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Abstract
This paper contributes to the study of tacit collusion by analyzing infinitely

repeated multiunit uniform price auctions in a symmetric oligopoly with capac-
ity constrained firms. Under both the Market Clearing and Maximum Accepted
Price rules of determining the uniform price, we show that when each firm sets
a price-quantity pair specifying the firm’s minimum acceptable price and the
maximum quantity the firm is willing to sell at this price, there exists a range of
discount factors for which the monopoly outcome with equal sharing is sustain-
able in the uniform price auction, but not in the corresponding discriminatory
auction. Moreover, capacity withholding may be necessary to sustain this out-
come. We extend these results to the case where firms may set bids that are
arbitrary step functions of price-quantity pairs with any finite number of price
steps. Surprisingly, under the Maximum Accepted Price rule, firms need employ
no more than two price steps to minimize the value of the discount factor above
which the perfectly collusive outcome with equal sharing is sustainable on a sta-
tionary path. Under the Market Clearing Price rule, only one step is required.
That is, within the class of step bidding functions with a finite number of steps,
maximal collusion is attained with simple price-quantity strategies exhibiting
capacity withholding.
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1 Introduction

This paper contributes to the study of tacit collusion by analyzing infinitely repeated
multiunit uniform price auctions with capacity constrained firms. As in our earlier work
on discriminatory auctions, we modify the Bertrand-Edgeworth approach by allowing
each firm to simultaneously set a price-quantity pair specifying the firm’s minimum
acceptable price and the maximum quantity the firm is willing to sell at this price.1

Using this game, we analyze the feasibility of perfect collusion using two different rules
for determining the uniform price. Under the first rule, which we call the Market
Clearing Price rule, the uniform price is equal to the minimum price at which the
quantity offered by the firms is greater than or equal to demand. Under the second
rule, called the Maximum Accepted Price rule, the uniform price is equal to the highest
submitted price at which the residual demand left over from supply provided at strictly
lower prices is strictly greater than zero. Both definitions have been used extensively
in the literature (see, for example, Green and Newbery, 1992 and von der Fehr and
Harbord, 1993).

When each firm sets a price-quantity pair there exists a range of discount factors
for which the monopoly outcome with equal sharing is sustainable in either of the
uniform price auctions, but not in the corresponding discriminatory auction. Moreover,
capacity withholding may be necessary to sustain this outcome.

We extend these results to the case where firms may set bids that are arbitrary step
functions of price-quantity pairs with any finite number of price steps. Surprisingly,
under the Maximum Accepted Price rule, firms need employ no more than two price
steps to minimize the value of the discount factor above which the perfectly collusive
outcome with equal sharing is sustainable on a stationary path. Under the Market
Clearing Price rule, only one step is required. That is, within the class of step bidding
functions with a finite number of steps, maximal collusion is attained with simple
price-quantity strategies exhibiting capacity withholding.

These results are particularly relevant for markets such as electricity markets in
which uniform price and discriminatory auctions govern exchange. Our simple model
captures some of the basic features of operating electricity markets, such as the UK
spot market, the Spanish wholesale market or the Victoria Power Exchange. In these
markets, capacity constrained firms compete by offering step bidding functions that
vary in their complexity depending on the market.

The theoretical literature on capacity constrained uniform price auctions applied
to electricity markets can be traced back to Green and Newbery (1992) and von der
Fehr and Harbord (1993).2 The former assumes that capacity constrained firms offer
continuous supply functions, while the latter assumes that firms submit discrete step
functions similar to those in this paper. In both papers, the analysis is static, and thus

1See Dechenaux and Kovenock (2003). Fabra (2003) provides a comparison of infinitely repeated
uniform price and discriminatory auctions based on the Bertrand-Edgeworth approach.

2More recent theoretical work related to this study includes Baldick and Hogan (2001), Boom
(2003), Borenstein et al. (2000), Crampes and Créti (2003), Crawford et al. (2003), Fabra et al.
(2004), Garćıa-Dı́az and Maŕın (2003), Gutiérrez-Hita and Ciarreta (2003), Lave and Perekhodstev
(2001), Le Coq (2003) and Ubéda (2004).
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ignores the strategic implications of repeated interaction. Although, as Borenstein,
Bushnell and Wolak (2002) note, most electricity markets provide favorable condi-
tions for firms to collude, surprisingly, little attention has been paid to the theoretical
modeling of collusion in electricity markets. An exception is Fabra’s (2003) compari-
son of the uniform price and discriminatory auctions in Bertrand-Edgeworth duopoly
supergames.

Fabra (2003) has shown that under Bertrand-Edgeworth (B-E) duopoly, divisions of
the monopoly profit can be supported in the infinitely repeated uniform price auction
for strictly lower discount factors than in the infinitely repeated discriminatory auction.
However, this result is only valid for a subset of symmetric capacities for which non-
stationary paths with bid rotation can be sustained as perfect equilibria of the uniform
price auction. For example, in the duopoly, if each firm’s capacity is large enough to
supply the monopoly output, incentives to deviate from perfectly collusive paths in
the uniform price auction are no less than in the discriminatory auction. Furthermore,
on the non-stationary paths with bid rotation that minimize incentives to deviate in
the uniform price auction, firms do not equally share monopoly profit. Expanding
the strategy space to price-quantity pairs, thereby allowing for physical withholding,
has important implications for the sustainability of perfect collusion in the uniform
price auction. A direct implication of capacity withholding is that, in contrast to B-E
competition, when capacity is such that n− 1 firms can supply the monopoly output,
the monopoly outcome can be supported for a strictly wider range of discount factors
in the uniform price auction than in the discriminatory auction. Moreover, this result
holds even if we restrict attention to stationary paths on which each firm obtains an
equal share of the monopoly profit.

In the discriminatory auction the incentive to deviate from perfect collusion is
minimized on a stationary path on which each firm sets the monopoly price and offers
its whole capacity. On the other hand, in the uniform price auction, if the uniform
price is given by the Market Clearing Price rule, the stationary path on which each firm
withholds capacity to offer its share of monopoly output at a price below some critical
level (strictly lower than the monopoly price) minimizes firms’ incentives to deviate in
the class of stationary paths with equal sharing of the monopoly profit. If the uniform
price is given by the Maximum Accepted Price Rule, then incentives to deviate from
perfect collusion are minimized when n− 1 firms withhold capacity to offer their share
of the monopoly output. The remaining firm acts as the price setter and offers capacity
at the monopoly price. Together these two results provide a conclusive theoretical link
between equilibrium capacity withholding and the ability to support tacitly collusive
outcomes.

The remainder of the paper is organized as follows. In Section 2, we describe
the model and the simultaneous move price-quantity uniform price auction under two
alternative definitions of the uniform price and characterize the Nash equilibria of
the game. In Section 3, we introduce notation and definitions used in analyzing the
price-quantity supergame. In Section 4, we show that under both formulations of the
uniform price, capacity withholding relaxes incentives to deviate on perfectly collusive
stationary perfect equilibrium paths with equal sharing. On such paths, incentives to
deviate are minimized when n firms withhold capacity under the Market Clearing Price
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rule and when n− 1 firms withhold capacity under the Maximum Accepted Price rule.
Section 5 extends the results in section 4 to L-step bidding functions, L ≥ 1, and shows
that bidding functions with at most two steps are sufficient in order to minimize firms’
incentives to deviate from a perfectly collusive path. One step is required under the
Market Clearing Price rule and two steps under the Maximum Accepted Price Rule.
Section 6 concludes.

2 The simultaneous move price-quantity game

2.1 The model

Consider a market for a homogeneous good. There are n firms in the industry. Let
N = {1, . . . , n} denote the set of firms. Firm i’s cost function is such that unit cost ci

is constant up to capacity ki. Firms are symmetric: ki = k and ci = c = 0 for all i.
Let d(p) be market demand and assume that it satisfies the following assumptions.

A1 d(p) is continuous on [0,∞). ∃ p > 0 such that d(p) = 0 if p ≥ p and d(p) > 0 if
p < p. d(p) is twice continuously differentiable and d′(p) < 0 on (0, p). Finally, pd(p)
is strictly concave on [0, p] with maximizer pm.

These assumptions guarantee that there exists a unique unconstrained monopoly
price, pm. Inverse demand exists and is denoted by P (y), where y is output. To ensure
that there exists a unique Cournot equilibrium with a strictly positive price in the
quantity-setting game with n symmetric firms (without capacity constraints), demand
given by d(p) and zero marginal cost, we further assume3

A2 d′(p) + pd′′(p) < 0.

Under assumptions analogous to A1 for P (y), this is equivalent to assuming that
log P (y) is strictly concave over the relevant range and implies that Cournot quantity
best response functions are downward sloping.4 Denote by r(z) a firm’s Cournot best-
response to an aggregate quantity z set by other firms. That is, r(z) maximizes P (x+
z)x with respect to x. Let yc be the quantity set by each firm in the Cournot equilibrium
with strictly positive price.

In the one-shot simultaneous move price-quantity game, firms simultaneously set
price-quantity pairs, (p, q), where p ∈ R+ and q ∈ [0, k]. Firm i’s strategy space is
thus Si = R+ × [0, k]. A strategy profile (p,q) = ((p1, q1), . . . , (pn, qn)) is an element
of ×n

i=1Si. In this paper, we restrict the analysis to pure strategies.
Define q̂i = min{qi, d(0)} to be the effective quantity offered by firm i. Given a

3See Deneckere and Kovenock (1999), who also compare and contrast these conditions to inverse-
demand based conditions guaranteeing existence and uniqueness of Cournot equilibrium. Note also
that in the absence of capacity constraints, if ci = 0 for every i, bootstrap Cournot equilibria exist in
which equilibrium price is zero and every group of n− 1 firms sets their aggregate quantity q > d(0).

4See Deneckere and Kovenock (1999), Theorem 6.
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strategy profile (p,q) and a coordinate p ∈ R+ of the price vector p, define the set
L(p|p,q) ≡ {i ∈ N |pi = p}. L(p|(p,q) is the set of firms setting price p. We have
L(p|(p,q) = ∅ if for all i, pi 6= p. Let L−(p|p,q) ≡ ∪z<pL(z|p,q) be the set of all firms
charging a price strictly less than p. To simplify notation, we often drop the argument
(p,q).

We assume efficient rationing. Hence, given a strategy profile (p,q), the residual
demand faced by firms in L(p) is

R(p|p,q) = max{d(p)−
∑

j∈L−(p)

qj, 0}.

If L−(p) is empty, then we define R(p|p,q) = d(p). Note that here, the residual demand
is the demand left over from supply provided at strictly lower prices.

If, in case of a tie in price at p, we assume that firms share residual demand in
proportion to their effective quantities offered, then for i ∈ L(p|p,q), sales are

si(p|p,q) = min

{
q̂i,

q̂i∑
l∈L(p) q̂l

R(p|p,q)

}
.

In this context, the literature has defined a uniform price auction in two distinct
ways. We will examine each in turn. In the first definition, we follow Green and
Newbery (1992) who use a specification in which the uniform price is the price at
which the quantity demanded is equal to the quantity supplied.5 This formulation
leaves open the possibility that the uniform price will not be one of the submitted
bids. See Figure 1 for an illustration.

Definition 1 (Market Clearing Price) Given a strategy profile (p,q) in the uni-
form price auction, the uniform price Pe(p,q) is the unique price that solves

min{p|
∑

i∈L(p|p,q)

q̂i ≥ d(p)},

where L(p|p,q) = L−(p|p,q) ∪ L(p|p,q).

