the modelon level LM be used to forecast data on level LD ? These 

general and vague questions can be made specific and precise in several ways. 

If the data are too highly aggregated for the model, there are what may be cal­

led problems of aggregation. In the opposite case there are problems of disaggre­

gation. The consistency and interpretation problems of the formal analysis of 

chapters 4 to 8 are problems of aggregation. On the whole, they presume that 

the micro level is the proper level of aggregation, while the available data are on 

the macro level. The consistency problem (4.2) formally treats the micro and 

mae ra levels symmetrically, but the question asked is prejudiced in favour of the 

micro level. The model-free (4.3) and expectational (4.4) interpretations both 

interpret macro statistics in micro terms, and the latter is explicitly based on 

the micro model or models . 
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In an aggregation, the micro data determine the macro data uniquely via the 

aggregating functions . As a rule the macro data do not, conversely , determine 

the micro data uniquely; there are no (exact) disaggregating functions . For this 

simple reason, aggregation is, loosely speaking , more amenable than disaggre­

gation to formal analysis . Not that problems of dis aggregation are always more 

difficult to solve than problems of aggregation. The significant difference is that 

it is less easy even to formulate a solvable problem of disaggregation. 

To study aggregation is easier, but to study dis aggregation is equally legiti­

mate . A similar opinion in pronounced by Ijiri [1971J, section 6 . 3 . 

9 . 1.2 On aggregation and dis aggregation in regress ion 

In many applications of regression analys is , the following applies . The data 

could conceivably, if perhaps not in practice, be aggregat ed or disaggregated in 

some way, or in several ways . An analogous regression analysis could be per­

formed using the aggregated or disaggregated data . The regression on the new 

level of aggregation would then be interpreted much like the actual regression . 

There are no convincing arguments, from theoryor otherwise, to decide whether 

the actuallevei LD of aggregation is the proper one . The model implied by the 

theory studied may in fact refer to a different level LM of aggregation. 

Depending on the type of aggregation and on the parameters of the model, the 

suspected aggregation or dis aggregation mayor may not admit consistency . If it 

is not known to be actually consistent, the standard conclusions from the actual 

regression analys is are not well-founded . They may well be misleading . 

In particular, many econometric (and other) data refer to a period of time . 

There are e . g . monthly, quarterly , and annual data . At least if the theory studied 

contains time lags, this propert y of the data is definitely disquieting. Aggregation 

and dis aggregation in the dimension of time are likely to be fertile sources of in­

consistency . See for example Nerlove [1959J, Mundlak [1961J, and Moriguchi 

[1970J . ef. also Brewer [1973J . An empirical study of aggregation over time 

with out lags is found in Dean [1941 J . 

There is a temptation to be come over-apprehensive, and to think that "perhaps 

most" applications of regression analysis involve hidden aggregations or disaggre­

gations . The border-line between wise caution and absurd obsession appears to be 

remarkably elusive here. 
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9.1.3 On models versus the real world 

Different scientific theories introduce different ways of looking at the real 

world. They formulate different concepts, to be used as tools to grasp the real 

world. A good theory does not only answer many questions that were not answer­

ed before. !ts real merit may weIl be that the questions were not even asked be­

fore. Cf. Toulmin [1953J, chapter 2, or Hempel [1966J, sectian 2.3. 

A simple example from economics is the dynamie theory of agricultural supply 

formulated by Nerlove [1958a, eJ. Random disturbances apart, this theory im­

plies a model equation 

00 i 
Yt = ex + \3 .L Y xt · . 

1=0 -1 

where it is assumed that II'I < 1. This model gives a definite meaning to the 

terms "short run" and "long run". The short run influence of x on y is me asur-
. -1 

ed by the parameter \3, the long run influence by (1 - y) \3. The model makes 

it meaningful, even if trivial, to ask ab out the path followed by y on its way to the 

long run (equilibrium) level. 

A generalization is the final form of interdependent econometric equations for­

mulated by Theil and Boat [1962J, and anticipated by Goldberger [1959J. Random 

disturbances apart, the final form is the vector equation 

00 i 
Y = ex + .L r BXt . t 1=0 -1 

where r is a square matrix whose eigenvalues Yh are all assumed to satisfy 

Irh 1< 1 . The short run influence of the j'th element of x on the i'th element of 

y is measured by element (i, j) of the matrix B of impact multipliers . The long 
-1 

run influence is measured by the corresponding element of the matrix (I - n B 

of total multipliers. The path followed by y. on its way to the long run level is of 
1 

great interest i. a. for economic policy. 

Two theories in the same area may weIl bring inta focus different levels of ag­

gregation. The theory cöncerned with the higher level of aggregation is not neces­

sarily less correct simply because it is less detailed . Theories, and hence mod­

els, referring to different levels of aggregation are as legitimate as maps giving 

different degrees of detail. Cf. Toulmin [1953J, chapter 4. 



188 

One reason why economists study aggregation is that they would like to estab­

lich a bridge connecting macroeconomics to microeconomics . In the opinion of 

Peston [1959J , the economic profession had better concentrate on the develop­

ment of macroeconomics as such . Whether a macroeconomic theory is accept­

able and fruitful should be judged, theoretically and empirically, with in a macro­

economic frame of reference. !ts possible relation to microeconomic theories 

is a separate question. 

The concepts and models used in science are not necessarily intuitive ly appeal­

ing . The inflow of water into a dam, and the number of bacterio-phage attached to 

a bacterium, are phenomena naturally represented , the former by a continuous 

variable, the latter by a discrete vari able . Yet Gani [1971J discusses two suc­

cessful statistical models representing , respectively, the former phenomenon by 

a discrete variable and the latter one by a continuous variable . 

The concept of a stochastic variable is of central importance in the linear 

model and in other statistical modeis . It is based on the concept of arandom 

event. When a statistical model is applied in practice, some observed data are 

regarded as realizations of stochastic variables . When is this permitted, L e . 

what events can be regarded as random? Statistical text-books are often remark­

ably reluctant to discuss this fundamental question. An exception is H. Cramer 

[1945J, chapter 13 . Cramer writes La . (section 13 . 2): "It does not seem possib­

le to giv e a precise definition of what is meant by the word 'random' . The sense 

of th e word is best conveyed by some examples . " 

Many text-book examples of stochastic variables refer to gambling, h eredity , 

or radio-active decay, and identify an observed datum directly with a stoch astic 

variable. Similar examples referring to economics are rare, but a few are given 

by J . S. Cramer [1969J, chapter 2 . However, the typical econometric stochastic 

variable is a disturbance term covering the lack of exact fitof a linear model 

equation . Such random disturbances are sometimes said to represent the joint 

influence of all factors not explicitly included in the model. 

Models and theoretical concepts are tools . There is more than one legitimate 

way to use them . 
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9. 1. 4 On parameters and stoch astic model components 

A model expresses the form of a regularity . Suppose that the quantity x of a 

fodder additive has been found to increase linearly, on the average, the quantity 

y of wool produced by sheep . The deterministic equation y = fr + ~x is a simple 

model of this regularity . The simple model implies i. a . that if two sheep are 

given identical quantities of the fodder additive, both will produce identical quan­

tities of wool. Suppose experience shows this not to be the case . The determin­

istic model is then refuted by the data . Still, it may remain valid as an approxi-

mation . 

In order to avoid vague claims of "approximate validity" , the model can be 

stochasticized so as to become the incomplete linear model y= fr + ~x + € , 

E ( €) = O . This model is not immediately refuted by almost any data . Still, it ex­

presses a regularity, fo r data sufficiently at variance with it can be taken to re­

fute H . In order to formalize the confrontation of the model with data, additionai 

assumptions on the disturbance term € are required . 

The parameters of a statistical model express the interesting regularity stud­

ied . The parameters are usually assumed to remain valid also outside any given 

set of data . How far their validy extends is rarely stated with precision. 

The stochastic disturbance terms cover the - presumably uninteresting 

deviations from the interesting regularity. The stochastic disturbances are usual­

ly assumed to be literally unpredictable . Whether they are unpredictable in prin­

ciple or only in practice is rarely discussed . The formal model as such does not 

distinguish between these two cases . 