Definition 2 is the approach used by von der Fehr and Harbord (1993).6 The price
each firm receives in the uniform price auction is equal to the maximum accepted price,
where the maximum accepted price is the highest submitted price at which the residual
demand leftover from supply provided at strictly lower prices is strictly positive. Note
that in this definition, the uniform price must be one of the submitted prices, and thus
may not clear the market. See Figure 1 for an illustration. For Definition 2, we require
slightly more notation. Let p = (p1, . . . , pn) and define

P(p,q) = {p ∈ {p1, . . . , pn}|R(p|p,q) > 0}.
P(p,q) is the set of submitted prices with R(p|p,q) > 0.

5See also Boom (2003) and Ubéda (2004).
6See also Crampes and Créti (2003), Fabra (2003), von der Fehr et al. (2004) and Le Coq (2002).
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Definition 2 (Maximum Accepted Price) Given a strategy profile (p,q) in the
uniform price auction, the uniform price Pa(p,q) is equal to the maximum accepted
price, that is

Pa(p,q) = maxP(p,q) if P(p,q) 6= ∅,
and

Pa(p,q) = p if P(p,q) = ∅.

For u ∈ {e, a}, firm i’s payoff, i = 1, . . . , n, under the two alternative definitions is
simply:

πi(p,q) = Pu(p,q)si(pi|p,q).

2.2 Pure strategy equilibria

We now define critical prices that are useful in characterizing a firm’s profit from
deviating from a given profile. We also characterize a firm’s minmax payoff.

First, for q < d(0), define the residual demand monopoly price for a firm with
capacity k, pr(k, q):

pr(k, q) ≡ max{arg max
p
{p[d(p)− q]}, P (k + q)}.

pr(k, q) is unique for every pair (k, q) given our assumptions on demand. From the
strict concavity of pd(p), it is clear that whenever pr(k, q) is strictly positive, it is
strictly decreasing in q. A firm’s profit from setting pr(k, q) after lower-priced firms
have sold a quantity q is π(k, q) ≡ pr(q)[d(pr(q)) − q]. For q ≥ d(0), a firm’s residual
demand after other firms have sold a quantity q is zero for all p. In this case, we define
pr(k, q) ≡ 0 and it follows that π(k, q) = 0 for all q ≥ d(0).

Defining pr ≡ pr(k, (n− 1)k), it is straightforward to show that if (n− 1)k < d(0),
then a firm’s minmax payoff, π, is π = pr[d(pr) − (n − 1)k] > 0. If (n − 1)k ≥ d(0),
then by definition, pr((n− 1)k) = 0 and each firm’s minmax payoff is π = 0.

Following Deneckere and Kovenock (1992), let p(k, q) be the unique price less than
or equal to pr(k, q) at which a firm is indifferent between being the low-priced firm
at p(k, q) and being a monopolist on residual demand left after q is sold and earning
π(k, q). p(k, q) is equal to the smallest solution to

p×min{d(p), k} = π(k, q).

If q < d(0), then p(k, q) > 0. If q ≥ d(0), by definition π(k, q) = 0, and thus p(k, q) = 0.
In the continuation, we will use the notation p to denote p(k, (n−1)k). Moreover, since
ki = k for every i, when there is no ambiguity we use pr(q) to denote pr(k, q), π(q) to
denote π(k, q) and p(q) to denote p(k, q).

We can now state the following lemma describing equilibrium in the one shot price-
quantity uniform price auction with common capacities ki = k and common unit costs
ci = 0, for every i, which we denote by Γu(k, 0), where u ∈ {e, a} indicates the definition
of the uniform price that is employed.

6



Proposition 1 The sets of pure strategy equilibria, Eu(k, 0), of the one shot uniform
price auctions Γu(k, 0), u = e, a, are completely characterized as follows:

(i) Suppose k ≤ yc. Then Ea(k, 0) = {(p∗,q∗)|p∗i ≤ P (nk) and q∗i = k, ∀i ∈
N, with p∗j = P (nk) for at least one j ∈ N} and Ee(k, 0) = {(p∗,q∗)|p∗i ≤
P (nk) and q∗i = k, ∀i ∈ N}.

(ii) Suppose k ≥ d(0)
n−1

. Then Ea(k, 0) = {(p∗,q∗)|∃ i, j, i 6= j, such that p∗i = p∗j = 0
and, ∀h ∈ L(0|p∗,q∗), ∑

l∈L(0|p∗,q∗)\{h} q̂∗l ≥ d(0)}. Define C(0) ≡ {(p∗,q∗)|p∗i ≤
p((n− 1)yc) and q∗i = yc, ∀i ∈ N}. Then Ee(k, 0) = Ea(k, 0) ∪ C(0).

(iii) Suppose k ∈ (yc, d(0)
n−1

). Define y to be the unique y ∈ (−(n − 2)k, k) such that
π((n − 2)k + y) = prk. Then Ea(k, 0) = {(p∗,q∗)|∃ j ∈ N such that p∗j =
pr and q∗j ∈ [y, k] and ∀i 6= j, p∗i ≤ p and q∗i = k}. Define the set De(k, 0) ≡
{(p∗,q∗)|∃ j ∈ N such that p∗j ≤ pr = P(p∗,q∗) and q∗j ∈ [y, k] and ∀i 6= j, p∗i ≤
p and q∗i = k}. Then Ee(k, 0) = De(k, 0) ∪ C(0), where C(0) is as defined in
(ii).7

Moreover, for every k ∈ R+, u ∈ {e, a} and i ∈ N , there exists a pure strategy
equilibrium of Γu(k, 0) in which πi(p

∗,q∗) = π.

Proof. See the Appendix.

Proposition 1 demonstrates that, under both rules for determining the uniform
price, if each firm’s capacity k is less than or equal to its n-firm Cournot output, each
firm sets price at or below the capacity clearing price P (nk) and sells its capacity. If,
for this range of capacities, the Maximum Accepted Price rule is used in determining
the market price, at least one of the firms must set price equal to P (nk).

For k in the classical Bertrand region where any (n−1) firms have sufficient capacity
to satisfy the whole market demand d(0) at unit cost c = 0 , the uniform price is always
zero in the auction with the Maximum Accepted Price rule. This requires that at least
two firms price at zero and set quantities sufficiently large that any unilateral deviation
to a higher price yields zero sales. These classical Bertrand equilibia are also contained
in the set of equilibria under the Market Clearing Price rule. However, under this rule,
the equilibrium set also contains Cournot-like equilibria in which all firms set prices at
or below p((n − 1)yc) and sell their Cournot quantity yc. The uniform price in these
equilibria is the Cournot price P (nyc).

For k ∈ (yc, d(0)
(n−1)

), the intermediate range between the Cournot output and the
classical Bertrand region, for each j ∈ N , there exists a continuum of equilibria in
which firm j sets p∗j = pr and all other firms price at or below p (except possibly in a
special case discussed in footnote 7 where firm j may set its price below pr). The (n−1)

7Note that De(k, 0) = Ea(k, 0) unless y = d(pr) − (n − 1)k, which holds if and only if k ≤
r(d(pr)− k). In the latter case, under the Market Clearing Price rule, strategy profiles (p∗,q∗) such
that p∗j < pr, q∗j = d(pr) − (n − 1)k and ∀i 6= j, p∗i ≤ p and q∗i = k are also Nash equilibria with
P(p∗,q∗) = pr, sj(p∗j |p∗,q∗) = d(pr)− (n− 1)k and si(p∗i |p∗,q∗) = k.
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low-priced firms all have sales equal to capacity k and firm j sells to residual demand.
In these equilibria the quantity that firm j places on the market must be sufficient
to deter a unilateral deviation by a low-priced firm to a price above pr. The critical
supply that achieves this is the quantity y defined in Proposition 1, so j must supply
at least y, which we show is greater than or equal to residual demand d(pr)− (n− 1)k.
Under the Maximum Accepted Price rule these equilibria define the complete set of
equilibria. For the Market Clearing Price rule the set must again be augmented by the
set of Cournot-like equilibria described in the previous paragraph.

In our analysis of the repeated uniform price auctions that follows the most im-
portant aspect of the characterization in Proposition 1 is the fact that, under both
uniform price rules, for any common capacity k and any firm i there exists a one-shot
Nash equilibrium in which i receives its minmax profit π. This allows the direct con-
struction of credible punishments in the repeated uniform price auctions that force any
unilaterally deviating firm down to its minmax per period continuation payoff.

3 The price-quantity supergame

In this section, we examine the supergame Γu(k, 0, δ) obtained by infinitely repeating
the one shot game Γu(k, 0) and discounting payoffs with discount factor δ < 1. In
the supergame, a path τ is an infinite sequence of action profiles {(pt,qt)}∞t=0. A
pure strategy σi for firm i is a sequence of functions, {σi(t)}∞t=0, such that for every t,
σi(t) : Ht → Si, where Ht is the set of possible histories ht = (p0,q0, . . . ,pt−1,qt−1)
up to time t and h0 is the null history. A strategy profile is a vector σ = (σ1, . . . , σn).
Each strategy profile generates an infinite path τ(σ). Firm i’s normalized discounted
value from period s along a given path τ = {(pt,qt)}∞t=0 is given by:

Vi(τ, s) = (1− δ)
∞∑
t=s

δt−sπi(p
t,qt).

We refer to Vi(τ, t) for t = 0, 1, 2, 3 . . . as firm i’s continuation value at t. We let
Vi(τ) ≡ Vi(τ, 0) denote the payoff associated with the entire path. A security level
punishment for firm i is a path on which firm i obtains the discounted sum of its
minmax profit, equal to πi in normalized terms. The result below establishes that
a perfect equilibrium security level punishment in pure strategies exists under both
definitions of the uniform price. After any unilateral deviation by firm i, firm i’s
punishment consists of reverting to a static equilibrium in every period .

Proposition 2 For every k ∈ R+, δ ∈ (0, 1), u ∈ {e, a}, and i ∈ N , there exists a
perfect equilibrium of Γu(0, k, δ) which serves as a security level punishment for firm i.

Proof. From Proposition 1, the simultaneous move game has a pure strategy equilib-
rium in which firm i obtains its minmax payoff, ∀i and k. Since repeating a minmax
one-shot Nash equilibrium forever is a perfect equilibrium security level punishment,
the result follows directly. ¥
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In the continuation, we assume that each firm’s capacity is larger than its share of
the monopoly output, k > d(pm)

n
. If on the other hand k ≤ d(pm)

n
, all firms are capac-

ity constrained in the one-shot Nash equilibrium and equilibrium payoffs are Pareto
optimal. Thus the simultaneous move equilibrium is a collusive outcome immune to
deviations for any discount factor.

Consider a stationary path τ = {(p1, q1), (p2, q2), . . . , (pn, qn)}. Let π∗i (p−i, q−i) be
firm i’s optimal deviation profit as a function of the prices and quantities set by the
remaining n− 1 firms. Formally, π∗i (p−i, q−i) = sup{pi,qi} πi(pi, qi, p−i, q−i). Since from
Proposition 1, a perfect equilibrium security level punishment exists, the incentive
constraints that provide the perfect equilibrium conditions for the stationary path τ
are simply:

(1− δ)π∗i (p−i, q−i) + δπ ≤ Pu(p,q)si(pi|p,q). (1)

for every i ∈ N and u ∈ {e, a}.