Consider again the class of simple aggregations of aspects [G, H, ~} intro­

duced in 8. 1. 3 above . Two unsuccessful attempts to derive a linear model '*' in 

the macro variables z and u will be mentioned . 

The first attempt is suggested by Klein [ 1953J, section 5 . 3 . Summation of the 

micro models for the k aspects establishes the relation 

D. O '*' S : Uj = Ös + Ös z j + T/Sj , 

where the parameters and disturbances are 



190 

6. k 6. 
Os = h~1 ~h ' 

O k O k 
Os = h~1 ~j ~h / h~1 ~j , 

k 
TlSj = h~1 €hj 

The macro disturbance TlS is as unpredictable as the micro disturbances. The 

macro intercept O~ is as constant as the micro intercepts. But the macro slope 

parameter O~ takes a different value for each unit of analys is, and should be 
. ~O 

wntten uSj ' -

The second attempt is that due to Theil [1954 J, which establishes the relation 

WT described in 8 .1. 3 and discussed i. a. in 8.1. 5 . The macro disturbance TlT 

is predictable in terms of the micro regressor data and parameters, in the sense 

that E (TlT) is a function of those quantities. The macro parameters O~ and 
O ~ 

0T are valid for each unit of analysis within a given set of units . But as shown 

by examples 8. 1 .4. 1 and 8. 1 . 4. 2 , they take on different values for different s ets 

of units of analysis. 
O O . 

In a sense, Os and 0T both fall to be acceptable macro slope parameters for 

the same reason . There are too many micro quantities that affect them in a deter­

ministic fashion. A simplifying regularity is called for. 

9 . 1. 5 On stochasticizing micro quantities 

Under the assumptions maintained in chapters 4 to 8, an aggregation involves 

two sets of non-stochastic micro quantities. The first set consists of the elements 

of the total micro parameter vector ~ (4.1. 2). The second set consists of the 

elements of the independent micro data vector x (4 . 2.4). The assumptions can be 

modified, and either ~ or x, or both, made stochastic. 

Unweighted simple aggregation of aspects with stochastic micro parameters ~ 

is discussed by Zellner [1969J and by Theil [1971J, section 11.5 . Both authors 

assume that the distribution of ~ is such that E ( ~) satisfies the consistency con­

dition of P. 7.2.2. Thus in the notation of 7.2 . 2, for i = 1, ... , q, the micro pa-

* rameter subvectors (3p+i satisfy 



E (~* ) =. ~8 
~ p+i Jk p+i 

8 
for some sealars ~ .' Consequently, the expeetational eonsisteney 

p+l 

EHq; (u) = E WG (u) 

is easily attained by ehoosing 58 . = ~8 . for i = 1, .. " q. 
p+l p+l 
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If the stoehastie eharaeter of ~ is motivated by random sampling of aspeets 

from some population of aspeets, then not only ~ but also x becomes stochastie. 

As pointed out by Theil [1971 J, section 11. 5, this eomplieates the analys is . 

The two authors cited assume that ~ is stochastic while x is not. The oppo­

site assumptions are at least as natural. Like other parameters, the micro para­

meters ~ serve to express an interesting regularity , which is thought of as more 

permanent than the actual data. The observed independent miero data x reeord 

observations of the real world, and could have taken different values; cf. 2.3.3. 

The habit to regard x as non-stochastic is motivated by the mathematieal theory 

of the linear mode l rather than by the applications of regression analysis in for 

example eeonometrics; ef. 2. 3.4. 

To assume that the miero parameters are non-stochastie, while the observed 

micro regressor data are stoehastic, appears quite justifiable. 

9.2 A sometimes possible way out 

9.2. 1 A set of normal variables 

The following two properties of the multivariate normal distribution will be 

referred to without explicit reference. 

(1) Let t be a stochastie n-vector, whose distribution is multivariate normal 

with mean vector E (t) = J.l and non-singular covariance matrix V (t) = 8. Let H 

be a non-stochastie m x n matrix of rank m, and k a non-stochastic m-vector. 