In the next section, we characterize all stationary paths that achieve the monopoly
outcome and on which firms share monopoly profits equally. We show that under both
uniform pricing rules, there is a range of discount factors for which capacity withholding
is necessary for such paths to be supported as perfect equilibrium paths.

4 Capacity withholding and market sharing

In this section, we focus attention on a specific class of paths. We consider paths τ that
are stationary and on which the normalized payoffs satisfy

∑
i∈N Vi(τ) = pmd(pm) ≡

Πm. We say that such paths are perfectly collusive. In the remainder of this section,
we also impose the condition that π(p,q) = Πm

n
; that is, firms share monopoly prof-

its equally. We call a path satisfying the two conditions above a perfectly collusive
stationary path with equal sharing.

The following lemma states that if firm i’s rivals increase their prices in a way that
preserves the ordering of prices between these firms, but do not alter their quantity
ceilings, then firm i’s payoff from an optimal deviation cannot decrease (and vice-
versa). The conditions imposed on the profiles (p,q) and (p′,q) in the statement of
the lemma are sufficient to guarantee that for firm i and for every p, residual demand
at p is higher when i’s rivals set p′−i than when they set p−i.

Lemma 1 Suppose p = (p1, . . . , pn) and p′ = (p′1, . . . , p
′
n) satisfy the two following

conditions: for some i ∈ N , (i) p′−i ≥ p−i and (ii) ∀j, h ∈ N \ {i}, pj ≥ ph implies
p′j ≥ p′h. Then for any vector of quantities q = (q1, . . . , qn), π∗i (p

′
−i, q−i) ≥ π∗i (p−i, q−i).

Proof. Suppose that when the n − 1 remaining firms set (p−i, q−i), firm i’s optimal
deviation is to undercut all n − 1 firms. Since p′−i > p−i, firm i’s optimal deviation
profit under (p−i, q−i) can also be obtained by undercutting all other firms when they
set (p′−i, q−i). Thus, its deviation profit cannot be lower in this case. Now suppose
that if i’s rivals set (p−i, q−i), firm i’s optimal deviation consists of setting the residual
demand monopoly price after a group of l ≥ 1 firms have sold a quantity q, pr(q), to
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earn π(q). We show that i cannot obtain less than π(q) by deviating when its rivals
set (p′−i, qi). First, consider the difference in firm i’s residual demand at a given price
p when firms set (p′,q) and (p,q):

max{d(p)−
∑

j∈L−(p|p′,q)\{i}
q̂j, 0} −max{d(p)−

∑

j∈L−(p|p,q)\{i}
q̂j, 0}.

From conditions (i) and (ii) in the statement of the lemma, it follows that L−(p|p′,q) ⊂
L−(p|p,q), and thus,

∑
j∈L−(p|p′,q)\{i} q̂j ≤

∑
j∈L−(p|p,q)\{i} q̂j. Consequently, residual

demand at p is weakly larger when other firms set (p′−i, qi) than when they set (p−i, q−i).
It follows that if @j for which p′j = pr(q), then firm i obtains a deviation profit π∗i ≥ π(q)
from setting exactly pr(q). If ∃j such that p′j = pr(q), then i can obtain a payoff ar-
bitrarily close to π∗i by infinitesimally undercutting p′j = pr(q). Therefore, we have
shown that any deviation profit level firm i can guarantee itself under (p−i, q−i), it can
also obtain when the other firms set (p′−i, q−i). ¥

Lemma 2 characterizes all perfectly collusive stationary paths with equal sharing.
Note that the characterization is independent of the definition of the uniform price
except for statement (ii).

Lemma 2 Suppose k > d(pm)
n

. In Γu(k, 0, δ), on every perfectly collusive stationary
path with equal sharing τ = ((p1, q1), (p2, q2), . . . , (pn, qn)), the following must hold: (i)
Pu(p,q) = pm, (ii) pi ≤ pm with equality for at least one firm if u = a, (iii) for every

firm i ∈ N , qi ≥ d(pm)
n

, with equality if firm i sets pi < pm.

Proof. (i) and (ii) follow from the fact that there exists a unique maximizer to pd(p).
Thus, if industry profit is Πm in every period, pm must be the uniform price in every
period as well. It is straightforward to see that if there exists a firm i for which pi > pm,
then, either the uniform price is strictly greater than pm, or firm i does not have any
sales, a contradiction to Vi(τ) = Πm

n
. Furthermore, if the uniform price is given by

Definition 2, pm must also be one of the accepted bids, thus at least one firm i ∈ N
must set pi = pm. To prove (iii), note that it is clear that if qi < d(pm)

n
, then si < d(pm)

n
,

and thus Vi(τ) < Πm

n
. Hence, qi ≥ d(pm)

n
. To complete the proof of (iii), consider first

the Maximum Accepted Price rule. Suppose to the contrary that there exists a firm i
for which pi < pm and qi > d(pm)

n
. From the definition of si, it is clear that the only

time a firm’s sales are strictly below its quantity ceiling is when it sells to all or a
fraction of residual demand. But if this is the case for firm i, then, R(p|p,q) = 0 for
every p > pi, which implies that pm cannot be the uniform price, thus contradicting
(i). Hence, it follows immediately that if pi < pm, qi = d(pm)

n
. Consider now the Market

Clearing Price rule and suppose that there exists a firm i with pi < pm and qi > d(pm)
n

.
First, note that from Definition 1 and (i), if pj < pm, ∀j, then it must be the case that∑

h∈N q̂h = d(pm). Otherwise, at least one firm must be setting pm. Since we have

established above that for every j, qj ≥ d(pm)
n

, it follows directly that if additionally,
for every j, pj < pm, then

∑
j∈N q̂j > d(pm), so that the uniform price is not equal

to pm, a contradiction to (i). Suppose now that l firms, l ≥ 1, are setting pm. Since
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for every firm j setting pj < pm, qj ≥ d(pm)
n

and there exists i for which qi > d(pm)
n

, it

follows that residual demand at pm is strictly less than l
n
d(pm), so that sh < d(pm)

n
for at

least one firm h setting ph = pm, a contradiction to the fact that Vh(τ) = pmsh = Πm

n
. ¥

Lemma 2 shows that there are essentially two ways in which firms can achieve a
perfectly collusive outcome on a stationary path. Either all firms set the monopoly
price and offer the same quantity ceiling. In this case, the sales function prescribes
that each firm will obtain an equal share of demand at the monopoly profit; or a group
of firms set the monopoly price and share residual demand after another group of
(strictly lower-priced) firms offering their share of the monopoly output have sold their
quantity. We show in the following sections that the crucial difference between the
Market Clearing Price and Maximum Accepted Price approaches is that if the former
is used, there can be as many as n low-priced firms, while there must be at least one
firm setting pm under the latter.

4.1 The Market Clearing Price rule

Building on the insight from Lemma 2, we construct a perfect equilibrium path τme and
show that given the imposed stationarity and equal division, such a path minimizes
incentives to deviate for all firms among perfectly collusive stationary paths achieving
the same payoff per firm. To this effect, let qm

− = (n− 1)d(pm)
n

. τme is characterized as
follows:

pi = p(qm
− ) and qi =

d(pm)

n
,∀i ∈ N.

Lemma 3 Suppose k > d(pm)
n

. In Γe(k, 0, δ), the path τme minimizes incentives to
deviate in the class of perfectly collusive stationary paths with equal sharing.

Proof. See Appendix.

The path constructed in Lemma 3 is symmetric. Each firm withholds capacity
and sets a quantity equal to its share of the monopoly output and a price equal to the
maximum price that no firm would want to unilaterally undercut. From Definition 1, it
is straightforward to check that the uniform market price is then equal to the monopoly
price. The proposition below shows that for some discount factors, withholding is
necessary to sustain perfect collusion with equal sharing on a stationary path. The
crucial effect of capacity withholding on collusion is that in markets with a large
aggregate capacity, it allows firms to set lower prices without affecting the uniform
price, thereby reducing incentives to deviate substantially for all firms.

It is important to note that setting pi = p(qm
− ) is not necessary to support this

outcome. Every path on which each firm offers exactly its share of monopoly output
at a price less than or equal to p(qm

− ), for example the marginal cost of zero, yields the
same outcome and exactly the same incentives to deviate as τme.

Proposition 3 Suppose k > d(pm)
n

. There exists a δ such that in Γe(k, 0, δ) perfect col-
lusion with equal sharing is sustainable on a stationary path on which no firm withholds
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capacity if and only if δ ≥ δ. Furthermore, there exists a δe < δ such that if δ ∈ [δe, δ),
perfect collusion with equal sharing is sustainable on a stationary path if and only if a
subset of the firms withholds capacity. If δ = δe, perfect collusion with equal sharing is
sustainable on a stationary path if and only if all firms withhold capacity.

Proof. See Appendix.

4.2 The Maximum Accepted Price rule

If the uniform price is defined as the maximum accepted price, then the result is slightly
different. The fact that the uniform price has to be one of the submitted prices adds
the extra constraint that one firm must set pm on the path. This clearly increases
incentives to deviate for low-priced firms. Let τma

i be characterized as follows, ∀i ∈ N :

pi = pm and qi = k,

pj = p(qm
− ) and qj =

d(pm)

n
, ∀j 6= i.

There exist n such paths corresponding to each of the n players with price pm.

Lemma 4 Suppose k > d(pm)
n

. In Γa(k, 0, δ), paths of the form of τma
i minimize incen-

tives to deviate in the class of perfectly collusive stationary paths with equal sharing.

Proof. See Appendix.

Lemma 4 shows that paths on which n−1 firms withhold capacity to offer an equal
share of the monopoly output at a low price and one firm sets the monopoly price
and offers its whole capacity minimize all firms’ incentives to deviate on paths in that
particular class. The next result shows that if n > 2 and capacity is large enough, by
withholding output, firms can sustain an equal division of the monopoly outcome for
a strictly wider range of discount factors than by offering full capacity.

Again, as for the Market Clearing Price approach, it is important to note that
pj = p(qm

− ) is not necessary for the low-priced firms. Every path on which each firm
j, j 6= i, offers exactly its share of monopoly output at a price less than or equal to
p(qm

− ) yields the same outcome and exactly the same incentives to deviate as τma
i .

Proposition 4 Suppose n > 2 and k > 2
n
d(pm). Then there exists a δa < δ such

that, for every δ ∈ [δa, δ), in the game Γa(k, 0, δ) perfect collusion with equal sharing is
sustainable on a stationary path if and only if a subset of firms withholds capacity. If
δ = δa, perfect collusion with equal sharing is sustainable on a stationary path if and
only if at least n− 1 firms withhold capacity.

Proof. See Appendix.

Proposition 4 shows that for n > 2 and for sufficiently large capacity, withholding
capacity facilitates collusion. The intuition behind the dependence of the result in
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Proposition 4 on the number of firms is as follows. For every n, on a perfectly collusive
path with equal sharing that does not feature withholding, an optimal deviation always
consists in undercutting the monopoly price to obtain pm min{k, d(pm)}. On τma

i , if
there are only two firms in the industry, the single low-priced firm can always undercut
the high-priced firm, offer and sell the minimum of demand and its capacity. On the
other hand, when there are more than two firms in the industry, an optimal deviation
takes one of two forms depending on k. For a range of relatively low capacity values,
a low-priced firm offers and sells its capacity at a price below pm. In this case, since
k is low, the deviating firm does not affect the uniform price and receives pm for its
capacity independently of the price it sets as long as this price is below pm. However,
this statement is only valid if undercutting the low-priced firms and offering capacity
does not lower the market price. If k is large enough that a deviating firm would have
to withhold in order not to affect the uniform price by expanding its quantity up to
its capacity, the optimal deviation consists in pricing above the low-priced firms, but
below the high price firm. For such values of k, a low-priced firm’s deviation profit is
strictly below pm min{k, d(pm)}. Thus, k relatively large is required for withholding to
strictly relax incentive constraints as compared to paths on which no firm withholds.

Fabra (2003) analyzes the feasibility of collusion in a Bertrand-Edgeworth duopoly
supergame with the Maximum Accepted Price Rule. In Fabra’s model the two firms
must offer capacity at the price they set. She shows that to support a given level of
industry profit, the paths that minimize firms’ incentives to deviate are non-stationary.
On such paths, firms alternate between being high-priced and low-priced, so that only
one firm, the high-priced firm, has an incentive to deviate in any given period. To sup-
port perfect collusion, the high-priced firm’s incentive to deviate on the non-stationary
path is lower than that of the low-priced firm on the stationary path τma

i constructed
in Lemma 4 in this paper. Thus perfect collusion can be supported for lower discount
factors on the non-stationary path with firms switching roles every period than on
the stationary path with equal sharing. However on the non-stationary paths, firms
do not share industry profit equally so that the question of role selection in the first
period arises. Moreover, to support perfect collusion, such paths are feasible only if
k < d(pm), since if k ≥ d(pm), the firms’ inability to withhold capacity implies that to
obtain industry profit equal to Πm, each firm must set pm.8 The latter observations
are all the more relevant in the case n ≥ 3.9 Indeed, the range of capacities for which
alternating non-stationary paths with one high-priced firm and no withholding are fea-
sible, k < d(pm)

n−1
, shrinks as n increases. If k ≥ d(pm)

n−1
, we conjecture that non-stationary

perfect equilibrium paths with more than one high-priced firm setting pm can be con-
structed for a range of discount factors, but it is not clear that they minimize incentives
to deviate.

We have focused on one possible division of monopoly profits, namely the sym-
metric allocation, in which each firm receives an equal share of industry profit. Other
allocations can also be sustained as perfect equilibria. With symmetric firms and the
Market Clearing Price rule, equal sharing is optimal because on the path τme, all firms

8This is because if one firm sets pm and the other firm p < pm, then the price is equal to p.
9Fabra only analyzes the duopoly.
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have the same incentive to deviate. However, when the Maximum Accepted Price rule
is used, equal sharing may not minimize the critical value of the discount factor be-
low which perfect collusion is sustainable. This is best illustrated by considering the
duopoly case. Figure 2 shows the set of sustainable allocations for the low-priced firm
as a function of the discount factor on perfectly collusive stationary perfect equilibrium
paths similar to τma. On such paths, the low-priced firm obtains pmsm and the high-
priced firm obtains pm(d(pm)−sm). Along the curve sm, the low-priced firm’s incentive
constraint is binding, while along the curve sm, the high-priced firm’s constraint binds.
At every allocation between sm and sm, both constraints are slack. It is clear that the
critical discount factor obtains at an allocation at which the low-priced-firm receives a
greater share of monopoly profits.

To summarize, there are two main insights to be gleaned from the analysis of
the price-quantity supergames in this section. First, capacity withholding facilitates
collusion on stationary paths no matter which uniform pricing rule is used. This
is because it allows firms to set a price that minimizes the other firms’ deviation
profit without preventing the market price from remaining at pm. Second, under the
Market Clearing Price rule, the reduction in deviation profit achieved on paths with
withholding is larger than under the Maximum Accepted Price Rule since under the
former, no single firm is required to price at pm. Using these results, we now compare
repeated uniform price auctions to repeated discriminatory auctions.

4.3 Uniform price and discriminatory auctions

Another commonly employed auction mechanism is the discriminatory auction, in
which each firm receives the price it bids for its quantity. Propositions 3 and 4 provide
a simple way to compare the two institutions. Recall that δ is the critical value of
the discount factor above which a path on which each firm sets the monopoly price
pm and offers its capacity in every period can be supported as a perfect equilibrium in
the repeated uniform price auction. In both the uniform price and the discriminatory
auction, an optimal deviation from such a path consists in undercutting the monopoly
price and offering capacity. Therefore, δ also represents the criticial value of the dis-
count factor above which a perfectly collusive path with equal sharing is sutainable in
the repeated discriminatory auction.

Theorem 1 Suppose k > d(pm)
n

. Under both definitions of the uniform price, perfect
collusion with equal sharing is sustainable on a stationary path in the repeated uniform
price auction whenever it is sustainable on a stationary path in the repeated discrimi-
natory auction. Moreover, if either (i) u = e or (ii) u = a and n > 2 and k > 2

n
d(pm)

hold, there exists a nondegenerate interval of discount factors [δu, δ) for which perfect
collusion with equal sharing is sustainable on a stationary path in the repeated uniform
price auction, but not in the repeated discriminatory auction.

Proof. In the discriminatory auction, it follows from a simple extension of Fabra’s
(2003) Proposition 3 to our price-quantity supergame with n symmetric firms that
incentives to deviate are minimized on symmetric paths on which firms set the same
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price, pm. Thus, the minimum value of the discount factor for which a perfectly col-
lusive stationary perfect equilibrium path with equal sharing exists is obtained from
a firm’s incentive constraint on a path on which all firms offer capacity k at a price
equal to pm and is given by δ. Hence the result follows from Propositions 3 and 4. ¥

The results in Theorem 1 are illustrated for an example with linear demand in
Figure 3. Let d(p) = max{0, 1 − p}. In this case, pm = 1

2
, d(pm) = 1

2
and yc = 1

n+1
.

Suppose that k > yc. Using the Market Clearing Price approach, the optimal deviation

on τme yields profit equal to (n+1)2

16n2 . Using the Maximum Accepted Price rule, it is
simple to show that if n > 2, for j 6= i, the optimal deviation on τma

i is for j to

undercut i but not h 6= i, j. j’s deviation profit is then equal to (n+2)2

16n2 . Assuming
k = 1

2
so that each firm’s capacity is sufficient to supply the monopoly output, we

obtain10

δ =

{
2
3

if n = 2,
n−1

n
if n > 2.

δe =

{
1
5

if n = 2,
(n−1)2

(n+1)2
if n > 2.

δa =

{
2
3

if n = 2,
4+n2

(n+2)2
if n > 2.

Under the Maximum Accepted Price rule, as in Brock and Scheinkman (1985),11

the relationship between the lower bound on the discount factor for which perfect
collusion is sustainable and the number of firms is always non-monotonic.12 Therefore,
when demand is linear, the result that for sufficiently low capacity (such that minmax
payoffs are strictly positive for some n), decreasing the number of firms in the industry
makes collusion more difficult continues to hold in the repeated price-quantity uniform
price auction. Furthermore, independent of k, the number of firms at which the critical
value of the discount factor is minimized is higher in the repeated uniform price auction
when the Maximum Accepted Price rule is used. To see this, recall that in the linear
demand case, Brock and Scheinkman show that δ is initially decreasing in n. This is
because a decrease in punishment payoffs more than offsets an increase in incentives
to deviate for such values of n. The same holds in the uniform price auction. However,

note that d
dn

[
(n+2)2

16n2

]
< 0, that is, deviation profit decreases with n in the repeated

uniform price auction, while deviation profit is independent of n in the discriminatory
auction. Therefore, δa must decrease with n for a range of values of n above the
minimizer of δ.13 In the uniform price auction with the Market Clearing Price rule, in

10All formulas are derived from equations (A1), (A3), (A4) and (A8), which can be found in the
Appendix.

11See also Davidson and Deneckere (1984) and Lambson (1987) for analyses of discriminatory
auctions in a Bertrand-Edgeworth oligopoly supergame.

12Brock and Scheinkman’s Figure 2 [p.376] is drawn for 1−δ
δ .

13In our example the optimal number of firms is between 2 and 3 in both the discriminatory and
the uniform price auction. However, the same intuition as that outlined above also works at values
of k for which the optimal number of firms is greater than 3.
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our example, even at low values of n an increase in incentives to deviate is not offset
by a decrease in punishment value. Therefore, δe increases in n for all n ≥ 2. However,
this is not generally true. The relationship between δe and n depends on capacity, k.
If k is sufficiently low, then δe decreases with n initially and the relationship between
the critical discount factor and the number of firms is again nonmonotonic.

5 Bid functions with an arbitrary number of steps

In this section, we generalize the results obtained in the previous section to a setting in
which firms can submit bid functions with an arbitrary finite number of steps. In the
one-shot simultaneous move game Γu(k, 0, L), assume that a firm’s strategy is a vector
of price-quantity pairs defining an incremental bid function ((pli

i , qli
i ))Li

li=1, Li ≤ L and

p1
i < . . . < pLi

i . L is a finite number representing the maximum number of admissible
steps in the (non-decreasing) bid function of each firm. For each pair, the price pli

i

represents the minimum price at which firm i is willing to sell the quantity increment
qli
i . We assume pli

i ∈ R+ and
∑

li
qli
i ≤ k. A strategy profile is a vector of bid functions

(p,q) = ((pl1
1 , ql1

1 )L1
l1=1, . . . , (p

ln
n , qln

n )Ln
ln=1). We denote by (p−i,q−i) the vector composed

of firm i’s rivals’ bid functions.
Below we define residual demand and a firm’s sales at a given price in this setting.

To this effect, let li(p) be the index of the step associated with price p in firm i’s
strategy, that is, if there exists li such that pli

i = p, then li(p) = li. Otherwise, define
li(p) ≡ ∅. Let ps

i be the set of prices submitted by firm i for each of its quantity
increments, ps

i = {p ∈ R+|li(p) 6= ∅} and let ps
i (p) the set of prices submitted by i that

are less than or equal to p. That is, ps
i (p) = [0, p] ∩ ps

i . Define qi(p) to be the quantity
increment associated with price p in firm i’s strategy. Formally,

qi(p) =

{
qli
i if li(p) = li,

0 if li(p) = ∅.

so that firm i’s quantity supplied at p is
∑

z∈ps
i (p) qi(z).

Define q̂i(p) = min{qi(p), d(0)}. Assuming efficient rationing and given a strategy
profile (p,q), residual demand at p is then easily defined as follows

R(p|p,q) = max{d(p)−
∑
i∈N

∑

z∈ps
i (p)\{p}

q̂i(z), 0}.

Note that if the minimum price submitted by any firm is greater than or equal to p,
then R(p|p,q) = d(p). Given a strategy profile (p,q), firm i’s sales at a price p ∈ ps

i

are equal to

si(p|p,q) = min

{
q̂i(p),

q̂i(p)∑
l∈N q̂l(p)

R(p|p,q)

}
,

so that firm i’s total sales amount to

si(p,q) =
∑
p∈ps

i

si(p|p,q)
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and firm i’s profit is πi(p,q) = Pu(p,q)si(p,q), ∀u ∈ {e, a}. Finally, we let π∗i (p−i,q−i)
denote firm i’s profit from an optimal deviation when its rivals play (p−i,q−i).

The supergames obtained by repeating the component game above are defined in
a similar manner as the supergame with L = 1. We denote the supergame in which
the number of admissible steps is L by Γu(k, 0, δ, L), for u ∈ {e, a}. Lemma 5 below
simplifies the analysis of the games with L-step bidding functions by showing that,
when compared to the price-quantity approach, expanding the strategy space does not
allow firms to obtain greater one-period deviation payoffs.