Then u = k + Ht is a stoehastie m-veetor, whose distribution is multivariate nor­

mal with mean veetor E (u) = k + HJ.l and non-singular eovarianee matrix 

V (u) = H8H' . 
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(2) Let t = (t' ! t 2' )' be apartitioned stochastic vector, whose distribution 
1 , 

is multivariate normal with mean vector and non-singular covariance matrix as 

follows . 

v UJ " 
Then the conditional expectation of t 2 for a given t 1 is the following linear func­

tion of t 1 ; for later purposes the equation is transposed. 

-1 
E (t' I t' ) = a' + t' B h B S S and 2 1 21 1 21 ' w ere 21 = 11 12 

Properties (1) and (2) are demonstrated in Graybill [1961J, chapter 3, and in 

many other text-books. 

For h = 1, ... , k:!: 2 let ~ be a stochastic vector of order q ~ 1, and eh a 

stochastic scalar. Further, let ~ be a non-stochastic scalar, and ~h a non­

stochastic q-vector. Define 

Then Yh is a stochastic scalar. 

Define the kq-vector x as follows. 

- ( , , , )' x - xi ... ~ ... ~ 

Define the k-vectors y, e and (Y analogously. Define the kq x k block-diagonal 

matrix B as follows. (B can be read "capital beta".) 
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o o 

B= O o 

o o 

In this more eompaet notation, 

y' = a' + x' B + E:' • 

This is a row vector of k equations, one for eaeh Yh . 

Let G be the kq x q matrix defined by 

G=[I I ..... IJ' 
q q q 

Let be the k-veetor of unit elements. Define 

z' = x'G , 

u = y' i , 

i3 = Bi 

Then z is a stoehastie q-ve et or , u a stoehastie scalar, and i3 a non-stoehastie 

kq-veetor with subveetors i3h , h = 1, ... , k. 

Assume that the mean vector and eovarianee matrix of the (kq + k)-veetor 

(x' i e')' are as follows. 
I 

E [J [-~] 
V [J [:-l--:] 

Assume that S and Q are non-singular matriees . 

It follows that the (kq+k+q+1)-veetor (x' ! y' j z' i u)' has the following mean 

vector and eovarianee matrix. 
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E 

v [

S: SB : SG i sS J -- - - - ~--- - - _._----~ - --- - ~----- - ------
B'S: B'SB +Q : B'SG ! B'SS + Qi 

- - - - -:- - - - - - - - - - ~ - - - - - _: - - - - - - - - - - - . 
G' S : G'SB : G'SG : G'SS 

- -----:--- - -- -----1-------~---- - - ----
!3'S : (3'SB + i'Q: !3'SG : S'sS + i'Qi 

Because of z = G' x and u = i I y, the covariance matrix is singular . 

Assume that the distribution of (x' l € ') I is multivariate normal. Let v be 

any subvector of t = (x'! y I ! z ': u) I such that no element of v is defined to be 

an exact linear function of the other elements of v . Then the distribution of v is 

multivariate normal, and its mean vector and covariance matrix are the corre-

sponding subvector of E (t) and submatrix of V (t) . 

It foolows that several conditionaI expectations are linear functions of the sub­

vector held constant. The following expressions will be useful later. 

First, from the distribution of (x' i y'), 

(cp) E(yllxl)=ryl+x'B. 

This is a row vector of k equations, one for each E (Yh I x' ). Because for every h 

E(y Ix' )= 
h 

the k elements of (cp) can also be taken to be the equations for E (Yh lxt) . 

Second, from the distribution of (z I l u), 

(~) E(ulzl)=y+Z'Ö, 
-1 

where Ö=(G'SG) G'SS and 
-1 

y=ila + I-LI[I-G(G'SG) G'S]S 

The q-vector Ö and the scalar y are non-stochastic . 

Third, from the distributions of (z I lxt), h = 1, .. . , k, 



-1 I (g )E(x' z')=e' +z'TI , 

where n = (G' SG )-1 G' S and 

e' = J.L' [l - G(G'SG)-1 G'SJ . 

-1 
Equation (g ) is a row vector of k row subvectors of equations, one for each 

E (xt l z') • The q x kq matrix n and the kq-vector e are non-stochastic. 