Lemma 5 For every k ∈ R+, L ≥ 1, u ∈ {e, a} and i ∈ N , in the game Γu(k, 0, L),
π∗i (p−i,q−i), firm i’s optimal deviation payoff when its rivals set (p−i,q−i), can be
obtained with a bidding function using a single step (Li = 1).

Proof. See Appendix.

The extension of Lemmas 3 and 4 to the more general setting introduced above is
relatively straightforward. Statements similar to those in Proposition 2 and Lemmas 1
and 2 are valid. Beginning with Proposition 1 and making use of Lemma 5, note that
the pure strategy equilibria for the simultaneous move game characterized for L = 1
are clearly equilibria of the simultaneous move game with L ≥ 2 admissible steps. We
hence have the following result.

Proposition 5 For every k ∈ R+, L ≥ 1, u ∈ {e, a} and i ∈ N , there exists a pure
strategy equilibrium of the game Γu(k, 0, L) in which πi(p

∗,q∗) = π.

Allowing for L steps does not change a firm’s minmax profit π. This is because the
worst that can be imposed on a given firm i is obtained by maximizing i’s profit after
its rivals have sold their capacity at a price of 0. Therefore, Proposition 2 continues to
hold when L ≥ 2 because perfect equilibrium security level punishments are attained
with strategies using only one step. The analog of Lemma 1 for the case L ≥ 2 states
that if for some i ∈ N , (p,q) and (p′,q′) satisfy the two following conditions: first, the
total quantity put on the market by i’s rivals does not change and second, the residual
demand faced by firm i at every p is no less when firms set (p′,q′) than when they
set (p,q), then firm i’s deviation profit under (p,q) is no greater than under (p′,q′).
Formally these two conditions are

∑

j∈N\{i}

∑
p∈ps

j

qj(p) =
∑

j∈N\{i}

∑

p∈ps
j
′
q′j(p)

and, for every p ∈ [0, p],

∑

j∈N\{i}

∑

z∈ps
j(p)\{p}

qj(z) ≥
∑

j∈N\{i}

∑

z∈ps
j
′(p)\{p}

q′j(z).

To generalize Lemma 2, note that the requirements are that the uniform price be pm

and that si(p,q) = d(pm)
n

. Moreover, supply of lower-priced units should sum up to a
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quantity less than d(pm),14 while still allowing firms that do not have pm in the support

of their strategy to sell d(pm)
n

. Thus on a perfectly collusive stationary path with equal
sharing ∑

j∈N

∑

p∈ps
j(p

m)\{pm}
q̂j(p) ≤ d(pm) (2)

with a strict inequality if the uniform price is given by the Maximum Accepted Price
Rule. Furthermore, if pm /∈ ps

h, then

∑

p∈ps
h(pm)

q̂h(p) =
d(pm)

n
.

As before, when the uniform price is given by the Market Clearing Price rule, on the
perfectly collusive stationary path that minimizes incentives to deviate the price will be
set at pm by having firms withhold their capacity to offer only d(pm)

n
each and set a price

that minimizes deviation profits. When the uniform price is given by the Maximum
Accepted Price rule, the highest accepted bid has to be pm so that at least one firm
has to offer a positive quantity at pm.

5.1 The Market Clearing Price rule

For every L ≥ 1, it follows from the above discussion that a perfectly collusive sta-
tionary paths that minimizes incentives to deviate is such that all firms set p = p(qm

− )

and q = d(pm)
n

. Under the Market Clearing Price definition, one step is necessary and
sufficient to minimize incentives to deviate on perfectly collusive stationary paths with
equal sharing. Thus, we have Proposition 6.

Proposition 6 Suppose k > d(pm)
n

. For every number of admissible steps L ≥ 1, in
Γe(k, 0, δ, L), the path τme minimizes incentives to deviate in the class of perfectly collu-
sive stationary paths with equal sharing. That is, the incentive to deviate is minimized
over all possible finite step functions by employing a simple (one-step) price-quantity
strategy.

Theorem 2 below then follows directly from Propositions 3 and 6. It shows that a
path on which firms use a bid function with only one step minimizes the critical value
of the discount factor above which a stationary perfect equilibrium path that achieves
the monopoly outcome with equal sharing exists.

Theorem 2 Suppose k > d(pm)
n

. For every number of admissible steps L ≥ 1, in
Γe(k, 0, δ, L), perfect collusion with equal sharing is sustainable on a stationary path
if and only if δ ≥ δe. That is, if the strategy space is extended to allow for arbitrary
finite step functions, whenever perfect collusion with equal sharing is sustainable using
strategies involving more than one step, it is sustainable employing simple one-step
price-quantity strategies.

14This quantity must be strictly less than d(pm) if the uniform price is given by the Maximum
Accepted Price rule.
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5.2 The Maximum Accepted Price rule

The difference between the Market Clearing Price rule and the Maximum Accepted
Price rule is that under the latter, on a perfectly collusive path with equal sharing, at
least one firm must set p = pm, while this is not required in the former. However, in
contrast to the price-quantity supergame, a firm setting pm may also offer part of its
capacity at prices below pm. The main insight from Lemma 4, namely that incentives
to deviate are minimized when as much capacity as possible is offered at a sufficiently
low price pm, applies here as well. However, when L ≥ 2, we show that all firms
offer some quantity at pm. Since in our model nothing prevents firms from offering
infinitesimally small quantities at a given price, we conduct the analysis for a given
aggregate quantity ε sold at pm and show that as this quantity goes to zero, the lowest
discount factor for which perfect collusion is sustainable on a stationary path with the
Maximum Accepted Price approach converges to that in the Market Clearing Price
approach, δe. We may interpret ε as being part of the tacitly collusive agreement
between the firms.

For a given minimum quantity agreement ε > 0, consider the 2-step bid function
(pε

i , q
ε
i ) for firm i ∈ N where

(pε
i , q

ε
i ) =

((
p(qε

−),
d(pm)− ε

n

)
,

(
pm, k − d(pm)− ε

n

))
.

Let the path τ ε be such that firm i sets (pε
i , q

ε
i ), ∀i ∈ N . Proposition 7 shows that

for a given quantity agreement ε > 0, τ ε minimizes incentives to deviate in the class
of perfectly collusive paths with equal sharing. Therefore, in characterizing paths that
minimize incentives to deviate in the class of perfectly collusive stationary paths with
equal sharing, two steps are necessary and sufficient.

Proposition 7 Suppose k > d(pm)
n

. For every number of admissible steps L ≥ 2 and
quantity agreement ε ∈ (0, d(pm)], in Γa(k, 0, δ, L), the path τ ε minimizes incentives to
deviate in the class of perfectly collusive stationary paths with equal sharing. That is,
the incentive to deviate is minimized over all possible finite step functions by employing
a two-step strategy.

Proof. See the Appendix.

The intuition behind Proposition 7 is as follows. Suppose that the aggregate quan-
tity offered at a common price p < pm is d(pm)− ε, for some quantity agreement ε > 0,
where p is sufficiently low that no firm would ever undercut it. Then, if l firms each

offer d(pm)
n

− ε
l

at p and k −
[

d(pm)
n

− ε
l

]
at pm, while the remaining firms simply offer

d(pm)
n

at p, the uniform price is indeed pm and each firm earns pm d(pm)
n

. Furthermore, it
is clear that the n− l low-priced firms have greater incentives to deviate than the high-
priced firms, since they face a strictly higher residual demand at every price between
p and pm. If k is sufficiently small that the price would remain at pm if a low-priced
firm offered its capacity at p, then an optimal deviation consists in offering capacity at
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p to earn pmk. Otherwise, the optimal deviation is to set the residual monopoly price
after n− 1 firms sell their quantity offered at p, where this quantity is equal to

(n− l − 1)
d(pm)

n
+ l

(
d(pm)

n
− ε

l

)
= (n− 1)

d(pm)

n
− ε. (3)

Now suppose that l = n, so that all firms set k −
[

d(pm)−ε
n

]
at pm. Then each firm’s

optimal deviation is to either offer capacity at p or set the residual monopoly price
after n− 1 firms sell their quantity offered at p, where this quantity is equal to

(n− 1)

(
d(pm)

n
− ε

n

)
≡ qε

−. (4)

(4) is clearly greater than (3), so that a firm’s deviation profit is lowest when all firms
offer the same quantity both at the low price and the monopoly price. It follows that
on a path that minimizes incentives to deviate, all n firms will offer some quantity at
pm. Thus all firms will have two steps in their bid function. One of the steps must be
at a low price in order to prevent rivals from undercutting and the quantity offered at
that price must be the highest quantity consistent with pm being the uniform price.
The second step effectively sets the price at pm. To sustain the perfectly collusive
outcome, there is nothing to gain from being allowed to include additional steps in the
bid functions. Theorem 3 below follows directly from Proposition 7.

Theorem 3 Suppose k > d(pm)
n

. For every number of admissible steps L ≥ 2 and
quantity agreement ε ∈ (0, d(pm)], perfect collusion with equal sharing is sustainable
on a stationary path in Γδ(k, 0, a, L), if and only if τ ε is sustainable. Moreover, there
exists δa(ε) such that τ ε is sustainable if and only if δ ≥ δa(ε) and δa(ε) ↓ δe as ε → 0.

Apart from directly relaxing firms’ incentive constraints on perfectly collusive paths,
allowing for more than one step in a firm’s bid function generates another interesting
difference as compared to the simple price-quantity approach. If L ≥ 2, on a perfectly
collusive stationary path that minimizes incentives to deviate, firms set identical 2-step
bid functions. This symmetry in firms’ actions is not a property of the most collusive
path in the price-quantity supergame since a single firm must play the role of the
high-priced firm. This further implies that under the Maximum Accepted Price rule,
capacity withholding is effective in relaxing incentive constraints even in a duopoly,
while as we have shown in Proposition 4, this is not the case in the price-quantity
approach.

6 Conclusion

We have examined the nature of collusive stationary perfect equilibrium paths in an
infinitely repeated multiunit uniform price auction with capacity constrained firms.
Under two different definitions of the market price in a uniform price auction, each
appearing prominently in the literature, we characterize the set of paths that minimize
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the incentive to deviate while supporting the monopoly price with equal sharing of
output. We then show that these paths can be supported as stationary perfect equi-
libria for a wider range of discount factors than under a repeated discriminatory price
auction.

Using the Market Clearing Price rule to determining the uniform price, we show
that extending firms’ strategy spaces to allow them to place bids involving any finite
number of price-quantity pairs neither enhances, nor hinders the firms’ ability to col-
lude. Surprisingly, L-step bidding functions, L ≥ 2, cannot improve upon the ability
to collude with 1-step bidding functions, which involve the simple choice of a price-
quantity pair, nor can they make collusion more difficult to sustain. Since such step
functions are quite common in electricity markets, our analysis extends the analysis of
collusion to these more complicated markets with step supply functions.

Using the Maximum Accepted Price rule, the capacity withholding properties stated
above continue to hold, although with this rule, bid functions that involve 2 steps
(L ≥ 2) strictly lower the incentive to deviate from the most collusive outcome when
compared to the price-quantity game (L = 1). Further increases in the number of
steps in the bidding function provide no advantage: collusive outcomes are no easier
or harder to support when the strategy space is extended to L = 3 than with L = 2.
Hence, under the Maximum Accepted Price rule as well, optimal collusion can be
attained with a drastically restricted set of available step supply functions requiring
only two steps.
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Appendix

7 Proof of Proposition 1

We first show that all strategy profiles described in (i), (ii) and (iii) of Proposition 1
form Nash equilibria of the respective games Γu(k, 0), u ∈ {e, a}. For k ≤ yc, we show

in (a) that Eu(k, 0) is a set of Nash equilibria for u ∈ {e, a}. For k ≥ d(0)
n−1

and k ∈
(yc, d(0)

n−1
), we show in (b) that Ea(k, 0) is a set of Nash equilibria for u ∈ {e, a}. Next,

for k > yc, we show in (c) that Ea(k, 0) and De(k, 0) are sets of Nash equilibria under
the Maximum Accepted Price rule and the Market Clearing Price rule, respectively.
Finally, we show in (d) that for k > yc, C(0) is an additionnal set of Nash equilibria
under the Market Clearing Price rule. We complete the proof of the proposition by
demonstrating that for each u ∈ {e, a}, the sets of strategy profiles described in (i),
(ii) and (iii) characterize the complete set of Nash equilibria of Γu(k, 0).

(a) Suppose k ≤ yc. Note that in this case, all firms are capacity constrained
at pr = p = P (nk). Furthermore, for all u ∈ {e, a}, all strategy profiles in the
statement of the proposition yield πi(p

∗,q∗) = P (nk)k, ∀i ∈ N . To prove (i), we
examine both definitions of the uniform price separately. Consider first the Market
Clearing Price rule or u = e. Suppose that there exists a firm i such that, ∀j 6= i,
p∗j ≤ P (nk) and q∗j = k. We show that firm i’s best response to (p∗−i, q

∗
−i) is the

set of price-quantity pairs (p∗i , q
∗
i ) such that p∗i ≤ P (nk) and q∗i = k. Let (p′i, q

′
i) be

firm i’s strategy and Pe′ the resulting uniform price. Then we either have p′i > Pe′,
in which case firm i’s profit from (p′i, q

′
i) is equal to zero, or p′i ≤ Pe′. In the latter

case, one can easily check that Pe′ = max{p′i, P ((n − 1)k + q′i)} and that firm i’s
sales are equal to min{q′i, R(p′i|p′i, q′i, p∗−i, q

∗
−i)}. Furthermore, firm i’s payoff is equal to

max{p′i, P ((n− 1)k + q′i)}min{q′i, R(p′i|p′i, q′i, p∗−i, q
∗
−i)}, which is maximized by setting

p′i ≤ P (nk) and q′i = k, at which firm i obtains a payoff equal to P (nk)k > 0.
Consider now the Maximum Accepted Price rule or u = a. Suppose that there

exists a firm i such that, ∀j 6= i, p∗j ≤ P (nk) and q∗j = k. We show that firm i’s best
response to (p∗−i, q

∗
−i) is the set of price-quantity pairs (p∗i , q

∗
i ) such that p∗i ≤ P (nk) and

q∗i = k, unless p∗j < P (nk), ∀j 6= i, in which case, p∗i = P (nk) and q∗i = k is firm i’s best
response. Let (p′i, q

′
i) be firm i’s strategy and Pa′ the resulting uniform price. Again,

if p′i > Pa′, firm i obtains a profit of zero. On the other hand, if (p′i, q
′
i) is such that

p′i ≤ Pa′, then firm i’s payoff from (p′i, q
′
i) is given by Pa′ min{q′i, R(p′i|p′i, q′i, p∗−i, q

∗
−i)}.

Since p∗j ≤ P (nk), ∀j 6= i, if p′i > P (nk), P a′ = p′i and thus firm i’s payoff is equal to
p′i min{q′i, R(p′i|p′i, q′i, p∗−i, q

∗
−i)} < P (nk)k, but firm i could obtain (Pnk)k by decreasing

price to P (nk) and offering q′i = k instead. Furthermore, given any q′i, firm i’s payoff
from setting p′i < P (nk) can be no greater than P (nk)k since k < yc implies p = P (nk)
and pk = P (nk)k. So suppose p∗j < P (nk), ∀j 6= i. If p′i < P (nk), it is clear that
P a′ < P (nk), in which case firm i obtains strictly less than P (nk)k, a payoff it could
obtain by raising price to P (nk) and offering capacity. On the other hand, if there
exists h 6= i for which p∗h = P (nk), then for any p′i ≤ P (nk), we have P a′ = P (nk),
and thus, by setting q′i = k, firm i obtains exactly P (nk)k.
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(b) Suppose k ≥ d(0)
n−1

. In this case, n − 1 firms can serve demand at a price
equal to marginal cost. To prove that all strategy profiles (p∗,q∗) ∈ Ea(k, 0) are
equilibria, note that Pu(p∗,q∗) = 0, for every (p∗,q∗) ∈ Ea(k, 0) and u ∈ {e, a}.
Hence πi(p

∗,q∗) = π = 0, ∀i ∈ N . Since ∀h ∈ L(0|p∗,q∗), ∑
l∈L(0|p∗,q∗)\{h} q̂∗l ≥ d(0),

residual demand is zero at every p ∈ (0, p]. It thus follows that no firm has a profitable
deviation in this case.

(c) Suppose k ∈
(
yc, d(0)

n−1

)
. Note that the only difference between the sets Ea(k, 0)

and De(k, 0) is the fact that p∗j may be less than or equal to pr in De(k, 0). Thus, we
first show that strategy profiles in Ea(k, 0) are Nash equilibria under both rules. For
u ∈ {e, a}, note that all strategy profiles in Ea(k, 0) yield P u(p∗,q∗) = pr, πj(p

∗,q∗) =
π and for every firm i 6= j, πi(p

∗,q∗) = prk. By definition of p, firm j has no incentive
to deviate from (pr, q∗j ). We now show that low-priced firms do not have an incentive
to deviate. We first show that a low-priced firm, say i, i 6= j, has no incentive to
deviate to the residual demand monopoly price after n− 2 firms have sold k and firm
j has sold q∗j . To this effect, define y ∈ (−(n− 2)k, k) as the unique solution in y to:

π((n− 2)k + y) = prk.

Uniqueness of y in the interval (−(n−2)k, k) follows from π(0) = max{pmd(pm), P (k)k} >
prk and π((n− 1)k) < prk and the fact that π((n− 2)k + y) is continuous and strictly
decreasing as a function of y on the closed interval [−(n − 2)k, k]. Now, since π(q)
is strictly decreasing in q, if q∗j ≥ y, then prk ≥ π((n − 2)k + q∗j ). Therefore, if
q∗j ≥ max{d(pr) − (n − 1)k, y}, firm i prefers to obtain πi(p

∗,q∗) = prk rather than
raising price to pr((n− 2)k + q∗j ) and serving residual demand. Finally, firm i can nei-
ther increase its payoff by slightly undercutting other low-priced firms, nor by setting
a price in the interval (p, pr), since in both cases, it would obtain exactly prk. Finally,
the fact that y ≥ d(pr)− (n− 1)k follows from the following argument. By definition
of y, if qj > y, then prk > π((n − 2)k + qj) = maxq≤k{P (q + (n − 2)k + qj)q}. So
suppose that y < d(pr) − (n − 1)k and let qj = d(pr) − (n − 1)k > y. It is clear that
in this case P (k + (n− 2)k + qj)k = prk ≤ maxq≤k{P (q + (n− 2)k + qj)q} (where the
first equality follows from k + (n − 2)k + d(pr) − (n − 1)k = d(pr)), a contradiction
to the above statement. Thus, y ≥ d(pr) − (n − 1)k. Hence, we have shown that all
strategy profiles in Ea(k, 0) are Nash equilibria under both rules. To complete the
proof for the Market Clearing Price rule, note that if y = d(pr)− (n− 1)k, then q∗j = y
implies

∑
h∈N q∗h = d(pr). If additionally, for every h, p∗h ≤ pr, which clearly holds

for the strategy profiles described in Ee(k, 0), then Pe(p∗,q∗) = pr. This completes
the proof that all strategy profiles in De(k, 0) are Nash equilibria under the Market
Clearing Price rule.

(d) Consider the game Γe(k, 0). Define qc
− ≡ (n − 1)yc. For k > yc, we now

show that any (p∗,q∗) where p∗i ≤ p(qc
−) and q∗i = yc, ∀i, is a Nash equilibrium of

Γe(k, 0). For such strategy profiles, the uniform price is equal to Pe(p∗,q∗) = P (nyc)
and each firm’s payoff πi(p

∗,q∗) is P (nyc)yc ∀i. First, by definition of p(qc
−), no firm

has an incentive to undercut any of its rivals’ prices and expand output above yc.
Moreover, since yc is the unique Cournot equilibrium output, pr(qc

−) = P (nyc) and
π(qc

−) = P (nyc)yc. Thus no firm has an incentive to deviate from (p∗,q∗), from which
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it follows that (p∗,q∗) is an equilibrium.

In the remainder of the proof, we show that for u ∈ {e, a}, the equilibria char-
acterized above are the only equilibria of Γu(k, 0). In the analysis below, let (p∗,q∗)
be a pure strategy equilibrium. We have shown above that, for all k, (p∗,q∗) exists
under both uniform price rules. For i ∈ N , let πi be firm i’s profit in a pure strategy
equilibrium.

7.1 Maximum Accepted Price rule

Lemma A1 Suppose k < d(0)
n−1

, then, for every (p∗,q∗), p > Pa(p∗,q∗) > 0 and
p∗i ≤ Pa(p∗,q∗), ∀i ∈ N .

Proof. It is clear that p > Pa(p∗,q∗) > 0 since both Pa(p∗,q∗) = p and Pa(p∗,q∗) = 0

imply πj = 0, ∀j. But since k < d(0)
n−1

, we have π > 0, a contradiction to πj ≥ π in
equilibrium. Finally, suppose there exists a firm i setting p∗i > Pa(p∗,q∗). Then firm
i’s profit is equal to zero since its sales are zero. Hence, a similar argument as the
above applies. ¥

Lemma A2 If (p∗,q∗) is such that there exists firm i ∈ N for which 0 ≤ p∗i <
Pa(p∗,q∗), then q̂∗i = si(p

∗
i |p∗,q∗) = k̂.

Proof. The proof is in two parts. First we show that each firm i setting p∗i < Pa(p∗,q∗)
offers q∗i such that q̂∗i = k̂. Then, we show that s∗i = k̂ follows. Suppose contrary to
the statement of the lemma that there exists a firm i setting p∗i < Pa(p∗,q∗) and q∗i =
q̂∗i < k̂. It is easy to see that for small enough ε > 0, Pa(p∗, q∗i + ε, q∗−i) = Pa(p∗,q∗).
But then Pa(p∗,q∗)(q∗i + ε) > πi = Pa(p∗,q∗)q∗i , a contradiction to (p∗i , q

∗
i ) being part

of an equilibrium. Suppose now that q̂∗i = k̂ > s∗i . This can only be the case if firm
i sells to residual demand. But then p∗i < Pa(p∗,q∗) must be the uniform price, a
contradiction. Thus q̂∗i = s∗i = k̂. ¥

Lemma A3 If (p∗,q∗) is such that Pa(p∗,q∗) > 0, then either (i) exactly one firm
sets Pa(p∗,q∗), or (ii) si(p

∗
i |p∗,q∗) = k, ∀i ∈ N .