9.2.2 A counter-example 

Consider an unweighted simple aggregation of k aspects indexed h = 1, .. . , k. 

The intercept regressor is the only regressor common to the aspects. There are 

q observed micro regressors specific to each aspect. There are n '" q + 1 units 

of analys is . 

The micro data form the n-rowed matrix 

, S, , Xb ' , , , , 
: x.s l 
: -K.J • 

The micro regressand k-column matrix is as in figure 3.2.2. The designed micro 

regressor vector j consists of n unit elements. Each observed micro regressor 
S 

q-column submatrix ~ specific to an aspect, h = 1, ... , k, is as in Figure 

3.2.1. Note that the order in X of the kq observed micro regressors specific to 

the aspects, is different from that in the total micro regressor matrix X* of 

3.2 . 2 and 7.2.1. 

The macro data form the n-rowed matrix 

[u!j~ZJ . 

There are q observed macro regressors Z • The regressor and regressand ag-o 

gregating functions for observed data are as follows 

G: Z = XG, 

H: u=Yi, 

where G and are as defined in 9 . 2.1. 

Assume that the observed micro data are generated as follows. Each row of 

[X i y J is a randomly drawn vector from the multivariate normal distribution 

of (x' ! y') described in 9.2 . 1. The n rows are drawn independently of each 

other. 
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It follows that the aggregation has all the stochastic properties specified in 

the formal analys is of chapters 4 to 8, with two modifications . First , the micro 

and macro relations cons ist of regression models (2 . 3.4) rather than linear mod­

els . Second, the auxiliary regressions (4 . 3.3) are not model-free, but corre­

spond to auxiliary regression models . 

The micro relation consists of k incomplete regression models, one for each 

aspect. They can be written jointly 

~ : E (Y I X) = ja' + XB , 

where a ' and B are as in (<,O) of 9.2 . 1. 

The macro relation consists of the incomplete regression model 

w: E(uIZ)=jy+ZÖ, 

where y and Ö are as in (1jJ) of 9. 2.1. 

The kq incomplete auxiliary regression models can be written jointly 

-1 I G : E (X Z) = j e' + Z n , 
-1 

where e and TI are as in (g ) of 9.2.1. 

Expectation according to the micro relation is expectation conditional upon 

given micro regressor data. Expectation according to the macro relation is ex­

pectation conditional upon given macro regressor data . In symbols, 

E~(.)=E( . !X) , 

Ew( · )=E(·IZ) 

The columns of the macro regressor matrix [j ! Z J are almost certainly 

linearly independent. The complementary event occurs with probability zero. 

9 . 2 . 3 Analysis of the consistency problem 

Substitution of .;, into H and of G into W produces the semi-aggregated micro 

and semi-disaggregated macro relations 

H~ : E(Yi!X) = ja'i+X[3 , 

wG : E(uIXG)=jy + XGÖ , 

where [3 is as defined in 9 . 2 . 1. 
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Both H.;. and WG can be used to forecast the macro regressand vector u from 

the observed micro regressor matrix X. As in P. 4.2 . 6 the two forecasts are 

identical linear functions of X if and only if 

This vector equation holds if and only if, as in P. 7 . 2. 2, ~ = G; for some q-vec­

tor ;. For if S = G Ö, then ~ = G; for € = Ö. And conversely , the definitions of 

Ö and y imply that if i3 = G€ ' then G Ö = i3 and y = a' i. 

Mechanical application of the consistency problem of ~ would lead to the fol­

lowing concJusion : "Unless ~ = G € for some €, the micro and macro relations 

.;. and Il! are incompatible and cannot both be simultaneously valid." But this con­

clusion is wrong . In the counter-example, .;. and W are both valid irrespective 

of S. 

Thus when the observed micro regressor data X are stochasticized, the con­

sistency problem and its solution as formulated in ~ somehow become inappli­

cable . \Vhy this happens will now be explained. 

\Vhen X is non-stochastic as in~, H.;. and WG make statements of the fo1-

10wing form. 

H';': E (u) = f 1 (X) , 

Il!G: E (u) -= f 2 (X) 

If f1 (X) of f2 (X) for some admissible X, H.;. and WG contradiet each other . 