Proof. Suppose contrary to the statement of the lemma that a group of l firms, l ≥ 2,
tie at p = Pa(p∗,q∗). It follows immediately that if firm h sets p∗h = p, then firm h
can increase its profit by undercutting firms setting p slightly and offering capacity to
earn:

p min{k̂, R(p|p∗,q∗)} ≥ ps∗h = p min

{
q̂h,

q̂h∑
j∈L(p) q̂j

R(p|p∗,q∗)
}

.

where the inequality is strict whenever s∗h < k̂. Using Lemma A2, it follows that either
there is only one firm setting Pa(p∗,q∗) or si(p

∗
i |p∗,q∗) = k, ∀i ∈ N , which is what

we had to prove. ¥
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Lemma A4 Suppose k ≤ yc, then in every equilibrium, Pa(p∗,q∗) = P (nk).

Proof. Suppose Pa(p∗,q∗) < P (nk). Then the (possibly multiple) firm(s) setting
Pa(p∗,q∗) could increase profit strictly by offering and selling capacity at P (nk) in-
stead. Suppose Pa(p∗,q∗) > P (nk) > 0. In this case, from Lemma A3, there can only
be one firm, say i, setting the uniform price. Since from Lemma A2, sj(p

∗
j |p∗,q∗) = k,

∀j 6= i, it follows that πi(p
∗,q∗) = Pa(p∗,q∗)si(p

∗
i |p∗,q∗) < π, a contradiction to

equilibrium behavior. ¥

Lemma A5 Suppose k ≥ d(0)
n−1

, then in every equilibrium, Pa(p∗,q∗) = 0.

Proof. Suppose to the contrary that Pa(p∗,q∗) > 0. Then from Lemma A3 and

k ≥ d(0)
n−1

, it must be the case that there is a unique h setting p∗h. But from Lemma A2

and k ≥ d(0)
n−1

,
∑

j∈L(Pa)− q̂j = (n − 1) d(0)
n−1

= d(0), contradicting the fact that residual

demand is strictly positive at Pa(p∗,q∗) > 0 and thus the definition of the uniform
price. Thus Pa(p∗,q∗) = 0. ¥

The fact that the complete set of equilibria of Γa(k, 0) is given by (i), (ii) and
(iii) follows from combining Lemmas A1 to A5 and constructing strategy profiles that
satisfy the properties in the lemmas. It is straightforward to show that the only such
strategy profiles from which no firm has an incentive to deviate are those characterized
in Proposition 1. It is then clear that all Nash equilibria of Γa(k, 0) are given by (i),
(ii) and (iii).

7.2 Market Clearing Price rule

Lemma A6 below identifies the major difference between the two definitions of the
uniform price. When the Market Clearing Price rule is used, the uniform price may be
a price that no firm submitted. Lemma A6 identifies the properties that an equilib-
rium in which no firm sets the resulting uniform price should satisfy. It follows from
Lemma A6 that all such equilibria are given by strategy profiles we characterized and
are contained in either De(k, 0) or C(0). In all other equilibria, at least one firm must
set the uniform price and it is straightforward to show that in this case, Lemmas A1 to
A5 derived for the Maximum Accepted Price rule apply to the Market Clearing Price
rule as well. Thus all equilibria of Γe(k, 0) are characterized by (i), (ii) and (iii) in the
statement of Proposition 1.

Lemma A6 If (p∗,q∗) is such that p∗i 6= Pe(p∗,q∗), ∀i ∈ N , then either

1. p∗i < Pe(p∗,q∗) = P (n min{k, yc}) and q∗i = si(p
∗
i |p∗,q∗) = min{k, yc},

or k ∈ {κ ∈ (yc, d(0)
n−1

)|y = d(pr((n− 1)κ)− (n− 1)κ} and

2. (p∗,q∗) ∈ De(k, 0).

Proof. First, it clear that Pe(p∗,q∗) > 0 since otherwise, it must be the case that
there exists a firm i setting the uniform price p∗i = 0. It is straightforward to check
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that p∗i < Pe(p∗,q∗), ∀i, since if this were not the case, a firm setting its price strictly
above Pe(p∗,q∗) would obtain a payoff of zero, which is strictly less than what it would
obtain by offering a positive quantity at exactly Pe(p∗,q∗). It follows from the above
arguments that p∗i 6= Pe(p∗,q∗), ∀i, implies Pe(p∗,q∗) = P (

∑
i∈N q∗i ). Now suppose

that k ≤ yc, then it is clear that in equilibrium, Pe(p∗,q∗) = P (nk). Otherwise it
must be the case that some firm, say j, sets q∗j < k, to earn P (

∑
i∈N q∗i )q

∗
j . But since

k ≤ yc, such firm could clearly increase its profit by offering k at a price at or below
the resulting uniform price to earn P (k +

∑
i∈N\{j} q∗i )k instead. Suppose now that

k > yc. Then firm i’s payoff in this case is equal to P (
∑

i∈N q∗i )q
∗
i . The unique Cournot

equilibrium, q∗i = yc ∀i, is then clearly an equilibrium of Γe(k, 0). This completes the
proof of 1.

To prove 2, note that in any equilibrium (p∗,q∗) with p∗i 6= Pe(p∗,q∗) and q∗j 6= yc

for some j, it must be the case that either q∗i = k or q∗i = r(
∑

h6=i q
∗
h). We now show

that at most one firm can have q∗i 6= k. Suppose there exists j for which q∗j 6= k
and ∀i 6= j, q∗i = k. Then clearly, q∗j = d(pr) − (n − 1)k, since otherwise, πj < π, a
contradiction to equilibrium behavior. Moreover, for such ceilings to be part of a Nash
equilibrium with p∗h 6= Pe(p∗,q∗) ∀h, it must be the case that p∗j < pr = Pe(p∗,q∗)
and, ∀i 6= j, p∗i < p. It is then straightforward to check that this is possible if
and only if y = d(pr) − (n − 1)k. Finally, suppose that there exist i and j setting
q∗i = r(

∑
h6=i q

∗
h) ≤ k and q∗j = r(

∑
h6=j q∗h) ≤ k. Then, for l,m ∈ {i, j} and m 6= l, it

follows from r(
∑

h6=m q∗h) ≤ k, that pr(
∑

h6=l q
∗
h) ≥ pr, which implies q∗l ≤ d(pr)−(n−1)k

∀l ∈ {i, j}. But since y = d(pr)− (n− 1)k, for l, m ∈ {i, j} l 6= m, the following holds:
k ≤ r((n−2)k + y) ≤ r((n−2)k + q∗m) = r(

∑
h6=l q

∗
h), with equality if and only q∗m = k.

Therefore r(
∑

h6=l q
∗
h) < k cannot hold for both l ∈ {i, j}. Appealing to the definition

of De(k, 0) completes the proof of 2 and the proof of the Lemma. ¥

Finally, for both uniform price rules, simple computations show that for all values
of capacity k and each firm i ∈ N , there exists a pure strategy equilibrium in which
firm i obtains its minmax payoff π. ¥

8 Proof of Lemma 3

Let τ be a perfectly collusive stationary path with equal sharing. Then τ must satisfy
the properties stated in Lemma 2. We first show that incentives to deviate cannot
increase for any firm if every firm setting pi = pm also sets qi = k. Let l ≥ 1 be
the number of elements of L(pm). By (iii), for firms in L(pm), the residual demand

is R(pm) = d(pm) − (n − l)d(pm)
n

= l d(pm)
n

. Furthermore, equal sharing requires that

if i ∈ L(pm), si = min{q̂i,
q̂iP

j∈L(pm) q̂j
l d(pm)

n
} = d(pm)

n
. But then it is easy to see that

setting qi = k, ∀i ∈ L(pm) implies si = d(pm)
n

and cannot increase any firm’s incentive
to deviate.

We now show that if i and j set pi < pm and pj < pm, then pi = pj minimizes
incentives to deviate. Suppose this is not the case and, w.l.o.g., that pi < pj. Then,
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using (1), i and j’s incentive constraints are given by:

(1− δ)π∗i (p−i, q−i) + δπ ≤ pm d(pm)

n
.

(1− δ)π∗j (p−j, q−j) + δπ ≤ pm d(pm)

n
.

Suppose firm j reduces its price to match pi. By (ii) in Lemma 2, it must be the case

that q−i = q−j = d(pm)
n

, thus firms’ sales do not change. By Lemma 1 deviation profits
π∗h(p−h, q−h) are non-decreasing in p−h for fixed q−h. Thus deviation profits cannot
increase by setting pj = pi. On the other hand, a firm’s profit on the initial path is
unaffected since the uniform price does not change and neither do any firm’s sales.

Next we show that if i sets pi = pm, then its incentive to deviate is minimized when
the remaining n− 1 firms set their price equal to p(qm

− ) (and thus offer exactly d(pm)
n

),

from which it follows that all firms will set p(qm
− ) and d(pm)

n
, which completes the proof

of the lemma. By definition of pr(q), the worst possible deviation profit firm i can
guarantee itself when lower-priced firms offer q < d(0) is:

pr(q)[d(pr(q))− q].

The above expression is decreasing in q. Since every firm setting p < pm must offer
d(pm)

n
, firm i’s worst possible deviation profit is minimized when the number of low-

priced firms is the highest, that is, when the remaining firms’ aggregate quantity offered
is qm

− . In this case, firm i’s deviation profit is given by:

pr(qm
− )[d(pr(qm

− ))− qm
− ] = π(qm

− ). (A1)

Note that it follows from k > d(pm)
n

that p(qm
− ) < pr(qm

− ) < pm. Furthermore, if each
firm setting ph < pm sets ph = p(qm

− ), then firm i’s deviation profit is indeed equal to
its worst possible deviation profit. It remains to show that the uniform price is actually
pm. This is easily verified using Definition 1 and the fact that if all firms offer d(pm)

n
,

then
∑

i∈N q̂i = d(pm) where N = L(pm|p,q). ¥

9 Proof of Proposition 3

We first characterize δ. From Lemma 2, the only perfectly collusive stationary path
with equal sharing on which every firm offers its capacity is τ sm, where τ sm is as follows:

pi = pm and qi = k, ∀i.

From the definition of si, sales on τ sm are equal to k
nk

d(pm) = d(pm)
n

and the uniform
price is pm. From (1), on τ sm, the symmetric incentive constraints are:

(1− δ)pm min{k, d(pm)}+ δπ ≤ pm d(pm)

n
. (A2)
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Thus τ sm is sustainable if and only if (A2) holds. Solving for δ from (A2) satisfied
with equality, we obtain:

δ =
pm min{k, d(pm)} − pm d(pm)

n

pm min{k, d(pm)} − π
. (A3)

Therefore if perfect collusion with equal sharing is sustainable for δ < δ, it must be
the case that some firm withholds. We now show that there exists δe < δ such that if
δ > δe, perfect collusion with equal sharing is sustainable.

To determine the value of δe, note that from Lemma 3, on the path that minimizes
incentives to deviate, τme, each firm’s deviation profit is given by (A1). Thus, from
(1), δe is the value of δ that solves

(1− δ)π(qm
− ) + δπ = pm d(pm)

n
.

After rearranging, we obtain:

δe =
π(qm

− )− pm d(pm)
n

π(qm− )− π
(A4)

Since π(qm
− ) < pm min{k, d(pm)} clearly holds for all values of k, δe < δ follows.

Finally, since we have shown deviation profits are strictly lower on τme than they are
on any other perfectly collusive stationary path with equal sharing, it follows that for
δ = δe, withholding by all firms is necessary to sustain perfect collusion with equal
sharing on a stationary path. ¥

10 Proof of Lemma 4

The proof is similar to the proof of Lemma 3 above except for the last two paragraphs,
which rely on the particular definition used for the uniform price. When Definition
2 is used, one firm must set pm on any perfectly collusive stationary path. Thus on
the path that minimizes incentives to deviate, deviation profits differ from those under
Definition 1.

To complete the proof of Lemma 4, we show that when all but one firm set p =
p(qm

− ), incentives to deviate are also minimized for the low-priced firms. Suppose l ≥ 1

firms set p < pm and offer d(pm)
n

each. Below, we compute such a firm’s deviation profit
depending on k. First note that incentives to deviate cannot increase if the l low-priced
firms set p = p(qm

− ) rather than some p′ ∈ (p(qm
− ), pm) (Lemma 1). Suppose then that

the l low-priced firms set p = p(qm
− ). It is straightforward to check that undercutting

p cannot be optimal if it results in the uniform price being reduced to p. If l = 1, the
optimal deviation clearly consists in undercutting pm and offering k, for every k. If
l > 1 and firm j is a low-priced firm, optimal deviations then take one of two possible
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forms depending on k. Either firm j undercuts p and offers the minimum of k and a
quantity infinitesimally less than (n−l+1)d(pm)

n
to obtain:

pm min{k,
(n− l + 1)d(pm)

n
}; (A5)

or firm j maximizes profit on residual demand after l − 1 low-priced firms have sold
their quantity d(pm)

n
to obtain:

pr(qH
l )[d(pr(qH

l ))− qH
l ] where qH

l ≡ (l − 1)d(pm)

n
. (A6)

If k ≤ (n−l+1)d(pm)
n

, it is clear that pr(qH
l ) ≥ pm, and thus (A6) is not a possible de-

viation (since then the deviating firm would be setting a higher price than all n − 1
remaining firms). In this case, firm j’s optimal deviation profit is given by (A5) and

equals pmk. If (n−l+1)d(pm)
n

< k ≤ r(qH
l ), then pr(qH

l ) = P (k + qH
l ) < pm. In this case,

firm j’s optimal deviation consists in selling its capacity at pr(qH
l ) < pm. Finally, if

k > r(qH
l ), pr(qH

l ) = P (r(qH
l ) + qH

l ) < pm and firm j’s optimal deviation consists in
setting the residual demand monopoly price after l − 1 firms have sold their quantity,
and offering qj ∈ [r(qH

l ), k] for sale. It is clear that deviation profits in (A5) and (A6)
are non-increasing in l. Therefore, they are minimized by setting l = n− 1. Moreover,
inspecting (A5) and (A6), optimal deviations do not depend on p as long as p ≤ p(qm

− ).
Therefore, setting p = p(qm

− ) cannot increase incentives to deviate. ¥

11 Proof of Proposition 4

Since we have characterized δ in the proof of Proposition 3, we only need to charac-
terize δa and compare in order to prove Proposition 4. From Lemma 4, the path that
minimizes incentives to deviate in the class of perfectly collusive paths with equal shar-
ing is of the form τm

i . On τm
i , firm i’s optimal deviation yields pr(qm

− )[d(pr(qm
− ))− qm

− ],
which is clearly strictly less than pm max{k, d(pm)}, a firm’s optimal deviation profit
on τ sm. On τm

i , for j 6= i, firm j’s optimal deviation is either (A5) or (A6) above after

substituting for l = n− 1. (A5) is then equivalent to pm min{k, 2d(pm)
n

}. It is clear that

if n = 2 or n > 2 and k ≤ 2d(pm)
n

, firm j’s optimal deviation yields pmk, in which case

τm
i does not strictly relax incentives to deviate. If n > 2 and k > 2d(pm)

n
, the optimal

deviation is given by (A6). Letting qH ≡ (n−2)
n

d(pm), (A6) is equivalent to:

πH ≡ pr(qH)[d(pr(qH))− qH ].

Since we have k > 2d(pm)
n

, P (k + qH) < pm. Moreover, if k is such that pr(qH) 6=
P (k + qH), then it is clear that since qH > 0, pr(qH) < pm as well. Hence,

πH < pm min{k, d(pm)}. (A7)

Finally, since qH < qm
− , πH > pr(qm

− )[d(pr(qm
− ))− qm

− ], i.e., a low-priced firm’s deviation
profit is higher than firm i’s deviation profit. Therefore, if k > 2

n
d(pm), δa is given
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by any low-priced firm’s incentive constraint satisfied with equality, which using (1) is
given by

(1− δa)πH + δa π = pm d(pm)

n
.

After solving for δ in the above, we obtain:

δa =
πH − pm d(pm)

n

πH − π
. (A8)

Using (A3) and (A7), it follows from (A8) that δa < δ.
Finally, since we have shown deviation profits are strictly lower on τma than they

are on any other perfectly collusive stationary path with equal sharing, it follows that
for δ = δa, withholding by all but one firms is necessary to sustain perfect collusion
with equal sharing on a stationary path. ¥

12 Proof of Lemma 5

Let (p−i,q−i) be a vector firm i’s rival’s strategies. We show that for both uniform
price auction rules, π∗i (p−i,q−i) = sup(pi,qi)

πi(pi, qi,p−i,q−i) can be obtained with a
strategy using a single step. Throughout the proof, we ignore price steps li such that
pli

i is strictly greater than the uniform price. Such price steps are indeed irrelevant
since the quantity sold at such steps is equal to zero, so that firm i cannot increase its
profit by including them in its strategy. Let (p∗i , q

∗
i ) ∈ arg sup(pi,qi)

πi(pi, qi,p−i,q−i)
and ps∗

i be the set of prices submitted by firm i. First, Pu∗ = Pu(p∗i , q
∗
i ,p−i,q−i) is

only possible if firm i’s residual demand at strictly positive prices is equal to zero. In
this case, π∗i = 0 is independent of firm i’s strategy and can therefore be obtained by
using a single step bidding function (for instance, offering k at pi = 0). Suppose that
Pu∗ > 0. There are two cases: either Pu∗ ∈ ps∗

i or pli∗
i < Pu∗, ∀li. Consider first the

case Pu∗ ∈ ps∗
i . It is clear that tying with a group of firms at Pu∗ cannot be optimal

unless s∗i = si(p
∗
i , q

∗
i ,p−i,q−i) = min{d(Pu∗), k}, since otherwise, firm i could strictly

increase its profit by slightly undercutting Pu∗. However if s∗i = min{d(Pu∗), k}, then,
from Definitions 1 and 2, it is straightforward to check that it must be the case that
firm i can obtain π∗i = Pu∗s∗i by using the one-step strategy (Pu∗, min{d(Pu∗), k}).
Suppose then that s∗i < min{d(Pu∗), k}. It follows from the above arguments that firm
i must be the only firm with Pu∗ in its strategy. Thus

π∗i = Pu∗[min{q̂i(P
u∗), d(Pu∗)−

∑

j∈N\{i}

∑
p∈ps

j

qj(p)}+
∑

p∈ps
j\Pu∗

q̂li∗
i ]

Note that unless q̂i(P
u∗) = k < d(Pu∗) − ∑

j∈N\{i}
∑

p∈ps
j
qj(p) (in which case s∗i =

min{d(Pu∗), k}), firm i would never set q∗i (P
u∗) < d(Pu∗)−∑

j∈N\{i}
∑

p∈ps
j
qj(p). Thus

π∗i = Pu∗[d(Pu∗)−
∑

j∈N\{i}

∑
p∈ps

j

qj(p) +
∑

p∈ps
j\Pu∗

q̂li∗
i ]
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But this is exactly what firm i would obtain if for every (pli∗
i , qli∗

i ) such that pli∗
i ∈

ps∗
i (Pu∗) \ {Pu∗} (the set of steps for which pli∗

i is strictly below Pu∗), firm i set the
single step (Pu∗, qli∗

i ) instead. Finally, consider the case pli∗
i < Pu∗, ∀li. Then, from

Definitions 1 and 2, it must be the case that π∗i = Pu∗s∗i is independent of firm i’s
prices pli∗

i since pli∗
i < Pu∗, ∀li. Therefore, in this case, any single-step bidding function

(p,
∑

z∈ps∗
i

qi(z)) for some p < Pu∗ achieves a payoff equal to π∗i . ¥

13 Proof of Proposition 7

For ε ∈ (0, d(pm], on τ ε, each firm has the same incentive to deviate in every period.
It simple to check that a firm’s profit from an optimal unilateral deviation is given by

π∗i = pmk (A9)

if d(pm) + (n − 1)ε ≥ k. It is obtained by expanding output up to k at p(qε
−). If

k > d(pm) + (n− 1)ε, then
π∗i = π(qε

−), (A10)

which is obtained by setting the residual demand monopoly price after firm i’s rivals
have sold qε

−. We now show that τ ε minimizes incentives to deviate in the class of
stationary perfectly collusive paths with equal sharing. Since on a perfectly collusive
path with equal sharing, it must be the case that Pa = pm, it is clear that incentives
to deviate cannot be lowered by moving some quantity offered at p(qε

−) to some price
strictly between p(qε

−) and pm. Furthermore, for every i, we can rule out steps such
that p > Pa = pm and qi(p) > 0 since setting such steps does not affect the outcome
(because a firm’s sales are equal to zero at such prices), but may increase incentives
to deviate. Since on a stationary perfectly collusive paths with equal sharing, for a
given (pli

i , qli
i ) such that pli

i < pm, pli
i affects neither firm i’s sales nor its profit, it

follows that we can, without loss of generality, restrict attention to stationary paths
on which firms use at most 2 steps in their bidding function satisfying the following. If
for some i, j ∈ N , there exists pi ∈ ps

i and pj ∈ ps
j such that pi < pm and pj < pm, then

pi = pj = p. If q∗−i is the total quantity offered by firm i’s rivals at p < pm, other things
equal, incentives to deviate are minimized if p is set equal to pl = mini∈N{p(q∗−i)},
the highest price that no firm would ever want to undercut. Additionally, for every
firm j such that pm ∈ ps

j , qj(p
m) = k − qj(pl), minimizes incentives to deviate (since

then, when firm j ties with a group of firms at pm, it cannot deviate by increasing
its quantity offered at pm without decreasing its quantity offered at pl). Finally, to
minimize firm i’s deviation profit, the quantity offered by firm i’s rivals at a price
strictly below pm q∗−i =

∑
j 6=i qj(p), p < pm, must be as large as possible, while satisfying∑

i∈N qi(p) ≤ d(pm) − ε. thus for every i, this maximum quantity is obtained when∑
i∈N qi(p) = d(pm)−ε ⇐⇒ q∗−i = d(pm)−ε+qi(p). It follows that incentives to deviate

are minimized at (q1(p), . . . , qn(p)) satisfying q∗−i = d(pm)−ε+qi(p) = d(pm)−ε+qj(p) =
q∗−j, ∀i, j, i 6= j. Solving for q1(p) and substituting in

∑
i∈N qi(p) = d(pm) − ε yields

q1(p) = . . . = qi(p) = . . . = qn(p) = d(pm)−ε
n

= qε
−. It follows that pl = p(qε

−) and that

each firm offers k −
[

d(pm)−ε
n

]
at pm. ¥
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Figure 1: Determining the uniform price under Definition 1 and Definition 2.
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Figure 2: Range of possible divisions of monopoly output for the low-priced firm, firm
i, on a stationary perfect equilibrium path for k = 1
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. sm is the smallest allocation and

sm the largest allocation firm i can obtain on such paths.
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