Since G and H are not questioned, it can be concluded that .;. and W are incom­

patible. 

\Vhen X is stochastic as in~, H.;. and WG make statements of the following 

form. 

Hcp: E(uIX)=f1 (X), 

WG : E (u I XG) = f2 (X) 

Because the events "X = X 11 and "XG = X G" are defined by different regions in 
o o 

the sample space of X, the two statements are not comparable. That 

f1 (X) of f2 (X) does not mean that H.;. and WG contradiet each other. No conclu­

sion can be drav:n as to the compatibility of cp and W. 



198 

9 . 2 . 4 AnaIysis of the expeetational interpretation 

Let X and Z be sueh that Z = X G . Beeause the events "X = X " and 
o o o o o 

"X = X and Z = Z " are by definition identieal, 
o o 

E (. 1 X = X and Z = Z ) = E ( . 1 X = X ) 
o o o 

Consequently, for any X and Z sueh that Z = XG, 

E (. I Z) = E [E (. 1 x, Z) l Z] = E [E ( . 1 X) l Z ] 

This ruIe will be used beIow. 

Consider the model-free GLS(W) maero and auxiliary regressions, where W 

is an arbitrary positive-defnite n x n matrix. Let the fitted maero and auxiliary 

regressions be denoted 

[j :X]=[j iZ] 

By the auxiliary regression mode Is , 

E [~~] Z 

6.' O 
for e and C are GLS estimates of e' and n. 

BeIow, X and Z denote the aetuaI realized observed miero and maero regres­

sor matriees . 

MeehanieaI applieation of the expeetational interpretation of 4.4 Ieads to the 

interpretation 

in aeeordanee with P . 4.4.3. If these implied miero parameter funetions ·are re-
6. O 

garded as maero parameters, 0T and 0T' the eomments of ~ appIy . 
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When the observed micro regressor data X are stochasticized, the following 

modified expectational interpretation becomes possible, and more natural than 

the original one. 

E [~~] I Z E [ E l [ ~:] X I z] 

. u--fn [~;i J 
These implied micro parameter functions can be seen to be data-free in the sense 

of 8. 1 . 1 . They can therefore be regarded as parameters . 

By the definitions of e, n, y and Ö, 

[~--~--rJ [~~-~-J = [-r-J 
Thus, the modified expectational interpretation derives the (macro) parameters 

y and Ö from the semi-aggregated micro model H~ and the auxiliary regression 
-1 

models G . 

9.2.5 A derived macro relation 

Let t be a linear function of X not involving Z. Then 

E (t I Z) = E [t I E (X I Z) J 

This rule will be used below . 

Consider the following chain of five equations, where X is understood to mean 

"X such that XG = Z". 

E(uIZ)= E(YiIZ)= 

E [ E (Yi I X) I Z J = 

E(jQ"i+XSIZ)= 

jQ"i + (je' +ZTI)S= 

jy+ZÖ . 

Consider also the following chain of five equations. 
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E(UIZ)= E(YiIZ)= 

E [ Yi I E (X I z ) J = 

j 0" i + [ E (X I Z) J 13 = 

ja'i+(je' +ZD)I3= 

jy + Z Ö 

The two chains finally agree . 

In either chain, Hnk no . 1 follows from H . Links no . 2 follow from the rules 

for expectations stated in 9 . 2.4 and 9.2 . 5, respectively. In either chain , Hnk 

no . 3 follows from cp, Hnk no . 4 from G-i, and Hnk no . 5 from the definitions 

of e, n, y and Ö . 

The equation twice established can be labelled 

E(uIZ)=jy + Zö . 

Thus under the assumptions of 9 . 2, the macro relation '*' can be derived from 

the regressand aggregating function H, the micro relation cp, and the stochastic 
- 1 

regressor disaggregating functions G • In symbols, 

'*' = HcpG 
-1 

eL '*'T = H~A of 8.1.3. 

The counter-example cannot be generaHzed to micro regressor data with an 

arbitrary probability distribution, nor to any type of aggregation of regression 

data . Nevertheless , it sheds new light on the fundamental questions indicated in 

1.3 . 3 and 8.1.2 above. 
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